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Abstract

To understand shapes and movements of cells undergoing lamellipodial motility, we sys-

tematically explore minimal free-boundary models of actin-myosin contractility consisting of

the force-balance and myosin transport equations. The models account for isotropic con-

traction proportional to myosin density, viscous stresses in the actin network, and constant-

strength viscous-like adhesion. The contraction generates a spatially graded centripetal

actin flow, which in turn reinforces the contraction via myosin redistribution and causes

retraction of the lamellipodial boundary. Actin protrusion at the boundary counters the

retraction, and the balance of the protrusion and retraction shapes the lamellipodium. The

model analysis shows that initiation of motility critically depends on three dimensionless

parameter combinations, which represent myosin-dependent contractility, a characteristic

viscosity-adhesion length, and a rate of actin protrusion. When the contractility is sufficiently

strong, cells break symmetry and move steadily along either straight or circular trajectories,

and the motile behavior is sensitive to conditions at the cell boundary. Scanning of a model

parameter space shows that the contractile mechanism of motility supports robust cell turn-

ing in conditions where short viscosity-adhesion lengths and fast protrusion cause an accu-

mulation of myosin in a small region at the cell rear, destabilizing the axial symmetry of a

moving cell.

Author summary

To understand shapes and movements of simple motile cells, we systematically explore

minimal models describing a cell as a two-dimensional actin-myosin gel with a free

boundary. The models account for actin-myosin contraction balanced by viscous stresses

in the actin gel and uniform adhesion. The myosin contraction causes the lamellipodial

boundary to retract. Actin protrusion at the boundary counters the retraction, and the bal-

ance of protrusion and retraction shapes the cell. The models reproduce a variety of motile
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shapes observed experimentally. The analysis shows that the mechanical state of a cell

depends on a small number of parameters. We find that when the contractility is suffi-

ciently strong, cells break symmetry and move steadily along either straight or circular tra-

jectory. Scanning model parameters shows that the contractile mechanism of motility

supports robust cell turning behavior in conditions where deformable actin gel and fast

protrusion destabilize the axial symmetry of a moving cell.

Introduction

Cell motility is a fundamental biological phenomenon that underlies many physiological pro-

cesses in health and disease, including wound healing, embryogenesis, immune response, and

metastatic spread of cancer cells [1], to name a few. Understanding the full complexity of cell

motility, exacerbated by complex biochemical regulation, poses enormous challenges. One of

them is multiple, sometimes redundant, sometimes complementary or even competing, mech-

anisms of motility [2]. Many researchers hold the view, which we share, that the way to face

this challenge is to study all these mechanisms thoroughly, and then proceed with a more

holistic approach.

One of the best studied types of motility is the lamellipodial motility on flat, hard and adhe-

sive surfaces [3], in which broad and flat motile appendages–lamellipodia–spread around the

cell body. Biochemical regulation plays an important role in the lamellipodial dynamics, but

minimal mechanisms of the lamellipodial motility, such as growth and spreading of a flat actin

network wrapped in plasma membrane and myosin-powered contraction of this network, are

mechanical in nature [3]. While many cell types exhibit the lamellipodial motility, one model

system, the fish epithelial keratocyte cell, contributed very prominently to the understanding

of lamellipodial mechanics, due to its large lamellipodium, streamlined for rapid and steady

locomotion [4, 5].

There are at least three distinct mechanical states of this system. The cells can be in a

stationary symmetric state, with a ring-like lamellipodium around the cell body [6]. Spontane-

ously, even if slowly, the cells self-polarize, so that the lamellipodium retracts at the prospective

rear and takes on a fan-like shape, upon which the cell starts crawling with a constant speed

and steady shape [6, 7]. Often, cell’s trajectory changes from straight to circular–the cells start

turning [8].

Mechanics of keratocyte movements has been studied extensively [4, 5, 7, 9]. Two principal

mechanisms enable the keratocyte motility. First, polymerization of the polarized actin net-

work at the front pushes forward the membrane at the leading edge, stretching the membrane

and creating membrane tension at the sides; the membrane then snaps at the rear and pulls

forward the depolymerizing actin network [10]. Second, contractile forces generated by myo-

sin, lagging behind in a moving cell, hold the cell sides and retract the rear, allowing the front

to protrude [5]. This and stick-slip dynamics of adhesions were recently shown to generate the

cell self-polarization [7].

One of the fundamental questions of cell motility concerns dynamics of the cell shape: how

do the actin-myosin mechanics in the cell bulk interact with actin growth and membrane

mechanics at the boundary to shape, stabilize and propel the cell? This question requires math-

ematical insight, and in the last two decades, keratocyte mechanics were extensively modeled

mathematically. The mathematical problem arising in these models is generally challenging,

given that the motile cell is a free-boundary object, in which deformations of the cell shape
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depend on, and in turn affect, the actin-myosin movements and forces inside the cell. The his-

tory of the free-boundary cell modeling was recently reviewed in [11].

To reduce the mathematical complexity of the problem, one can ignore the mechanics in

the lateral cross section and consider a simplified one-dimensional (1D) model, essentially rep-

resenting the cell as a 1D strip of an actin-myosin gel. Mathematical models of this kind [12–

15] provided valuable insight into conditions for symmetry breaking, motility initiation, and

stabilization of the anterior-posterior length of the moving cell. Modeling the front-to-rear cell

mechanics is not the only 1D approach: one can also disregard the bulk of the actin-myosin

network and hypothesize that the essential dynamics is concentrated at the very edge of the

cell; this allows one to approximate the cell shape by a 1D dynamic contour, which protrudes

or retracts locally according to some set of rules. A number of such models [16–19] revealed

that a small set of the boundary deformation rules can generate an unexpected variety of

dynamic cell shapes mimicking a number of observed motile cell types. The first such model

was a Graded Radial Extension mathematical model [20], which integrated experimental data

and posited that actin polymerization at the lamellipodial boundary results in protrusion of

the cell front and sides in the direction locally normal to the boundary, with spatially graded

rate maximal at the center of the leading edge and decreasing towards the sides.

A more accurate mathematical rendering of the lamellipodia is achieved via a full 2D free-

boundary model. Its general concept, first introduced in [21], is as follows. Actin-myosin con-

traction in the bulk of the 2D lamellipodium generates a centripetal actin flow that redistrib-

utes myosin powering the contraction; this feedback results in a spatially graded flow that

tends to retract the lamellipodial boundary. Actin growth at the boundary results in protrusion

countering the retraction, and the balance of protrusion and retraction shapes the lamellipo-

dium, feeding back to the actin-myosin contraction in the bulk of the lamellipodium. The

question is: what kind of cell shapes and movements does this model predict?

To address this question, 2D models of actin-myosin mechanics were employed to repro-

duce steady-state shapes and speed, as well as self-polarization, of a motile cell [5, 7, 22], but a

number of important issues have not been adequately explored, including turning behavior

and dependence of the motile behavior on the model parameters and boundary conditions. In

this paper, we resolve these issues by simulating numerically a minimal free-boundary model

described in the next section. We find that 1) cells are stationary when contractility is weak, 2)

when contractility is strong, cells break symmetry and move steadily along either straight or

circular trajectory, 3) cells exhibit turning behavior when fast protrusion destabilizes the axial

symmetry of a planar myosin distribution or cell shape, and 4) motile behavior of a cell is sen-

sitive to conditions of force balance at the cell boundary.

Models and methods

Mechanics plays a dominant role in keratocyte motility, while the role of biochemical regula-

tion is less clear, and is probably of less importance [3]; thus we focus on mechanical formula-

tion. Moreover, at least for the self-polarization phenomenon, the contractile mechanism of

motility is dominant compared to the graded actin polymerization [7], and so we concentrate

on the myosin generated forces and movements, and for simplicity assume that the actin

growth is uniform around the cell boundary.

The model consists of force-balance and myosin transport equations,

ZDXUþ srXM � xU ¼ 0

@TM ¼ rX � ðDeffrXM � UeffMÞ
ð1Þ

for the velocity of actin flow U(X,t) and myosin concentration M(X,t) defined locally for X 2
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O(t), where O(t) is a moving 2D domain representing cell geometry. Note, that all model equa-

tions are formulated in the lab frame of references. We discuss the validity of approximating

the flat lamellipodium as a 2D domain in the thin-cell limit in the Supplemental Material. The

model is similar to an actomyosin dynamic model suggested in [5, 23], and to active gel models

of the soft matter physics [24]. In the force balance equation, the first term describes the force

due to passive viscous stresses in the deforming actin network, where η is the effective actin

viscosity. The form of this term corresponds to the viscous shear stress in the Stokes equation

of hydrodynamics; we emphasize that the actin polymer mesh is compressible (fluid cytoplasm

can be squeezed easily into the dorsal direction in the cell [23]), and so there is no incompressi-

bility condition. In the Supplemental Material, we discuss the conditions under which the

effects of hydrostatic pressure and Darcy flow are negligible in the lamellipodium. Because the

movement of the cell takes place on the slow time scales, we do not consider viscoelastic effects

[23]. Also, as was done in many modeling studies [25], we ignore for simplicity subtle and

complex interplay between bulk and shear viscous stresses.

The second term in the force-balance equation describes the divergence of the myosin con-

tractile stress. As in [5, 23, 24], we assume the stress to be isotropic and proportional to the

myosin density, with σ denoting the force per unit of myosin density. The third term describes

the effective viscous drag arising from creeping movement of F-actin relative to a substrate,

mediated by dynamic adhesions and characterized by the viscous drag coefficient ξ. The linear

dependence of this drag on actin velocity is a standard assumption made in cell mechanics

models; for some cases, this assumption was verified experimentally.

The second of Eq (1) describes myosin transport. Kinetics of myosin can be interpreted in

terms of transitions between two states, a state of free myosin diffusing in the cytoplasm and a

state in which myosin is bound to the actin network [23]; clusters of the bound myosin both

contract the actin network and move with it. For the transitions occurring on a fast time scale,

the overall transport is well approximated by a diffusion-advection equation, and we assume

this limit in our model here. Additional discussion of the myosin transport is in the Supple-

mental Material. For low viscosity and slow diffusion, however, using U as an advection veloc-

ity and constant diffusion coefficients D results in singular solutions, in which M and U

develop Dirac-delta singularities. The effect is reminiscent of the collapsing phenomenon in a

2D version of the Keller-Segel chemotaxis model [26], which is mathematically similar to our

mechanical model. The singular solutions are obviously unrealistic, given that myosin mole-

cules have a finite size. The excluded volume effect can be taken into account by introducing

effective velocities [27], Ueff = U(1−M/Mmax,u), which approach zero when M!Mmax,u But in

a free-boundary problem, the actual maximum of myosin concentrations may significantly

exceed Mmax,u. This is because in motile solutions, myosin accumulates at the rear of the cell,

where it is also swept forward by a moving boundary; mathematically, this effect originates

from the Rankine-Hugoniot boundary condition described in the next paragraph. Thus, the

effect of molecular crowding on myosin velocity should generally be written as: Ueff = U(1−M/

Mmax,u), if M<Mmax,u, and zero otherwise. Because diffusion is also affected by the crowding,

the effective diffusivity in Eq (1) is Deff = D(1−M/Mmax,d), with a value of the cut-off Mmax,d

that exceeds the actual maximal densities of myosin [28]. Overall, using a tighter myosin cut-

off for advection, Mmax,u<Mmax,d, helps avoiding the singularities and numerical instabilities

associated with them in a wide range of model parameters. We also explored the possibility

that the anti-crowding effects come from an attenuation of the myosin stress when the myosin

density is too high, described in detail in the Supplemental Material.

One of our goals is to investigate how boundary conditions, specified in a free boundary

problem at a moving cell boundary @O(t), affect the model behavior. We explore two types of

conditions for the force-balance equation. One of them is the zero actin velocity at the
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boundary, U|@O(t) = 0, which assumes a very narrow band of very strong adhesions near the

cell edge that rapidly adjust their positions to the instantaneous location of the boundary.

Many experimental observations indicate the presence of such a band. We will term this

version of the model a zero-velocity (ZV) model. Alternatively, in the absence of the sticky

band, the force balance is reflected by a zero stress condition, introduced earlier in [5, 23]:

n � ðZrXUþMÎÞj
@OðtÞ ¼ 0, where Î is the unit tensor and n is the outward normal. This

assumes that the membrane tension is small relative to the contractile and viscous stresses. We

will call this variant of the model a zero-stress (ZS) model. Both versions of the model share a

no-flux Rankine-Hugoniot boundary condition for myosin, n �(−DeffrXM + (Ueff – Vf)M) |@O

(t) = 0, where Vf is the local boundary velocity.

Kinematics of the boundary is modeled by a superposition of locally normal protrusion

powered by actin growth and retraction stemming from the centripetal actin flow: Vf = Vpn +

U|@O(t). The approximation of the speed of normal protrusion Vp is somewhat different in the

two versions of the model, as described below.

In the ZS model, Vp is defined uniformly along the boundary but depends on the cell size:

Vp = V0(A0/A)−K(A−A0(A0/A)n), where A = |O(t)|, A0 = |O(0)|, and n = 2. The first term repre-

sents the rate of membrane displacement due to actin growth with a rate constant V0. The cell-

size dependence of this term reflects an effective drop in actin concentration in an expanding

cell, but this term alone would still produce an infinite cell expansion for large V0. Realistically,

cell stretching is limited by membrane tension, which is represented in Vp by −KA term; this is

consistent with previous experiments and modeling [4, 5, 29]. The term/(A0/A)n reflects

cytoplasmic resistance to contractile forces and thus excludes collapsing of the cell in the

model with small V0. Mathematically, the quadratic nonlinearity in the area dependence

appears to be the lowest nonlinearity preventing the cell collapse in the ZS model. Overall, the

second term in Vp, combining the effects of membrane tension and cytoplasm resistance to

contraction, plays an area-preserving role (with the parameter K describing sensitivity of Vp to

changes in A). Indeed, if A<A0, the membrane tension decreases, whereas actin polymeriza-

tion accelerates and the resistance to further contraction rapidly grows. On the other hand, if

A>A0, the membrane tension increases rapidly stopping the actin growth.

For the ZV model, where U|@O(t) = 0 and Vf = Vpn, there must be a nontrivial variation of

Vp along the boundary, since for a uniform Vp, the cell centroid is always stationary. Based on

experimental observations and models showing that myosin can impede protrusion by bun-

dling actin filaments at the boundary [18], we hypothesized that the actin growth rate is a

decreasing function of local myosin density. Correspondingly, we use the following expression

for Vp in the ZV model, Vp = V0(A0/A)(1+M)|@O(t)/M0)−1−K(A−A0), where M0 is a threshold

beyond which myosin inhibits actin growth almost entirely. The expression has essentially the

same dependence on cell area as in the ZS model, except that for the ZV model, n = 0 proved

to be sufficient for preserving the target area. We discuss derivation of the mathematical

expression for Vp from the force balance at the lamellipodial boundary and provide additional

explanations in the Supplemental Material.

Nondimensionalization

To nondimensionalize the model, we use the following set of units. The length unit L is defined

as a characteristic linear size of the cell with a target area, L ¼
ffiffiffiffiffiffiffiffiffiffi
A0=p

p
(e.g., if this cell is a cir-

cle, L is its radius). We further choose L2D−1 and M0 as the units of time and myosin concen-

tration, respectively. Then the dimensionless variables, differential operator, and current and

target cell areas are, respectively, t = TDL−2, x = XL−1, u = ULD−1, m = M/M0,r�rx = LrX, |

A free-boundary model of a motile cell explains turning behavior
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ω|=|O|L−2 and a0 = A0L−2. Correspondingly, Eqs (1) takes the form,

@tm ¼ r � ðdeffrm � ueffmÞ

aDuþ brm � u ¼ 0
; ð2Þ

where ueff = u(1−m/mmax,u), if m<mmax,u, and zero otherwise, and deff = 1−m/mmax,d. Eqs (2)

include two dimensionless parameters: the dimensionless viscosity-adhesion length parameter

α = ηL−2ξ−1 and the myosin contractility constant β = σM0(Dξ)−1. Note that the mechanical

effect of localized myosin contraction spreads on the length scale
ffiffiffiffiffiffiffiffi
Z=x

p
, so the viscosity-adhe-

sion length parameter α is the ratio of the length scale of the mechanical action to the cell size.

The first of Eqs (2), a diffusion-advection equation for myosin, is subject to the mass-conserv-

ing zero-flux boundary condition, n �(−deffrm+(ueff−vf)m)|@ω(t) = 0, yielding an additional

dimensionless parameter mtot ¼ ∬oðtÞm � djoj. The dimensionless boundary conditions for

the force-balance equation (the second of Eqs (2)) in the ZV and ZS models are u|@ω(t) = 0 and

n � ðaruþ bmÎÞj@oðtÞ ¼ 0, respectively.

The dimensionless boundary velocity equation is vf = vpn+u|@ω(t). In this equation, the

dimensionless rate of membrane displacement caused by the actin polymerization and area

preserving factors is vp = v0a0/a−k(a−a0(a0/a)n), where v0 = V0L/D and a = |ω(t)|. For the ZS

model, n = 2, whereas for the ZV model, n = 0 and there is the additional dependence on m in

the first term: vp = v0a0/(a(1+m|@ω(t)))−k(a−a0).

Note that varying parameter k = KL3D−1 is equivalent to rescaling the actin polymerization

constant v0. Also, because the myosin contractility constant β enters Eq (2) in combination

with m, varying β is similar to rescaling μtot; in fact, β could be formally excluded from the ZS

model by employing a different concentration unit, and the same is true for the ZV model

defined in a fixed geometry, see section Cell becomes motile when myosin contractility is higher
than critical. We therefore focus in our study on the role played by three essentially indepen-

dent model parameters: α, μtot and v0.

Initial conditions

Steady dynamics of a motile cell were explored by solving Eqs (2) in domains with free bound-

aries. Note that even though the force-balance equation does not involve time derivatives in

and of itself, the coupled system (2) constitutes an initial-value problem and one must specify

initial conditions for both variables and the domain, m(x,0), u(x,0), and ω(0).

To elucidate processes leading to instability of an initially symmetric stationary state of a

motile cell and its transitioning to motility, we used initial conditions based on a stationary

steady state of the ZV model in a circular geometry ω(0) = {(x,y):x2+y2�1} (such that a0 = |ω
(0)| = π): u(x,0) = 0, m(x,0) = (μtot/|ω|)(1−gx). Note the linear horizontal gradient, added to a

steady-state uniform myosin distribution to probe stability of a stationary state; the gradient

steepness g was assigned values from (0,1]. Note also that given the symmetry of ω(0), the defi-

nition of m(x,0) ensures that the solution has a prescribed μtot. The initial conditions specified

above were used in solving both ZV and ZS models throughout this study.

Numerical methods

Numerical solutions of the ZV and ZS models were obtained using a generalized version of a

mass-conservative algorithm originally developed for solving parabolic equations in moving

domains with known kinematics [30]. The method has been shown to converge in space with

an order close to 2 in L2-norm and ensures exact local mass conservation. The latter is achieved

by employing finite-volume spatial discretization [31] and natural neighbor interpolation [32].

A free-boundary model of a motile cell explains turning behavior
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The algorithm was developed for modeling cell motility in Virtual Cell (VCell), a general-pur-

pose computational framework for modeling cellular phenomena in realistic geometries [33].

To be applicable to a free-boundary problem with the models described above, the original

method had to be augmented in several aspects. First, the boundary kinematics is generally not

known a priori but rather needs to be computed on the basis of the rates that are functions of

state variables—the actin velocities, in the ZS model, and the myosin concentrations, in the ZV

model. To approximate values of the variables at the points of the boundary where the bound-

ary velocities need to be evaluated, we used the second-order bilinear extrapolation. Once the

boundary velocities are obtained, the cell boundary is advanced using a robust front-tracking

technique implemented in FronTier, a freely available C++ library for tracking interfaces in

two and three dimensions [34]. Accuracy of the algorithm coupled to FronTier was evaluated

using several benchmark examples, one of which was based on the models of this study. The

tests have shown that the accuracy of the original algorithm is preserved, if in addition to the

second-order extrapolation, the front-tracking routine is also at least second-order accurate.

Second, the system (2), consisting of the coupled parabolic and elliptic equations, is nonlin-

ear. Indeed, the equations are coupled via the advection term of the parabolic equation and

myosin-dependent stress term in the elliptic equation, as well as through the boundary condi-

tions at the moving boundary; also, the effective transport parameters are functions of the

myosin concentration. To solve the system, we implemented a segregated solution strategy

[31], in which equations are solved one at a time and nonlinear terms are treated by fixed-

point iterations. One advantage of the segregated solver is that it prevents the matrix of a line-

arized system from becoming very large even with very fine computational grids. The system

was advanced in time using an implicit backward Euler time discretization.

For each time step, the segregated method performs fixed-point iterations in two steps.

First, we solve for actin velocities using fixed myosin concentrations from the previous itera-

tion. The obtained velocities are then used as a fixed advection field at the next step, where we

solve the linearized transport equation for myosin concentrations. Note that at this step, the

values of the myosin concentrations in the discretized time derivative correspond to the previ-

ous time step, not to the previous fixed-point iteration. At the end of the iteration, maximum

absolute differences of two consecutive iterates are checked for convergence. If they are within

prescribed tolerances, the iterations stop and the solver reports the velocities and myosin con-

centrations as the current time step values, otherwise it proceeds to the next iteration and con-

tinues until the iterations converge or an imposed maximum for the number of iterations is

exceeded. The algorithm is illustrated below for one time step by the mathematical pseudo-

code, where mk and uk are the variable values at the kth time step, mkþ1
n and ukþ1

n are the nth

iterates for the (k+1)th time step, MaxNumIters is the maximum allowed number of iterations,

and k�k1 denotes the L1-norm.

set mkþ1
1
¼ mk and ukþ1

1
¼ uk

for n = 1: MaxNumIters

- solve aDukþ1
nþ1
þ brmkþ1

n � ukþ1
nþ1
¼ 0 to get ukþ1

nþ1

- evaluate ueff and deff using ukþ1
nþ1

and mkþ1
n

- solve ðmkþ1
nþ1
� mkÞ=Dt ¼ r � ðdeffrmkþ1

nþ1
� ueffmkþ1

nþ1
Þ to get mkþ1

nþ1

- calculate absolute errors kukþ1
nþ1
� ukþ1

n k1 and kmkþ1
nþ1
� mkþ1

n k1

- if solution converged, break the loop, else mkþ1
n ¼ mkþ1

nþ1
, ukþ1

n ¼ ukþ1
nþ1

end of segregated loop

if n< MaxNumIters mkþ1 ¼ mkþ1
nþ1
, ukþ1 ¼ ukþ1

nþ1
, else iterations are stagnant.
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The segregated solver was validated against a coupled nonlinear solver implemented in

COMSOL Multiphysics [35]. Good agreement was observed, with relative differences below

0.3%.

The computations were performed with the following solution parameters: the mesh sizes h
varied between 0.05 and 0.16, whereas the time step was Δt = ch with c varying from 0.0002 to

0.025 (fast-moving cells required smaller mesh sizes and time steps), the tolerance for the dif-

ferences of consecutive iterates was 1E-10, and the maximum allowed number of iterations, set

at 35, was never reached.

Results

The ZV and ZS models were used to simulate transitions of a motile cell from stationary to

motile state. For this, as described in section Initial conditions, an initially radially symmetric

cell was perturbed by superimposing a linear gradient over a uniform distribution of myosin.

The emerged steady states fall into three asymptotically stable mechanical modes. For some

parameter values, the cell, after a finite displacement, comes to a stop, with a final radially sym-

metric shape and myosin distribution, indicating the stability of the stationary state (Fig 1A).

For other parameters, the cell irreversibly breaks symmetry, both in terms of its shape, distri-

bution of myosin, and actin velocity field, and either acquires unidirectional motility (Fig 1B)

or locks in a rotational mode (Fig 1C).

To analyze conditions for transitioning to different types of motility, we scanned the actin

growth constant (v0) and the contractility parameter (μtot) for two values of viscosity-adhesion

length parameter, α = 0.5 and α = 1. The values of other model parameters, β = 5, a0 = π,

k = 1.5, mmax,u = 15 and mmax,d = 125, were fixed in all simulations; the choice of these values

ensures that the corresponding section of parameter space is representative of various states.

The results of parameter scanning are presented in Fig 2 showing cell mechanical states as

functions of the model parameters.

It should be noted that distinguishing between translational and rotational modes is some-

times ambiguous, particularly for the states near the borders between the corresponding

regions in the parameters space. For example, some states of the ZS model shown in the dia-

grams of Fig 2 as translating were in fact only ‘piecewise unidirectional’, as the cell in those

states would on occasion change its direction. Moreover, in some states in the ZS model, iden-

tified as translations, also neighboring the rotations in the diagrams of Fig 2, the cell actually

changes its direction but very gradually, so the state could be a rotation with a very long radius.

As a practical rule, we labeled states as rotations only if the radius of rotation of the cell cen-

troid was comparable to, or less than, the linear size of the cell.

Below we discuss in detail the conditions required for the straight and rotational motility in

our models and the underlying mechanisms.

Cell becomes motile when myosin contractility is higher than critical

The results in Fig 2 show that cells break symmetry and transition to motility when parameter

μtot exceeds a threshold. The threshold behavior originates from a positive feedback between

the actin flow and myosin gradients: the contractile forces, generating the centripetal flow of

myosin, are proportional to the myosin gradients, which, in turn, are reinforced by the advec-

tion of myosin. This positive feedback results in steep myosin gradients and, potentially, sym-

metry breaking, but below a critical value of μtot, these gradients are prevented by dissipative

viscous forces and myosin diffusion, and the cell remains stationary and radially symmetric.

Above the critical value of μtot, steep gradients of myosin are developed and the radially sym-

metric stationary state becomes unstable. While kinematics of a free boundary plays a key role
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in the symmetry breaking and transitioning to motility in both models, the loss of symmetry

in the ZV model also occurs in fixed domains. In the next section, we discuss effects of the

boundary conditions for actin flow on solutions in domains with fixed and free boundaries.

Linear stability analysis can be used to estimate critical values of μtot in a simplified ZV

model in a fixed domain. Consider a 1D ZV model on the fixed-length segment @ω = {x2(0,1)}

in the limit mmax,1, mmax,2!1, so that deff = 1 and ueff = u(x,t). Then, Eqs (2) become αuxx +

βmx−u = 0, mt = mxx−(um)x. In this model, varying the contractility constant β is equivalent to

rescaling μtot. Indeed, β could be excluded altogether by renormalizing m: ~m ¼ bm, but in what

follows parameter β is kept for generality. The symmetric steady state is characterized by uni-

form myosin distribution and absence of actin flow, u = 0, m = μtot. Its stability is probed by

imposing small perturbations, δu(x,t) = δu0 exp(λt+iqx), δm(x,t) = δm0 exp(λt+iqx) with 0<

δu0<<1, 0<δm0<<1 and q = π, 2π,. . ., so that u = δu and m = μtot+ δm. The perturbations sat-

isfy the linearized system of differential equations, αδuxx+βδmx−δu = 0, δmt = δmxx− μtot(δu)x,

and the corresponding system of linear algebraic equations, −(1+αq2)δu0+iqβδm0 = 0, iqμtotδu0+

(λ+q2)δm0 = 0, yields nontrivial solutions for δu0 and δm0, if λ(q) = q2(βμtot(1+αq2)−1−1). The

Fig 1. Asymptotically stable mechanical states (in all cases, α = 0.5): (a) a stationary state of ZS model, (v0,

μtot) = (2.5, 0.125π); (b) unidirectional translation in ZV model, (v0, μtot) = (2.5, 2π); (c) rotations in ZS model,

(v0, μtot) = (2.5, 0.75π). Pseudo-colors depict distributions of myosin; arrows are actin velocities; a red dashed

line/curve shows the trajectory of a centroid.

https://doi.org/10.1371/journal.pcbi.1005862.g001
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perturbations grow if λ(q)>0, with the fastest growing mode having the minimal wave number,

qmin = π, and thus involving a large-scale redistribution of myosin. Thus, the symmetric state

becomes unstable if βμtot>1+π2α or, in the dimensional form, σM0πL2>D(ξL2+π2η).

The instability criterion predicts that the critical value of βμtot is an increasing function

of α. The results of Fig 2 indicate that this prediction, while obtained by analyzing a ZV

model in a fixed domain, holds for the free-boundary models as well. Indeed, the com-

petition between the myosin contractile stress and dissipative processes, mathematically

expressed in the instability condition, drives the initiation of motility in the free-boundary

models. As described at the beginning of this section, the transition to motility occurs when

the contractility, reinforced by the model positive feedback, prevails over the dissipation. For

α�1, the dimensional form of the instability criterion reduces to σM0L2>πDη: the total myo-

sin stress needs to overcome the smoothing effects of actin viscosity and myosin diffusion,

while the adhesion strength does not matter. In the limit of large values of α, the actin net-

work is effectively stiff and thus does not allow for significant actin flows, which makes the

cell more symmetric and as a consequence less motile and slower. Our simulations confirm

this prediction (Fig 3A and 3B). In the opposite limit of highly deformable actin network,

α<<1, the instability criterion reduces to σM0>ξD, so the cell becomes motile if the charac-

teristic myosin stress is able to generate actin flow that overcomes myosin diffusion, which

requires the weakening of adhesions and strengthening of myosin, in agreement with the

experiment [7].

Finally, it is worth noting that whereas the motility threshold in the ZS model is indepen-

dent of v0, the critical values of μtot in the ZV model, where the actin growth is affected by myo-

sin, vary with v0 (Fig 2). Indeed, the cell described by the ZV model with v0 = 0 would not

transition to motility for any μtot, because in this case, the myosin influence on the boundary is

lost. Therefore, in this version of the model motility initiates only for finite values of v0, which

drop with the increase of μtot. In the ZS model, the cell with a sufficiently high μtot initiates

Fig 2. Mechanical states of ZV and ZS models for varying sets (v0, μtot) and α = 0.5 and 1.

https://doi.org/10.1371/journal.pcbi.1005862.g002
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Fig 3. Aspect ratios and translational or linear rotational speeds of steadily moving cells. (a) Aspect

ratio as a function of viscosity-adhesion length α; the results were obtained with (v0, μtot) = (2.5, 1.5π) for ZS

model, and with (v0, μtot) = (5, 1.5π) for ZV model; aspect ratios were computed as ratios of the longest to

shortest distances between cell boundary and cell centroid. (b) Dimensionless translational or linear rotational
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motility even as v0!0, because the asymmetric myosin pulls the boundary inward asymmetri-

cally, and the area-preserving term causes the effective protrusion.

Shape and speed of the motile cell

Similar to the 1D ZV model analyzed in the previous section, the symmetric state of the 2D ver-

sion of the ZV model becomes unstable for sufficiently high μtot even in a fixed geometry, with

myosin relocating to the cell boundary. Fig 4A illustrates the instability of the radially symmetric

steady state, in which the maximum of myosin was slightly shifted to the left of the cell center.

Qualitatively, because of the zero actin velocities at the boundary, a second, initially small, local

maximum of myosin appears at the boundary point closest the main maximum due to slightly

faster diffusion. The competition between the two maxima lowers the myosin gradients on the

left side of the main one, resulting in a net force acting on it in the left direction. Hence, the

relocation of myosin to the left segment of the boundary. In the cell with a free boundary, the

redistribution of myosin is conferred to boundary velocity, resulting in slower outward and

eventually inward movements of the part of the boundary that becomes the cell rear. The cell

movement further skews the myosin towards the rear. For the small to moderate rate of actin

growth and cell speeds, the cell maintains a convex shape and a steady unidirectional motion,

with myosin forming a wide band at the rear edge (Fig 1B and S1 Movie).

In the ZS model of a fixed symmetric cell, an inward actin flow at the membrane prevents

myosin from accumulating there. As a result, the symmetric solution with a myosin maximum

at the center remains stable even for μtot above the threshold. Indeed, shifting the maximum

speed of a cell centroid as a function of viscosity-adhesion length α; model parameters are as in panel (a). (c)

Aspect ratio as a function of v0 and μtot; the results were obtained with α = 1 for ZV model and with α = 0.5 for

ZS model. (d) Radius of rotation of a cell centroid as a function of v0 and μtot, with values of α as in (c). (e)

Dimensionless angular velocity of a cell centroid as a function of v0 and μtot, with values of α as in (c).

https://doi.org/10.1371/journal.pcbi.1005862.g003

Fig 4. Symmetry breaking in a fixed circle and in a free-boundary problem. (a) Instability of a symmetric

steady state of ZV model in a fixed circle: snapshots of dimensionless myosin density (pseudo-color) and

actin velocities (arrows) at specified times t after myosin was slightly shifted left of center; computations were

done for μtot = 1.5π and α = 0.5. (b) Transition to unidirectional motility in ZS model; dimensionless myosin

concentration (pseudo-colors) and boundary velocities (arrows) are shown for the solution obtained with α =

1, v0 = 5, and μtot = 1.5π; the cell assumes steady unidirectional motility after t = 14 (S2 Movie).

https://doi.org/10.1371/journal.pcbi.1005862.g004
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from the center in this case increases the myosin gradients and centripetal forces on the

‘shorter’ side and decreases them on the ‘longer’ side, netting a stabilizing force. In the free-

boundary problem, however, the symmetric solution, stable at low μtot (Fig 1A), becomes

unstable above the motility threshold. Fig 4B and S2 Movie illustrate a transition to unidirec-

tional motility that occurs in the ZS model with sufficiently large μtot and small to moderate v0.

As the myosin cluster shifts slightly from the cell center, the closer side is pulled inward faster

and becomes the prospective cell rear, while the opposite side, where the protrusions are faster

than retractions, becomes the cell front. In the ensued motility, myosin is pressed against the

rear and in turn exerts a stronger inward force on the proximal portion of the boundary, devel-

oping a local concavity. If the movement is sufficiently fast, the myosin spreads along the por-

tion of the boundary with negative curvature. This positive feedback between the myosin

asymmetry, actin flow, and cell movement is the key to the stable motility.

Our simulations show that the aspect ratio of a steadily moving cell varies between 1 and 3

(Fig 3C), in agreement with experimental observations [5]. Note that in contrast to the ZV

model, where the cell aspect ratio grows moderately with v0, it becomes essentially indepen-

dent of model parameters in the ZS model with μtot/π>1. This can be qualitatively understood

by noting that myosin, which in a moving cell accumulates in the middle of the rear, exerts

comparable forces on the front and side portions of the boundary. Then, because the myosin-

generated flow decreases with distance at similar rates in all directions, the distances from

the rear to the front and the sides should be on the same order, yielding the average aspect

ratio ~ 2.

The ZS model generally predicts significantly higher cell speeds compared to those in the

ZV model (Fig 5A). This is because in the ZS model, the fast centripetal flows generated by

myosin at the rear boundary tend to decrease the cell area, leading to fast effective protrusion

at the front, as actin can grow rapidly against the lowered membrane tension. As a result, the

cell speed increases but the cell area decreases with total myosin (Fig 5B). Interestingly, the cell

speed in the ZS model decreases slightly with the actin growth rate v0, which can be under-

stood by noting that the cell area in this model increases with v0, thus mitigating the effect of

myosin. In the ZV model, the cell speed is virtually insensitive to μtot, for μtot>π, because the

term with v0 in the expression for vp becomes inessential for m*μtot/π>1. For the same rea-

son, the cell area is also insensitive to μtot.

Importantly, our model predicts that there are no short-wavelength instabilities in the cell

shape (like fingering instabilities characteristic for some physical free-boundary models),

which is supported by the experiment: there are small fluctuations on the experimentally

observed cell boundaries, but they mostly do not grow.

Mechanics of the straight and turning motility

The most nontrivial and important property of our models is that they predict rotational states

with a radius of rotation comparable to the cell size in large regions of their parameter space

(Fig 2). Note that both the radius of rotation and the angular velocity are not particularly sensi-

tive to parameter values (Fig 3D and 3E).

Emergence of cell turning in the models can be qualitatively understood by analyzing the

loss of stability of a planar axial symmetry characteristic of the straight moving cell. In the ZV

model, the steady rotations are observed for v0 exceeding a threshold that is largely insensitive

to either α or μtot. Fig 6 and S3 Movie illustrate, for a particular parameter set, how rotations

come about in the ZV model during a transient movement following a ‘nudge’ applied to a sta-

tionary cell in the form of an initial horizontal gradient of myosin. The initial convex cell

shape is favorable for maintaining a unipolar axially symmetric myosin distribution, and the
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resulting motility is unidirectional. But due to sufficiently large v0, fast boundary velocities at

cell’s sides tend to elongate the cell in y-direction, making it prone to developing a concavity at

the cell rear. In such a shape, the myosin spreads along the rear part of the boundary more uni-

formly (Fig 6B, t = 5), a distribution that is no longer stable. Indeed, even a slight asymmetry

in the distribution of myosin, reinforced by the positive feedback from actin velocities and

myosin accumulation due to faster movement of the corresponding portion of the rear bound-

ary, breaks the axial symmetry (Fig 6B, t = 15). As a result, a stable asymmetric cell shape

emerges as the cell locks in rotations (Fig 6A), with myosin aggregated at a high-curvature por-

tion of the boundary.

While the same mechanisms underlie the turning behavior in the ZS model, the two models

yield significantly different results for the parameter regions of rotations. This is due to the dif-

ferences in boundary conditions that reflect the opposing assumptions about the strength of

adhesions at the cell periphery, and in ways of conferring the myosin dynamics onto kinemat-

ics of the boundary. Unlike the ZV model, the v0 threshold for rotations in the ZS model

strongly depends on μtot and α (Fig 2). In particular, the rotational states may exist for any v0,

if α is sufficiently small. Note also, that the concavity of the cell shape does not always destabi-

lize unidirectional motility in the ZS model (Fig 4B).

Fig 7 and S4 Movie illustrate the onset of turning in ZS model. If the contractility due to

myosin is strong, myosin forms a radially symmetric aggregate, which in a translating cell is

skewed to the cell rear, pulling the rear boundary inward and maintaining the cell propulsion.

Fig 5. Cell speeds and areas as functions of v0 and μtot. (a) Dimensionless translational or linear rotational

speed of a cell centroid were obtained with α = 1 for ZV model and α = 0.5 for ZS model. (b) Dimensionless

steady-state areas for values of α as in panel (a). Insets in both panels: corresponding level sets.

https://doi.org/10.1371/journal.pcbi.1005862.g005
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When the myosin aggregate is sufficiently close to the rear boundary, it pulls the center of the

cell rear inward stronger than the sides of the rear edge, creating a ‘dip’ at the center of the rear

edge and giving the cell a characteristic keratocyte fan-like shape, in which the sides of the cell

lag behind the center. For the parameters in the upper left corner of the parameter space (Fig

2), the cell motion is fast, and in the frame of the cell, myosin is effectively swept towards the

rear and ‘pressed’ against the rear boundary; in these conditions, the translational motility

remains stable (Fig 4B). For intermediate values of μtot, the cell moves slower and the myosin

aggregate maintains its radial symmetry and remains close to the cell centroid (Fig 7A, t = 7).

In this position, myosin is able to pull inward not only the rear but also the front of the cell,

making the axial symmetry of the system unstable. Indeed, even a slight random asymmetry in

either the myosin distribution or the cell shape induces and reinforces the asymmetry of the

other. If, for example, the myosin aggregate becomes slightly closer to one side, this side is

pulled inward faster than the other, which brings even more myosin to the side that is pulled

inward, because the shift of that side effectively sweeps myosin towards it (Fig 7A, t = 9).

Once the axial symmetry of cell shape and the position of the myosin aggregate is broken

(Fig 7A, t = 23.5), the boundary velocity field becomes asymmetric as well (Fig 7B). It is then

clear that a steady movement of a cell with an asymmetric shape and asymmetric boundary

velocities (where faster displacements occur at the location of higher myosin gradients) must

involve rotations. Indeed, by connecting consecutively the ends of the arrows representing

normal displacements of points of the boundary in Fig 7B, one recovers the same contour in a

Fig 6. Onset of steady rotations in ZV model, (v0, μtot, α) = (12.5, 2π, 1). (a) Entire cell trajectory and cell

centroid track (red dashed curve). (b) Snapshots of transient myosin distributions with individual color scales

during a transient, and with white arrows representing actin velocities (S3 Movie).

https://doi.org/10.1371/journal.pcbi.1005862.g006
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rotated position, as the centroids of the cell in different positions belong to the same circle (Fig

7B). We also note that the shape of the expanding portion of the cell boundary is reminiscent

of spirals described by more abstract models of rotating free boundaries [36].

Discussion

In this paper we systematically explored the ability of a minimal actin-myosin contractility

model [7, 14] to reproduce observed mechanical states of the simplest motile cell. The model

analysis has shown that the mechanical state of the cell critically depends on just three dimen-

sionless parameters representing the myosin contractility, characteristic viscosity-adhesion

length, and actin growth. For the large viscosity-adhesion length, the actin network becomes

effectively stiff and does not allow for significant actin flows, which makes the cell more sym-

metric and as a consequence less motile and slower, and in the limit of very large values of vis-

cosity-adhesion lengths, the cell is stationary. In the opposite limit of short viscosity-adhesion

Fig 7. Steady rotations in ZS model, (v0, μtot, α) = (2.5, 0.75π, 0.5) (see also S4 Movie). (a) Transient

distributions of myosin (pseudo-colors) and actin velocities (arrows): t = 2, an initially symmetric cell with

centroid at (x, y) = (0,0) self-polarizes and assumes fast unidirectional motility, myosin accumulates in a semi-

circular band, pulling the rear inwards to form a ‘dip’; t = 7, the cell slows down and becomes unstable, as

myosin is now close enough to cell front to be able to pull it in as well; t = 9, loss of axial symmetry, as the

lower part of the cell with steeper myosin gradients is pulled inwards faster than the upper one; t = 23.5:

emergence of stable asymmetric myosin distribution and cell shape, as the cell locks in rotations (see Fig 1C).

(b) Cell shape and boundary velocities in steady rotations. Positions of the cell boundary and centroid at

t = 23.5, 23.6, and 24 (solid, dashed, and dotted-dashed contours, respectively, and filled circles with larger

size corresponding to later time). Faster boundary velocities (arrows) in the high curvature region, consistent

with the location of steep myosin gradients (panel (a)), ensure rotational motility with a circular trajectory of the

centroid (dotted arc), see also Fig 1C.

https://doi.org/10.1371/journal.pcbi.1005862.g007
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lengths, myosin forms a very small high-density aggregate, which affects the actin network

only locally. In this regime, the steady motility is impossible, and the cell starts to pivot. Thus,

an important conclusion is that to move straight and steadily, the cell has to keep the viscosity-

adhesion length on the order of unity (to adjust the ratio of actin viscosity to adhesion strength

so that it is on the order of the cell area). Interestingly, this conclusion is consistent with esti-

mates based on the experimental data for keratocytes [5].

Intuitively, if myosin contractility is weak, the myosin spreads uniformly and the cell

remains stationary and symmetric. Above a contractility threshold, the cells become motile.

The mode of motility depends on the boundary conditions. For the zero actin velocity at the

boundary and the sufficiently small actin growth constant and cell speed, the convex-shaped

cell maintains unidirectional motility, with myosin concentrated in a band at the rear edge.

With the rate of actin growth above a certain threshold, the increase of the cell speed is suffi-

cient for the cell to lose its planar axial symmetry and start rotating. With the zero-stress

boundary conditions, rotations occur for intermediate contractility strengths, whereas in the

high contractility range, the fast cells stabilize their unidirectional movement, as myosin being

effectively compressed into a long band at the rear edge. We found that both explored bound-

ary conditions explain general features of the keratocyte motility, but there are interesting dif-

ferences in the predicted behaviors, as discussed above.

The main finding of our study is that the contractile mechanism of motility results in a very

robust turning behavior of the cell: in the models with both explored boundary conditions, the

cell moving along a circular trajectory is not an anomaly but rather a solution that exists in a

large region of the model parameter space. Broadly speaking, the cell starts turning in condi-

tions of breaking the planar axial symmetry of its myosin distribution; in the ZV model the

transition to rotation is controlled by the rate of actin growth, whereas in the ZS model–by all

three independent model parameters. Turning motile behavior is an important part of the cell

mechanical response in chemotaxis [37] and galvanotaxis [38], and our model generates intui-

tion about the turning mechanism.

One important test of our model is that the solutions exhibit a characteristic fan-like kerato-

cyte shape, with the side-to-side distance greater than the front-to-rear distance and aspect

ratio between 1 and 3, in excellent agreement with the observations [5]. Moreover, the pre-

dicted aspect ratio in the ZS version is nontrivial and biphasic, reaching a maximum at inter-

mediate myosin contractility and decreasing at very weak or strong contractility, indeed

observed in [5]. Similarly, the model predicts that the lamellipodial area increases at higher

adhesion and lower myosin contractility, and that the cell speed increases with myosin con-

tractility, as observed [5]. Lastly, in agreement with the experiment [7], higher myosin con-

tractility and/or lower adhesion strength are predicted to promote the cell polarization and

motility initiation. One significant prediction of our model is that both self-polarization of the

cell and its turning behavior can, in principle, occur, without complex adhesion dynamics.

While it was observed that a nonlinear stick-slip adhesion behavior accompanied cell polariza-

tion [7], it remains an open question whether this nonlinear behavior is essential.

The model predicts that the stable motile behavior of the cell requires tight regulation of the

total lamellipodial area. We hypothesized that this regulation is mechanical, through the mem-

brane tension. Indeed, perturbations of the total membrane area and membrane tension were

found to change the lamellipodial area in a predictable way, and drastic perturbations destabi-

lized the cell [29]. We find that cell polarization may not depend on the cell ability to move: in

the ZV model, myosin distribution and actin flow become asymmetric even in the stationary

symmetric domain. However, for the motility initiation, protrusion of the boundary is obvi-

ously essential (note that while motility in the ZS free-boundary model with sufficiently high

μtot can be initiated even with v0!0, the area-preserving term of Vp in this limit effectively
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induces protrusion of the front, which is less affected by myosin, see sections Model and Cell
becomes motile when myosin contractility is higher than critical).

Keratocyte motility and especially the peculiar and steady shape of the moving cell inspired

a great deal of free-boundary modeling in the past decade. Our model is based on the well-jus-

tified assumption that the mechanical force balance determines cell shape and movements.

Conceptually, our model is similar to the active gel models [24, 39], originating in the soft-

matter physics. Some models were based on the viable idea that certain self-organized chemical

patterns are upstream from the actin-myosin machinery [22, 40, 41], but majority of studies

explored mechanical models [42–44]. A variety of numerical techniques–Potts models [40,

45], phase-field method [42, 44], immersed boundary method [43]–were used in respective

simulations. Keratocyte polarization was modeled in [7, 46]. Alternative turning mechanisms,

very different from the one predicted by our model, were computationally explored in [47, 48].

The fact that the majority of the models reproduce the keratocyte shapes and motile behavior

corroborates the existing biological intuition about the keratocyte lamellipodium as the most

basic, streamlined and robust actin-myosin motile structure [49]. Each of the cited studies

Fig 8. Steady-state cell shapes, myosin distributions (pseudo-colors), actin velocities (arrows), and motility

types from solutions of the ZS (a) and ZV (b) models obtained for specified parameter values (v0, μtot).

Gridlines are spaced uniformly with h = 1.

https://doi.org/10.1371/journal.pcbi.1005862.g008
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added invaluable insights to understanding multifaceted aspects of cell motility; a relative

advantage of our model is in that it is most easily connected to the experimentally observed

biophysics of force balance and myosin transport in keratocytes [5, 7].

The minimal model we explored already predicts a wealth of motile behaviors (Fig 8). It is

known, however, that even the cell as streamlined for locomotion as keratocyte has complexi-

ties that far exceed our minimal model. The two main aspects that need to be added to the

model to make it more realistic are: spatially graded actin polymerization independent of myo-

sin [10] and dynamic nonlinear adhesions. Complex effects of dynamic and non-homoge-

neous adhesions already attracted special attention and were simulated in [7, 46, 50]. It will

also be interesting to explore how the predicted cell dynamics depend on actin density [51],

more complex constitutive relations for the actin-myosin stress [52], membrane curvature [53,

54], elastic [55] and anisotropic [49] effects in the actin network. Our minimal free-boundary

model might be useful for future modeling of other modes of cell motility [56] and collective

cell movements [57, 58]. Lastly, for decades, research focused on understanding cell move-

ments on flat 2D surfaces, and only recently exploration of cell crawling through three-dimen-

sional (3D) matrices, more physiologically relevant, has begun experimentally [59] and

theoretically [60–62]. Extension of our model to 3D will be a challenging, yet necessary, effort.

Supporting information
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S1 Appendix: variations of the model. 
 
2D character of the model and cytosolic pressure. 
 
The most natural way to investigate the role of pressure in mechanics model of cell motility is to 
start with inclusion of mechanics of cytosol into the model. Most of research was done by using 
the so-called two-phase poroviscous theory of the cytoplasm, which treats the cytoskeleton and 
cytosol as two interpenetrative viscous fluids (Drew and Segel, 1971; Dembo and Harlow, 1986; 
Kuusela and Alt, 2009; Cogan and Guy, 2010). Our formulation here is close to that of (Oliver et 
al., 2005), but note that a number of constitutive relations and assumptions that we use are 
original. Characteristic poroviscous theory consists of the mass conservation equations for the 
network and for the cytosol:  

  
    

net rate of net rate of
assembly/ assembly/rate of change of network rate of change of cytosoldisassembly disass       volume fraction        volume fraction

1
, 1U Un sJ J

T T

 
       

  
  0

embly

, J r   ,                (Eq S1) 

and of the force balance equations for the network,  

   
2

myosin con- pressure adhesiongel viscosity network-cytosoltractile stress    drag         drag

,U U U Un n s nM P K                                                                          (Eq S2) 

and for the cytosol,  
   

pressure network-cytosol
         drag

1 U Un sP K     .                                                                                                   (Eq S3) 

We also add the transport equation for myosin: 

 2

 myosin 
myosin drift with diffusion
     actin flow

Un

M
D M M

T


   

   .                                                                                                  (Eq S4) 

Here the model dependent variables are as follows:    , , , , ,U Un n n n s s s sU V W U V W  are the 

velocities of the cytoskeletal network and cytosol, respectively; is the network volume fraction;
P is the cytosol’s pressure; M is the myosin density. The independent variables are timeT and 
spatial coordinate  , ,X X Y Z . Note that we formulate the theory in 3D. The model parameters 

include r , the rate of actin turnover; 0 , the equilibrium volume fraction of the network; , the 

network viscosity; , the myosin strength; K , the hydraulic resistance (network-solution drag) 
coefficient; , the network-surface drag coefficient; D , the effective myosin diffusion 
coefficient. For simplicity, we neglect the so-called solvation and swelling pressures, which in 
principle can be equal to zero (Oliver et al., 2005). Note that all these parameters can be 
functions of , as well as functions of X andT .  
 
The cell geometry is described by the ventral surface at 0Z  and dorsal surface at

 , ,Z H X Y T . Boundary conditions include zero flux conditions at both boundaries for the 

mass conservation equations. Kinematic conditions are: at the ventral surface ( 0Z  ):
0n sW W  ; at the dorsal surface (  , ,Z H X Y T ): U n U nn s   , wheren is the outward unit 



normal vector. There are slip conditions for tangential component of all velocities at both ventral 
and dorsal surfaces. Finally, there is the force balance condition at the dorsal surface: 

 1 n U n nnP        .                                                                                          (Eq S5) 

Here is the constant isotropic membrane tension, and is twice the mean curvature; 0  if the 
dorsal surface is convex. We also assume that there is no myosin near the dorsal surface. 
 
In addition to the model assumptions described in the main text concerning the forms of the 
network viscous stress, myosin contractile stress and simplified myosin transport equations, and 
to the standard assumptions of the two-phase poroviscous theory (Oliver et al., 2005; Cogan and 
Guy 2010), the main assumptions that are behind system of equations (S1)-(S5) are as follows. 
We assumed that the connection points between the adhesive molecular chains and actin 
filaments are distributed uniformly inside the 3D cell volume. We neglected possibility of more 
complex conditions for the network and cytosol flow at the plasma membrane that could be 
something between slip and stick conditions. These additional assumptions could be relaxed 
without changing main results in the thin-cell limit, for example, we could in principle use 
Navier slip law at the ventral boundary instead of the uniform adhesion drag in the 3D volume, 
but we wish to avoid more complex derivations. 
 
The model (Eqs S1-5) can be scaled and non-dimensionalized as follows. We normalize by 1; 
for consistency we use the notation   . M Mm , where M is the average myosin 
concentration. We use the thin cell approximation justified below (for the case of a high 
membrane tension): the average height of the cell is much smaller than the length and width of 
the lamellipodium, LH ~ , where L is the characteristic length/width, and 1  . We rescale the 
spatial coordinates as follows: , , ,X Lx Y Ly Z Lz H Lh     . The scale of velocity can be 

estimated from balancing the viscous and myosin contraction terms in (Eq S2): /U ML  . 

Thus, , , , ,i i i i i iU Uu V Uv W Uw i n s    .Time can be rescaled as:    / /T L U t M t   . 

The scale of pressure can be estimated from balancing the pressure and Darcy terms in (Eq S3):
2 /P KLU KML   , and P Pp . 

 
When the cell height changes slowly in the x-y plane ( / , / 1h x h y     ), the z-components of 
the network and cytosol flow velocities can be neglected in the zeroth order approximation with 
respect to : 0n sw w  . After introducing notations  / , / ,0x y      ,  , ,0ui i iu v ,

,i n s equations (Eqs S1-5) in the zeroth order approximation with respect to take the 
following form: 
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,           (Eq S1’) 
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,                                               (Eq S2’) 

   1 u un sp     ,                                                                                                      (Eq S3’) 
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Importantly, the system of equation becomes 2D in the thin-cell approximation, justifying the 
widely use 2D approximation for flat dynamic lamellipodia. As equation (Eq S5’) demonstrates, 
this approximation is valid in the limit of the high membrane tension, when non-dimensional 
combination of parameters  3 /KML  is on the order of unity or smaller,  3~ /KML   . 

Mathematically, this means that the membrane tension has to be high enough so that parameter

 3~ / 1KML    . Physically, this means that if the membrane tension is high enough, it 

flattens the dorsal cell surface against the hydrostatic pressure of the cytosol. In fact, more 
relaxed inequality leads to a 2D class of models (Oliver et al., 2005), but here we wish to avoid 
complex derivations.  
 
The validity of the 2D approximation is further supported by the observations of lamellipodial 
fragments that do not have a cell body. Their motility properties are very similar to those of the 
whole cell (Ofer et al., 2011). The fragments are extremely flat; even in their rear part, which is 
thicker than the front, they are only about one micron-thick, an order of magnitude less than their 
length and width (Ofer et al., 2011). There are many suggestions that the lamellipodium is the 
autonomous mechanical engine of the cell, while the 3D cell body simply rides passively atop of 
the lamellipodial actomyosin mesh (Rafelski and Theriot, 2004), but even taking the cell body 
into account does not change the thin-cell approximation, as the cell body thickness is but a few 
microns. Thus, the essential mechanics of the cell crawling on flat 2D surfaces is described well 
by the 2D model. 
 
Furthermore, Rubinstein et al. (2009) estimated that Darcy friction between the cytosol and 
porous cytoskeletal network is roughly an order of magnitude smaller than effective viscous 
deformation forces within the cytoskeletal network: 

2 / 1KL   . This strong inequality leads to the significant simplification of the model. Indeed, 

as small terms
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can be neglected in equation (Eq S2’) compared 

to the other terms of the order of unity in this equation (pressure and Darcy friction are weaker 
than the effective viscous deformation, adhesion and myosin contraction forces), the equations 
for the network mechanics can be uncoupled from the equations for the cytosol: approximate 
equations 
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can be solved independently from the equations for the cytosol: 
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Note that if one wants information about the volume fraction, pressure and cytosol flow, one 
needs to solve Eqs (S3’’-5’’) together with Eqs (S1’’-2’’). However, Eqs (S1’’-2’’) are self-
consistent: there is no need to know pressure or actin volume fraction to find the myosin and 
network flow distributions. Eqs (S1’’-2’’) constitute the 2D model in the main text that we use. 
This argument supports the idea that there exists the experimentally relevant limiting case, in 
which the full 3D model is reduced to the 2D model, in which the pressure can be neglected. 
 
Lastly, let us note that we did not discuss the very difficult problem of the boundary condition at 
the contact line – intersection of the dorsal and ventral surfaces. Respective physics is not well 
understood, and majority of existent 2D models use the free boundary conditions similar to that 
used in our model here (Oliver et al., 2005). 
 
Adding actin dynamics to the model. 
 
There could be, of course, a pressure term in an equation for a compressible medium as well. In 
order to do consider effects of such term, as well as consequences of possible density 
dependence of the actin viscosity, we explicitly introduced dynamic actin densities into the ZS 
model. Dynamics of actin density are governed by a combination of the F-actin disassembly and 
drift with the same velocity, as that in the equation for myosin. To consider the actin dynamics 
quantitatively, we added the following equation for the actin density, F, to the model equations 
for the ZS model described in the main text: 

 UT disF F k F                                                                                                           (Eq S6) 

on  t . The boundary condition we used was:   0| tF F  . The equation for the velocity (force-

balance equation) changed as follows: 
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With respective change in the boundary condition: 
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                                                                           (Eq S8) 

 
To investigate implications of such actin dynamics, we accounted for the dependence of actin 

viscosity on actin density (reflected in the factor
0

1
F

F

 
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 
, assumed to be proportional to the 

actin density) and the effective swelling pressure (reflected in the term ˆFI , also assumed to be 
proportional to the actin density). We found that the model worked well with simple protrusion 

rate of the form: 0
0p

A
V V K  


. We simulated the model using the non-dimensional 



parameter values 0 1, 1.5708, 0.5totv     , for which the ZS model without actin predicted the 

cell moving straight. We found that as with our original model, the expanded model with explicit 
actin densities has stationary, translating, and rotating steady states. Namely, for small values of 
the swelling pressure ( 0.01, 1, 0.5disk    ), the simulated cell moved straight and steadily. 

For greater values of the swelling pressure ( 0.01, 1, 1disk    ), the simulated cell remained 

stationary and symmetric. This is easy to understand because the swelling pressure effectively 
counteracts the myosin contractile stress. If, on the other hand, we increase the protrusion rate (in 

the simulations we did that by changing the protrusion rate to  0
0 0p

A
V V K A   


, or 

effectively adding the term 0KA to the protrusion rate), we expect the rotating cell, which indeed 

was the case ( 0.01, 1, 0.14disk    ). 

 
Note on the anti-crowding terms in the model equations. 
 
It is possible that the anti-crowding effects come from an attenuation of the myosin stress when 
the myosin density is too high. To explore this possibility, the factor (1-M/Mtot) was removed 
from the advection term of the equation for myosin and inserted into the active stress term of the 

equation for velocity: ׏ ⋅ ሺM ቀ1 െ ୑

୑ౣ౗౮
ቁ ۷ሻ, with the same M୫ୟ୶ that was previously used in the 

advection term (the ‘anti-crowding’ term for diffusion was either kept as before, or removed in 
that case, with no significant effect on the results). Simulations were run for three cases depicted 
in Fig. 1, and the results were compared against the original results for several metrics as 
summarized in three tables below: 
 
ZS: Stationary cell ሺܞ૙, ,ܜܗܜૄ હሻ ൌ ሺ૛. ૞	, ૙. ૚૛૞ૈ	, ૙. ૞ሻ 
Measured parameter Nonlinear advection 

׏ ⋅ ሺܞ ൬1 െ
M

M୫ୟ୶
൰Mሻ 

Nonlinear contractility 

׏ ⋅ ሺM ൬1 െ
M

M୫ୟ୶
൰ ۷ሻ 

Aspect ratio 1.00 1.00 
Steady-state area of the cell 3.49 3.50 
max(Myosin) at steady-state 0.13 0.13 
min(Myosin) at steady-state 0.09 0.09 
 
ZV: Translating cell ሺܞ૙, ,ܜܗܜૄ હሻ ൌ ሺ૛. ૞	, ૛ૈ, ૙. ૞ሻ 
Measured parameter Nonlinear advection 

׏ ⋅ ሺܞ ൬1 െ
M

M୫ୟ୶
൰Mሻ 

Nonlinear contractility 

׏ ⋅ ሺM ൬1 െ
M

M୫ୟ୶
൰ ۷ሻ 

Translational cell speed 0.19 0.18 
Aspect ratio 1.63 1.33 
Steady-state area of the cell 3.85 3.84 
max(Myosin) at steady-state 13.96 11.35 
min(Myosin) at steady-state 0.01 0.05 
 
ZS: Rotating cell ሺܞ૙, ,ܜܗܜૄ હሻ ൌ ሺ૛. ૞	, ૙. ૠ૞ૈ, ૙. ૞ሻ 



Measured parameter Nonlinear advection 

׏ ⋅ ሺܞ ൬1 െ
M

M୫ୟ୶
൰Mሻ 

Nonlinear contractility 

׏ ⋅ ሺM ൬1 െ
M

M୫ୟ୶
൰ ۷ሻ 

angular velocity 0.58 0.37 
Radius of rotation 1.12 1.11 
Aspect ratio 2.13 1.71 
Steady-state area of the cell 2.74 2.86 
max(Myosin) at steady-state 9.22 5.35 
min(Myosin) at steady-state 0.01 0.03 
 
The results indicated that the stationary, rotational, and unidirectional behaviors are qualitatively 
the same as in our original models, and even quantitative characteristics of the solutions are close 
to the original. Of course, the boundaries between the corresponding regions in the state 
diagrams change, but only a little. 
 
Derivations and assumptions related to the protrusion rates. 
 
We originally used different expressions for the boundary protrusion rate Vp in the two models 
for the following reason. The dependence of Vp on myosin is essential in the ZV model, as has 
been discussed in detail in the main text: without it, the cell never moves and changes shape in 
this version of the model. In the ZS model, the cell moves and changes shape with Vp 
independent of myosin, and so we decided to test this simplest case. The usage of different 
exponents (n=0 in ZV and n=2 in ZS) was due to the fact that we initially wanted to find the 
smallest integer exponent n for which the model predicted a stable behavior. It turned out that 
n=0 was the smallest for the ZV model, and n=2 for the ZS model. By using a myosin-dependent 
Vp in the ZS model and increasing n to n=2 in the ZV model, one can unify the models, simplify 
the number of choices, and also demonstrate robustness of the models. So we explored the 
models with the same protrusion velocity, 

V୮ ൌ V଴ ቀ
୅బ
୅
ቁ ቀ1 ൅

୑|ಢಈሺ౪ሻ
୑బ

ቁ
ିଵ
െ KሺA െ A଴ ቀ

୅బ
୅
ቁ
ଶ
ሻ.                                                               (Eq S9) 

We found that this resulted in an essentially same state diagram for the ZV model: 
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The state diagram of the ZS model also remains qualitatively similar to that in the main text, with 
the following differences: i) the border between the stationary and moving states is now slightly 
dependent on M, like in our ZV diagram; ii) the region of rotating states has shrunk somewhat; 
3) cells move faster due to the enhanced coupling between front velocities and myosin. 
 
Biophysics underlying the expression for the protrusion rate pV is based on the force balance at 

the lamellipodial boundary. As the lamellipodium is essentially flat, the force balance at this 
boundary is quite simple: There is an outward polymerization force exerted by growing actin 
filament tips abutting the plasma membrane, polF , complemented by the effective elastic 

resistance of the actin cortex and the cell body, resF , balanced by the inward membrane tension,T  

(all forces are per micron of the cell edge.) Thus, 

pol resF F T                                                                                                                        (Eq S10) 

It was shown that membrane bending forces are negligible compared to the effect of the 
membrane tension (Kozlov and Mogilner, 2007). We also assume that adhesion between the 
actin network and plasma membrane can be neglected. 
 
The polymerization force is proportional to the density of growing actin filaments per unit length 
of the cell edge, N . As was noted in our supplemental material, we assume that the actin tip 
density at the boundary depends on the cell area (Lieber et al., 2013) because of a limited amount 
of actin regulatory proteins; specifically, we assume that this density is inversely proportional to 
the lamellipodial area: 0 /N N A , where A is the lamellipodial area and 0N is the proportionality 

coefficient. Furthermore, the polymerization force is a decreasing function of the protrusion rate. 
In the limited range of the protrusion rates, this dependency can be approximated with the linear 
function: 

0,pol p p

N
F NF V N

A
                                                                                                      (Eq S11) 

where is the proportionality coefficient and pF is the stall force per filament. 
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The membrane tension is spatially uniform, and it is an increasing function of the lamellipodial 
area (Lieber et al., 2013). Mechanically, this is likely due to the fact that the increase of the 
lamellipodial area, while the total plasma membrane area remains constant on the relevant time 
scale, makes the membrane flatter in the cell body region, thus squeezing the viscoelastic cell 
body and creating the mechanical tension. In our model, we assume that the membrane tension is 
proportional to the lamellipodial area: ~T A . The mechanical effect from the elastic resistance of 
actin cortex and the cell body that counters too much shrinking of the cell area has to increase 
sharply with the decrease of the lamellipodial area. We assume that respective resistance force is 
inversely proportional to the nth degree of the lamellipodial area: ~ n

resF A .We define the 

characteristic cell area 0A as the area at which the opposing membrane tension and elastic cell 

body resistance forces are balanced:    0 0 0 0/ /
n

resT F A A F A A F   . Here 0F is this balanced 

force magnitude at the characteristic cell area. Thus: 

 0 0/T F A A                                                                                                                      (Eq S12) 

 0 0 /
n

resF F A A                                                                                                                 (Eq S13) 

By substituting Eqs (S11-13) into Eq (S10), we arrive at the expression for the protrusion rate in 
the ZS model: 

))/(()/( 0000p
nAAAAKAAVV                                                                                   (Eq S14) 

where 0 0
0

0 0

,pN F F
V K

A A 
  . 

 
As we wrote above, the protrusion rate has to be an increasing function of the local actin density. 
In some special cases, the actin density and the protrusion rate are, in fact, almost uniform 
around the cell boundary: this was the reported case for keratocytes moving on weakly adhesive 
surfaces (Barnhart et al., 2011). Thus, we made the respective simplest assumption for the ZS 
model.  
 
The expression for the protrusion rate in the ZV model is based on a similar force balance. In the 
ZV model, the nontrivial solutions require a non-uniform rate of protrusion. In majority of cases, 
indeed, the rate of protrusion is maximal at the leading edge and decreases to the sides and rear 
of the cell (Barnhart et al., 2011). Coincidentally, myosin density increases towards the rear of 
the motile cell. A recent study (Lomakin et al., 2015) strongly suggests that myosin contraction 
locally destroys the protrusive branched actin network, and so the branched actin density and 
protrusion rate are decreasing function of the local myosin density. This is reflected by the term 
VpA0/(A(1+M/M0)).  
 
Notes on the myosin transport. 
 
The assumption behind the myosin transport equation in our model is that myosin binding 
kinetics are fast compared to the transport terms and, are therefore, rapidly equilibrated. In that 
case, two equations for two sub-populations of myosin, one – myosin bound to actin network and 
drifting with the network, another – diffusing in the cytosol, have the form: 
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When the kinetics is fast, on f off bk m k m , and this system of equations reduces to the single 

equation for the total local myosin, f bm m m  : 
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To make sure that the approximation is valid, we simulated the models with myosin transport 
equation (2) in the main text replaced by the system of equations (Eq S15), with 1, offon kk . 

Specifically, we simulated the model with myosin transport described by Eq S15, in three cases: 
 
Model Parameter set	ሺݒ଴	, ,	௧௢௧ߤ   ሻ Mechanical stateߙ
ZS ሺ7.5	, ,	4/ߨ 1ሻ	 Stationary 
ZS ሺ7.5	, ,	2/ߨ 1ሻ	 Rotating 
ZV ሺ7.5	, ,	2/ߨ 1ሻ	 Translating 
 
Results indicated that the model formulated in terms of two myosin sub-populations is 
essentially identical to the corresponding model described in the main text when 1, offon kk . 

 
Our models have common features with the one in (Wolgemuth et al., 2011). In the latter, 
steadily migrating solutions were not found. Out of 3 types of solutions found in (Wolgemuth et 
al., 2011), one – a stationary cell at low contractility – is the same as in our case. Another – when 
contractility is higher – created a cell ‘pinched’ into the dumbbell shape. We observed such 
shapes transiently, but they rapidly became rotating. The third solution corresponded to 
parameter  being very small, in which case of cell developed into a 'sausage’-like shape. Our 
model with small  (~ 0.1) still exhibits steadily motile (straight and rotating) shapes.  
 
We believe that these discrepancies are caused by the differences between our model and that in 
(Wolgemuth et al., 2011). One significant difference is that in the transport equation system of 
(Wolgemuth et al., 2011), Eq S15, the free myosin instantaneously levels off, implying the 
infinite diffusion coefficient. The fast diffusion assumption means that the time of dissipation of 
gradients of free myosin is much shorter than the time scale of the model defined as L/V0, i.e. 
L2/D << L/V0, or V0L/D << 1. In our models, V0L/D=v0 is the dimensionless version of V0. 
Thus, if it were not for other differences with our models, the model of (Wolgemuth et al., 2011) 
would be equivalent to the limit of slow protrusion in our models. In this limit, the ZV model has 
only stationary solutions, even for asymmetric myosin, and the ZS model does not have 
rotational solutions for  = 1. There is another difference caused by the finiteness of diffusion in 
our models, which likely explains why the unidirectional (and rotational, for  = 0.5) motility in 
the ZS model for small v0 was not observed in the model of (Wolgemuth et al., 2011). Because 
the diffusion coefficient is finite in our models, we account for volume excluded by myosin to 
avoid the singularities, which apparently do not occur if the diffusion is infinitely fast. As a 
result, the bound myosin does not form tight, delta-function-like aggregates for intermediate 
values of myosin, making the cell boundary more dynamic. Finally, there are minor differences 



in the expressions for the boundary protrusion velocity used in our study and (Wolgemuth et al., 
2011).  
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