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The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work
indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by
myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the
centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three
forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on
organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome
behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the
microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules
inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces
positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing
force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experi-
mental observations to reverse engineer the characteristic forces and centrosome mobility.

INTRODUCTION

Position and orientation of the nucleus (Burke and Roux, 2009),
membrane organelles (Wada and Suetsugu, 2004), and mitotic
spindles (Grill et al., 2001) in cells are of crucial importance for
their function in health and disease. Similarly, centrosome (CS)
localization is essential for neural and epithelial differentiation,
cell polarization, spindle positioning, and orientation and
control of cell migration (Manneville and Etienne-Mannev-
ille, 2006). What are the mechanisms governing these phe-
nomena is a fundamental question of cellular organization.
Broadly, three factors—feedback in the reaction–diffusion
signaling mechanisms, architectural heterogeneity of the
cell, and cytoskeleton network mechanics—can be respon-
sible for the spatial organization of the cell (Mullins, 2010).
Here, we investigate the particular question of how the CS
finds the cell center, in which the third factor, cytoskeletal
mechanics, is crucial.

In many cell types, the CS in interphase is found at the
centroid or geometric center of the cell (Dujardin and Vallee,
2002). CS is the focal point of microtubule (MT) aster, so it is
not surprising that MTs play a key role in the CS centering,
because their length approaches that of the whole cell and
also because their rapid growth and shortening dynamics
allow them to explore the entire cell space (Wühr et al., 2009).
The ability of MTs growing against an obstacle to generate
pushing forces by polymerization ratchet mechanism
(Dogterom and Yurke, 1997) is at the core of the MT aster
centering in vitro (Holy et al., 1997): if the aster’s focal
point is closer, for example, to the left edge of the exper-
imental chamber (see Figure 1A), then shorter MTs at that
side grow against the boundary and buckle. Mechanically,
MT filaments are elastic rods, and their buckling forces
are inversely proportional to the square of their lengths.
Thus, at the left, short MTs buckling against the boundary
push the aster to the right with a significant force,
whereas at the right fewer MTs reach the boundary be-
cause of the periodic shortening, and those that do reach
the boundary are long and buckle at a weaker force. The
resulting imbalance of the pushing forces drives the MT
aster to the central position. This elegant MT pushing
mechanism also works in vivo: in the small fission yeast
cells, the nucleus can be centered by pushing forces that
are generated when growing MTs hit the cell edges (Tran
et al., 2001; Tolić-Nørrelykke et al., 2004). The growing
MTs also can push against barriers scattered throughout
the cytoplasm, such as yolk granules (Bjerknes, 1986;
Wühr et al., 2009) in some cells, but the respective me-
chanical effect was never studied.
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Typically, however, the forces in the cell are generated not
by MTs directly but by the host of molecular motors using
the MTs as tracks (Civelekoglu-Scholey and Scholey, 2010).
There are many examples of pulling motor forces position-
ing cell structures (Grill et al., 2001; Pearson and Bloom,
2004). The most well known of them occurs in Caenorhabditis
elegans eggs where dyneins associated with the actin cortex
at the cell boundary through dynactin, attempt to move
toward the MT minus-ends, thereby generating pulling
forces on MTs reaching the cell cortex (Grill and Hyman,
2005; see Figure 1B). At first glance, this pulling mechanism
should be destabilizing (see Figure 1B): if the aster’s focus is
closer to the left, more filaments will reach the cortex there,
and the force pulling to the left will be stronger decentering
the aster. However, if the number of pulling dyneins is
limiting, while an abundant number of MTs reach the cortex
at all sides of the cell, then this mechanism, in which the
motors pull on the MT plus-ends, becomes centering (Grill
and Hyman, 2005).

Another possibility is for the dynein motors to be distrib-
uted throughout the cytoplasm and attached to structures
not easily displaced, e.g., endoplasmic reticulum, yolk, in-
termediate filaments, or actin (Reinsch and Gönczy, 1998).
Then, the longer the MT, the more motors it can engage
along its length, leading to a length-dependent pulling
force. This servomechanism proposed in Hamaguchi and
Hiramoto (1986) (for review, see Dujardin and Vallee, 2002)
should stabilize the centering: the aster experiences a net
force in the direction of the longest MTs and thus toward the
center of the cell (see Figure 1C). The necessary interactions
of dyneins with lateral MT surface were observed in fission
yeast (Vogel et al., 2009), budding yeast (Adames and Coo-
per, 2000), and Dictyostelium cells (Koonce and Khodjakov,
2002). For this mechanism to work, the force generators have
to be distributed uniformly in the cytoplasm. In many cells,
this cannot be the case, because many motors are localized to
the dense, yet thin, actin layer of the cell cortex underlying
the plasma membrane, whereas the cell interior has vast
regions with large fluid fraction of the cytoplasm that the
motors are unlikely to fasten to. However, in flat cells, the
cortex is close to any point in the interior, and MTs can align
along the cortex and thus experience cortical length-depen-
dent forces (O’Connell and Wang, 2000) and get engaged in
the servomechanism. Note also that although dynein, an-
chored to the cortex via dynactin, is the most prominent
candidate for forcing MTs (Dujardin and Vallee, 2002), ki-
nesins enmeshed into the actin-rich cortex also can engage
MTs at or near their ends and push on them (Brito et al.,
2005).

Last but not least, MTs interact with actin gel mechani-
cally through molecular complexes that can simultaneously
associate with actin and MT filaments (Huang et al., 1999;
Kodama et al., 2003; Weber et al., 2004). Myosin-powered
contraction causes ubiquitous centripetal flow of F-actin in
cells (Yam et al., 2007; Alexandrova et al., 2008). MTs that are
coupled to this flow are dragged and transported to the
center (Mikhailov and Gundersen, 1995; Yvon and Wads-
worth, 2000; Salmon et al., 2002; Rosenblatt et al., 2004; see
Figure 1D). In addition, MTs can be pulled by myosin mo-
tors directly on actin cables (Hwang et al., 2003).

Here, we focus on the phenomenon of the CS centering in
flat mammalian tissue culture cells in the interphase. Our
experimental study (Burakov et al., 2003) revealed that dy-
nein motors’ pulling on MTs is responsible for the force
stabilizing the CS at the cell center. This force is assisted by
a myosin-dependent centering force. The latter is not strong
enough to stabilize the symmetric MT aster position by itself

due to the third factor that destabilizes the aster and moves
the CS to the cell edge. This third factor is associated with
the MT turnover dynamics, because using Taxol to stabilize
MTs nullifies the respective force. The nature of this MT
dynamics-dependent anticentering force, however, remains
unknown.

Mathematical and computational modeling was used ex-
tensively to complement traditional cell biological and bio-
physical methods to elucidate mechanistic details of the
centering mechanisms in several systems (Holy et al., 1997;
Grill et al., 2001; Vogel et al., 2009). Modeling is especially
useful because individual MTs and motors are next to im-
possible to resolve microscopically in many systems and
because measuring forces directly is too difficult. Here, we
use the reverse engineering approach that has been success-
fully applied to cytoskeletal mechanics problems (Wollman
et al., 2008; Foethke et al., 2009), and we use the observations
and measurements reported in Burakov et al. (2003) to an-
swer the following questions: Do dyneins pull on the MT
plus-ends or along their length? What is the nature of the
anticentering force? How many motors and MTs are in-
volved and what are the characteristic forces in the centering
mechanism?

MATERIALS AND METHODS

Modeling
We developed both a continuous deterministic model and a discrete stochas-
tic model in which the flat cell is represented as a disk of �20 �m in radius
that can be gleaned from the microscopic images. In the continuous model, we
place the CS at a distance x from the cell center; from the symmetry consid-
erations, the net force applied to all MTs on the CS is directed along the x-axis
toward the cell center (see Figure 2A). We consider an individual MT (Figure
2A) and three forces applied to it: a pushing force �fpush acting on its plus-end
and directed toward the minus-end, a dynein force �fdyn pulling the MT side
and directed toward the plus-end, and an actin-flow-induced drag force �fact
pulling the MT toward the cell center. The elementary dynein and pushing
forces are constant, while the actin drag force increases from the center to the
edges of the cell because actin flow decelerates from the periphery to the
center of the cell. We integrate the dynein and actin forces along the length of
each MT and then integrate the results over all the MTs to get the total force
on the CS as described in Supplemental Material. When integrating, we
assume that there are a constant number of motors per MT unit length, that
the motor forces are additive, and that the force per motor is independent of
the MT movement. The last two assumptions are justified because MTs move
much slower than free dyneins glide, so that each dynein motor operates near
its stall force. In the continuous model, we assume that the MT aster is radially
symmetric about the CS. We use the dynamic instability theory (Dogterom
and Leibler, 1993) to find the steady-state continuous distribution of MT
plus-ends that is used in the integration. When the nocodazole is applied to
the cell locally, we assume that any MT reaching for the edge of the nocoda-
zole-affected field undergoes a catastrophe and that there are no MTs in the
wedge shown in Figure 2E. We repeat all the described calculations for the
elliptical and one-dimensional (1D) cells. We also consider hypothetical kine-
sin forces along the MT length and dynein forces from the cell boundary.
Respective mathematics is described in Supplemental Material.

Because the number of MTs estimated from the experiment is on the order
of 100 and the known dynamic instability time scale is less than an order of
magnitude faster than the characteristic time scale of the CS’s movement, the
stochastic effects also should be considered. Thus, we developed a discrete
stochastic model to verify the results of the continuous model and to make a
visual presentation of the model simulations resulting in Supplemental Mov-
ies 1–5. In the stochastic model, individual MTs and their dynamic instability
are treated explicitly as described in Paul et al. (2009). As described in
Supplemental Material, MTs are nucleated at the CS at a constant rate. At each
time step, they grow or shorten with fixed speeds. The transitions between the
growing and shortening states take place randomly with observed constant
catastrophe and rescue rates. At each time step, the force on each MT is
calculated numerically according to the formulae from the continuous model,
and the forces from all the current MTs are summated to obtain the total force
on the CS. The CS is then displaced according to the equation d �x / dt � � �F
(Civelekoglu-Scholey and Scholey, 2010), where �x is the CS’s coordinate in
two dimensions, �F is the total current force on the CS, and � is the CS’s
mobility. Preliminary estimates showed that making the model fully stochas-
tic and introducing random flickering on and off in the forces do not quali-
tatively change the results.
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Experiment
Images displayed in Figures 4 and 5, CS movement rates, MT dynamic
instability parameters, and cell dimensions used to develop and calibrate the
quantitative model are obtained as described in detail in Burakov et al. (2003).

RESULTS

Qualitative Analysis Suggests That MT Pushing on
Obstacles throughout the Cortex Destabilizes the CS
Positioning
Our model is based on the following observations (Burakov
et al., 2003). 1) When dynein is inhibited, centering is desta-
bilized and the CS moves away from the center (Figure 2B,
red arrow). 2) Inhibition of myosin stops the centripetal actin
flow but does not affect the centering (Figure 2C, green
arrow illustrates the CS centering). 3) When both dynein and
myosin are inhibited, the CS moves away from the center. 4)
When dynein is inhibited, and in addition the cell is treated
with Taxol inhibiting MT dynamics, the CS stays at the
center (Figure 2D, green arrow illustrates the CS centering).
5) When nocodazole is applied locally to the cell edge dis-
rupting MTs there, the CS shifts away from the center toward
the nocodazole source (Figure 2E, green arrow). 6) When
nocodazole is applied locally, and in addition myosin is
inhibited in the cell, the CS shifts away from the nocodazole
source (Figure 2F, red arrow). 7) Finally, when nocodazole is
applied locally, together with myosin inhibition and dynein
weakening, the CS oscillates near the cell center.

These results indicate that three mechanisms participate
in CS positioning: one mechanism is dynein dependent;
another mechanism is myosin powered; and the third mech-
anism relies on the MT dynamics, meaning that either grow-
ing or shortening MT plus-ends are involved. Result 1 indi-
cates that dynein’s action is to stabilize the CS at the center,
probably by pulling astral MTs along their length, because
pulling only from the cell boundary would destabilize the
centering. In Supplemental Material, we provide calcula-
tions showing that the centering effect of a limited dynein
number pulling from the cell boundary is less likely. The
reason is that when nocodazole is applied locally, dynein
from the unaffected part of the cell boundary reorients the
pulling force so effectively that the CS is likely to be shifted
away from the nocodazole source contradicting experimen-
tal result 5. Result 4 that deals with the situation, in which
the dynein- and MT dynamics-related forces are suppressed
and only the myosin-generated force acts (Figure 2D), indi-
cates that the myosin-powered mechanism is also to stabi-
lize the CS at the center. Probably, the interaction is through
transient associations between the MTs and the centripetally
flowing F-actin, which causes effective inward drag force on
the MTs. Result 3 associates the destabilizing mechanism
with the MT dynamics. Results 1 and 2 also hint that the
dynein-depended centering is stronger than the destabiliz-
ing mechanism, whereas the myosin-dependent centering is
weaker.

Plausible positioning mechanisms based on the MT dy-
namics could result from the interactions between MT plus-
ends and cell boundary or obstacles, or kinesin motors that
are anchored throughout the cortex. Lateral interactions
along the sides of MTs are less likely to contribute because
such interactions do not require MT dynamic instability.
However, under Kinesin Pushing along the MT Lengths Can
Generate the Decentering Force, we discuss a possibility that
the off-centering force originates from kinesin motors’ push-
ing along the MT length (Figure 1F). If some motors pull on
the MT plus-ends throughout the cytoplasm (or shortening
MTs pull on cortex structures that remain attached to the

MTs; Grishchuk et al., 2005), they would stabilize the aster at
the center because more growing plus-ends would be lo-
cated between the CS and the distal side of the cell. Poly-
merizing MT plus-ends pushing on the cell boundary would
lead to centering (Figure 1A), as discussed in the Introduc-
tion. One additional possibility is that when the CS is closer
to one side of the cell, the MTs reorient such that they push
the cell boundary only at the distal side, causing destabili-
zation (Supplemental Figure S7). But in this case, the myo-
sin-powered drag is also destabilizing (Supplemental Figure
S7), which contradicts experimental result 4. If some motors
pull the growing MT plus-ends from the cell boundary, they
would destabilize the aster (Figure 1B). But this would con-
tradict experimental result 7: MTs remaining on the opposite
side of the nocodazole-application region would directly
pull the CS toward that side, because myosin activity is
inhibited. This leaves us with the only plausible mechanism:
the growing MT plus-ends push on structures that are asso-
ciated with the cortex, which lines up both the ventral and
dorsal surfaces of the cell (Figure 1E). The following math-

Figure 1. Hypothesized force-generation mechanisms. Top (A and
B) and side (C–F) views of the cell. (A) MT pushing against the cell
periphery stabilizes the CS centering because if the CS is closer to
the left edge, more MTs will reach this edge and push the CS to the
right. (B) Dynein pulling from the cell periphery destabilizes the CS
centering, if the MT number is the limiting factor. (C) Dynein
pulling on the MT sides stabilizes the CS at the center because if the
CS is closer to the left edge, more motors will interact with the
longer MTs at the right and pull the CS to the right. (D) Actin
centripetal flow stabilizes the CS at the center because the dense
MTs near the CS shift to the left, from where they are dragged
toward the center by the flow. (E) Growing MT plus-ends’ pushing
against obstacles in the cytoplasm destabilizes the centering, be-
cause more MT plus-ends are oriented toward the distal cell edge.
(F) Kinesin pushing on the MT sides destabilizes the CS because if
the CS is closer to the left edge, more motors will interact with the
longer MTs at the right and push the CS to the left.
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ematical model and simulations demonstrate that this hy-
pothesis agrees with all the observations.

Force Balance at the Centrosome Has Centering Effect If
the Dynein Pulling Is Strong
We computed three major forces acting on the CS as func-
tions of the distance from the center of a disk-like cell
(Figure 3A). Confirming the qualitative analysis, Figure 3A
(dotted) shows that when the CS shifts to the right from the
center, then positive net force from MT pushing will move
the CS further to the right, whereas negative net forces from
dynein pulling and actin drag (solid and dashed, respec-
tively) will return the CS to the center. Note that for each
MT, dynein is pulling in the outward direction, whereas
myosin is pulling inward. So, the elementary forces applied
to individual MTs are in different directions and have dif-

ferent signs. However, after integrating the elementary
forces over all the MTs, both (dynein and myosin) net forces
act inward and therefore are stabilizing. Magnitudes of all
three (dynein, myosin, and pushing) forces increase in a
roughly linear manner as the CS shifts away from the center.
This prediction agrees with the observation that the CS
accelerates away from the center when dynein is inhibited
(Burakov et al., 2003). The calculation suggests that the sum
of the three forces will have the centering effect if the net
dynein-force is strong enough (density of dynein motors
exceeds a threshold). Similarly, in absence of dynein, if the
net force from myosin is less than that from MTs’ pushing,
the CS will be destabilized and will move to the cell edge.

We found the balance of CS in a cell to be determined by
three characteristic forces: fpush, the average pushing force
per MT; aL, the average dynein force per MT, and bL2, the
average myosin-driven force per MT. Here, L is the length
scale for MT dynamics instability (see Supplemental Mate-
rial), a is the dynein force per unit length of MT, and b is the
characteristic actin drag-force per unit area. Note that pa-
rameter L predicted by the model (see Supplemental Mate-
rial) is on the order of 60 �m, whereas the cell radius is �20
�m. This means that most MTs reach the cell boundary,
which is observed, and most individual MTs are �20 �m in
length. The parameter scan (see below) suggests that when
the relations aL � 3fpush and bL2 � 8 fpush are satisfied
between these three main force scales, the total force on the
CS becomes negative on the right side of the cell (Figure 3B,
solid) and thus stabilizes the CS at the center against me-
chanical fluctuations. When myosin is inhibited, the sum of
the net forces from dynein and MT-pushing remains nega-
tive (Figure 3B, dotted), so the centering persists. However,
when either dynein alone (Figure 3B, dashed) or both dynein
and myosin (Figure 3B, dot-dashed) are inhibited, the force
becomes positive and the centered position of the CS is
destabilized. Stochastic simulations depicted in Supplemen-
tal Movies 1 and 2 confirm these predictions. Simulations
also demonstrate that away from the center the destabilized
CS in the dynein-inhibited cell moves at a speed of the order
of 0.1 �m/min, in agreement with the data reported in
Burakov et al. (2003). Snapshots from Supplemental Movies
1 and 2 mimicking the respective experimental images are
shown in Figure 4.

The Centrosome Undergoes a Small Shift from the Center
If the MTs Are Spatially Perturbed
We modeled the local nocodazole application reported in
Burakov et al. (2003) by calculating changes in the three
major forces after deletion of MTs from the wedge at the cell
side (Figures 2, E and F, and 5) and calculating respective
changes in the three major forces. Supplemental Figure S3
illustrates how the forces change: after the MT density di-
minishes at the left, dynein pulls the CS to the right, so the
dynein force becomes more positive in attempt to shift the
CS to the right (Supplemental Figure S3A). However, two
other forces have the opposite effect: more MTs at the right
are dragged by the actin flow in the left direction (Supple-
mental Figure S3B). The pushing from the plus-ends of these
dominating MTs also moves the CS to the left (Supplemental
Figure S3C). Thus, despite the fact that dynein is stronger
than either myosin or MT pushing separately, now that both
the myosin-powered flow and the MT pushing oppose the
dynein force, the net effect is shifting the CS to the left
toward the nocodazole source. This is confirmed by Figure
3C (solid), which shows the net force on the CS in the
presence of the nocodazole effect with parameter values
satisfying aL � 3fpush and bL2 � 8fpush. This force–distance

Figure 2. Geometry of the force generation. (A) Three principal
forces on a single MT (green line) of length r in the cell with radius
R: length-dependent force fdyn by outward-pulling dyneins, flow-
and length-dependent force fact generated by the centripetal actin
drag, and inward pushing force fpush. CS (blue) is displaced from the
cell center by x. O, C, P, B, d, s, and � are the geometric variables
characterizing MT position and orientation used for force calcula-
tions in the Supplemental Material. (B) Perturbation (i): When dy-
nein is inhibited and only actin drag and dynamic MT forces are
present, centering is destabilized and the CS moves away from the
center. (C) Perturbation (ii): When myosin is inhibited, the actin
flow stops and only dynein and dynamic MT forces are present; the
CS is stabilized at the center. (D) Perturbation (iv): When both
dynein is inhibited and MTs are stabilized by Taxol, the actin flow
stabilizes the CS at the center. (E) Perturbation (v): After the local
application of nocodazole (modeled by eliminating MTs from the
wedge of the cell), the CS shifts toward this wedge. (F) Perturbation
(vi): After the local application of nocodazole and inhibition of
myosin, the CS shifts away from the wedge. Green arrows, the CS is
stabilized and moves toward the center; red arrows, the CS is
destabilized and moves away from the center; blue arrows, pulling
dynein forces; white arrows, actin–myosin drag forces; and black
arrows, decentering forces associated with dynamic MTs. Dynamic
MTs are shown in green, and Taxol-treated stable MTs are shown in
black.

Dynein–Myosin–Microtubule Centering Forces

Vol. 21, December 15, 2010 4421



relation illustrates that the stable equilibrium position of the
CS is on the left side of the cell center, close to the nocoda-
zole source (Figure 3C, solid). However, because in this
situation two weak forces negate a strong force, the net force
is weak, and the CS’s shift from the center is predicted to be
small, in agreement with the experimental observations (Fig-
ure 5, A and B). This prediction is further confirmed by the
stochastic simulations (Figure 5C and Supplemental Movie
3). When the nocodazole is applied to a myosin-inhibited

cell, the model predicts that the dynein’s pulling from the
right overwhelms the MTs’ pushing at the right. Therefore,
with aL � 3fpush and bL2 � 8fpush, the application of nocoda-
zole to a myosin-inhibited cell (Figure 3C, dashed) will shift
the CS away from the nocodazole source to the right, in
agreement with the experiment (Figure 5, D and E). The
stochastic simulations (Figure 5F and Supplemental Movie
4) further support this result.

The Experimental Constraints Allow to Estimate the
Forces and Centrosome Mobility in the Centering
Mechanism
All relevant forces, as well as the effective CS drag coeffi-
cient, scale with the number of MTs, so the continuous
model results are invariant when the MT number changes,
adding to the model robustness. However, the stochastic
effects of random imbalances that arise from the MT dy-
namic instability would increase the fluctuation of CS’s po-
sition when the number of MT decreases. To test the impact
of this effect, we used stochastic simulations (Supplemental
Movie 1) and observed that when the average MT number is
between 30 and 300, the CS stays very close to the center, but
with 3 MTs, the CS wandered relatively far from the center
(Figure 6A). This allows us to roughly estimate the necessary
number of MTs to be �100. Although accurate experimental
count is not possible, this number agrees with our rough
image analysis.

In Supplemental Material, we report the calculations that
allowed us to use five of six experimental observations
discussed above to put stringent constraints on the model
parameters (two other observations are explained without
such constraints). The model parameter space is simple and
two dimensional (Figure 6B). The system behavior is fully
determined by two dimensionless ratios: the characteristic
dynein force aL divided by the average pushing force fpush,
and the characteristic actin–myosin force bL2 divided by
fpush. In this parameter space, there is a relatively narrow
triangular region of parameters around the values of aL �
3fpush and bL2 � 8fpush (Figure 6B, star), with which the
model explains all the experimental observations.

Figure 3. Calculated distance dependence of the
forces on the CS. Calculated forces on the CS. All
distances x are normalized by the cell radius R. (A)
Normalized net forces on the CS as functions of the
normalized distance from the CS to the center (CS
shifts to the right side of the center). Solid, dashed, and
dotted curves correspond to the dynein, myosin, and
pushing forces, respectively. The dynein force is in the
unit of aL (average dynein force per MT; a is the dynein
force per unit length, and L is the dynamic instability
length). The myosin force is in the unit of bL2 (average
actin drag force per MT; b is the drag force per unit
area). The pushing force is in the unit of fpush (average
pushing force per MT). (B) The total net force on the CS
in units of fpush in the case when aL � 3fpush and bL2 �
8fpush. Solid line, control cell; dashed line, dynein-inhib-
ited cell; dotted line, myosin-inhibited cell; and dot-
dashed line, cell with both dynein and myosin inhib-
ited. (C) In the case when aL � 3fpush and bL2 � 8fpush,
the total force on the CS calculated in the nocodazole-
affected cell (the nocodazole-affected wedge extends
half-way to the center) is shown for the control cell
(solid line) and myosin-inhibited cell (dashed line). The
inset zooms-in to the region near the cell center to
illustrate the signs of the forces there. Black dots show
the predicted equilibrium CS positions. Green arrows
are centering, inward (negative) forces; red arrows are
decentering, outward (positive) forces.

Figure 4. Centering in control cells and loss of stability in dynein-
inhibited cells. (A) Centered CS in the control cell. (B) CS shifted to
the cell edge in the dynein-inhibited cell. Hot-cold colors illustrate
high–low tubulin density, respectively. Note that in B, the destabi-
lized CS is at the cell edge closest to the centroid of the cell. Bar, 10
�m. (C) Snapshot of stochastic simulations from Supplemental
Movie 1, corresponding to the situation in (A). (D) Snapshot of
stochastic simulations from Supplemental Movie 2, corresponding
to the situation in B. Gray circle, cell periphery, green lines, MTs;
and blue dot, CS.
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The stringent constraints on the model parameters allow
us to estimate the order of magnitude of the characteristic
forces on the MTs. When a growing MT runs into an obsta-
cle, it could either undergo catastrophe (Janson et al., 2003)
or continue growing by bypassing the obstacle. We assume
that these two events occur with comparable possibilities
and that the collision-induced catastrophe is a nontrivial
part of the total catastrophe events. Then, we estimate that
an MT will run into an obstacle about every 30 s, which is
roughly the observed characteristic time interval between
two catastrophe events (Burakov et al., 2003). We assume
that the force is generated for �3 s before the MT starts
shortening or bypasses the obstacle and continues growing.
Because a stalled MT develops a force of �6 pN (Dogterom
and Yurke, 1997), and it takes a few seconds for the stalled
MT to start shortening (Janson et al., 2003), the average force
on an MT tip would be fpush � 6 pN � 3 s/30 s � 0.6 pN.

This pushing mechanism is limited by MTs’ buckling
force, which is the maximal compression force that an MT
can sustain. Because the buckling force is inversely propor-
tional to the MT length, it could be very small for long MTs.
Indeed, the buckling force for an MT in an aqueous medium
can be estimated as �10B/l2, where B � 20 pN � �m2 is the

MT flexural rigidity and l is its length. So, only MTs shorter
than √10B/fpush � 15 �m could push effectively. However,
the MTs are embedded in an actin elastic gel. This signifi-
cantly increases the compressive force that the MTs can
sustain (Brangwynne et al., 2006): for a long MT embedded
into the elastic gel, the buckling length � � 2� (B/Y)1/4,
where Y is the Young modulus of the actin meshwork, is

Figure 5. Effects of the local nocodazole application on the CS’s
positioning. Observed CS positions before (A) and after (B) the local
nocodazole-application at the left side of the cell. The zigzag line
shows the boundary of the nocodazole-affected region. The centro-
some shifts slightly toward the nocodazole source, which is in
agreement with the model result (C)—the snapshot of the stochastic
simulations from Supplemental Movie 3 corresponding to the situ-
ation in A and B. (D and E) Observed CS positions before (D) and
after (E) the local nocodazole application at the left side of the
myosin-inhibited cell. The centrosome shifts slightly away from the
nocodazole source, which is in agreement with the model result
(F)—the snapshot of the stochastic simulations from Supplemental
Movie 4 corresponding to the situation in D and E. Bar, 10 �m (A,
B, D, and E), and the colors are the same as those in Figure 4. Red
dashed lines indicate the boundary of the nocodazole-affected re-
gion in the simulations.

Figure 6. Model calibration and predictions. (A) Stochastic simu-
lations illustrate fluctuation of CS position in the control cell with
the number of MTs being N � 300 (green dots), N � 30 (purple
dots), and N � 3 (red dots). The cell periphery is shown in black. For
each case, 1000 simulated CS positions at a 10-min time interval are
shown. (B) Parameter values for the disk-like cell with radius R � 20
�m are shown. Lines and associated arrows indicate domains of the
parameter values that support the observed CS behavior in control
cell (I), dynein-inhibited cell (II), myosin-inhibited cell (III), cell with
the local application of nocodazole (IV), and myosin-inhibited cell
with the local application of nocodazole (V). The intersection of
these domains shown in red is the region of parameters for which
the model explains all experimental observations. This region is
around the values determined by the relations aL � 3f0 and bL2 � 8f0
shown with the star. (C) Parameter region dependence on the cell
shape and size: red regions correspond to circular cells with radius
R; blue regions to the elliptical cells with the same areas as those of
the disk-like cells and an aspect ratio of 2; and yellow regions to the
1D cells with a half-length R. (D) Trajectories of the CS in a dynein-
inhibited ellipsoidal cell from 20 individual stochastic simulations
are marked with different colors and line styles. For each trajectory,
the CS is initially positioned at the cell center (black dot). (E)
Trajectories of the CS in a dynein-inhibited square cell from four
individual stochastic simulations are marked with different colors.
For each trajectory, the CS is initially positioned at the cell center
(black dot). In two simulations, the CS ended at the edge of the cell,
and in other two simulations in the corners.
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independent of the pushing force and MT length. This
length is � � 2.5 �m for characteristic cell cortex elasticity
Y � 103 pN/�m2. Even for 2 orders of magnitude weaker
actin gel that could be above the narrow cortex layer, with
Y � 10 pN/�m2, the buckling length remains small, � � 6
�m. Respective buckling force �10B/�2 � 6 pN is well
above the characteristic pushing force which therefore will
be transduced without weakening to the CS.

Taking into account the estimate of aL � 3fpush and L � 60
�m, we conclude that a � 0.03 pN/�m. Because a single
dynein motor can develop a force of �1 pN (Mallik et al.,
2004), there should be an average of �1 pulling dynein
motor per 30 �m along an MT, or roughly one working
motor per MT. This allows estimating the necessary density
of dynein motors in the cortex. We assume that there are
�100 MTs in the cell, each being �20 �m long. Then, there
are �100 � 20 �m/30 �m � 70 dynein motors pulling on the
MT aster. We further assume that all the dynein motors
within 50 nm from any MT can associate with that MT (Oiwa
and Sakakibara, 2005) and that only half of the motors are
pulling. Then, there should be �140 motors localized in an
area of 100 � 20 �m � 0.05 �m � 100 �m2. Thus, the
necessary dynein density is �1.5/�m2. Because the area of
the cell is � � (20 �m)2 � 1200 �m2, �2000 dynein mole-
cules in total have to be in the cortex. We are not aware of
any direct experimental measurement of this number; how-
ever, existence of hundreds of foci that are likely to contain
a few dynein molecules each was reported in Kobayashi and
Murayama (2009), which agrees with our prediction.

In Supplemental Material, we estimate the mobility of the
MT aster with the CS at the center to be � � 0.03 �m/(pN �
min), which corresponds to a friction constant of � � 1/� �
30 p� � min/�m. Considering that, when the CS is signif-
icantly off-center, a force of 50fpush � 30 pN is applied to the
aster, we predict that the CS would shift at speed 50 �fpush �
1 �m/min, which is the observed moving speed of the CS
(Burakov et al., 2003). Note that this is also the characteristic
observed speed of the centripetal flow in the flat cells (Al-
exandrova et al., 2008). We propose that the drag on the MT
aster does not originate from the viscous resistance that is
negligibly small but instead is from the protein friction
(Bormuth et al., 2009) – transient attachments between the
MTs and the actin filaments in the cortex. The effective
friction constant for each attachment can be estimated as ��
(Bormuth et al., 2009), where � � 10 pN/�m is the effective
spring coefficient of deformed actin filament (Mogilner and
Oster, 1996), and � � 1 s is the characteristic time before such
filament detaches from an MT (Howard, 2001). So, the ef-
fective friction constant for each attachment is �10 pN �
s/�m. To account for the total friction constant of 30 p� �
min/�m, we estimate that �200 such attachments, or ap-
proximately two attachments per MT, exist in the cell. This
number is also a model prediction, because no relevant data
have been reported.

Centering Mechanism in Cells of Different Shapes and
Sizes
Because most of the cells are not perfectly round, we inves-
tigated how the centering works in elongated cells (Figure
6D). Our simulations confirmed that all model predictions
for the round cells remain valid in the ellipsoidal cells. We
also noticed an interesting phenomenon: when dynein is
inhibited, the destabilized CS invariably moved to the clos-
est edge of the cell (Figure 6D and Supplemental Movie 5),
which is a serendipitous test of the model; when we reex-
amined the respective images obtained for our previous
study (Burakov et al., 2003), we saw that this was exactly the

case (Figure 4B). The explanation stems from the fact that the
CS position in this situation is determined only by the force
balance between the myosin–actin and pushing forces. The
analysis in Supplemental Material shows that the magnitude
of the myosin-powered force is very sensitive to the dis-
tances in the cell, because the speed of the actin centripetal
flow is proportional to the distance from the cell center.
Therefore, in the elliptical cell, the myosin–actin force is
weaker along the short axis than along the long axis of the
cell. On the other hand, the MT pushing force is less affected
by the cell geometry, because most of the MT plus-ends are
distributed near the CS. Thus, the orientation-insensitive
outward pushing overcomes the inward drag from actin
flow more easily along the short axis of the cell. Note that
very elongated cell is close to a 1D system, for which we
have calculated all the forces analytically (see Supplemental
Material), which further strengthens the model’s predictive
power. We also observed that in the elongated and 1D cells,
greater ranges of model parameters could explain all exper-
imental observations (Figure 6C) due to subtle distance and
angle dependencies of the three principal forces discussed in
Supplemental Material. For cells of greater sizes, the param-
eter region that explains all experimental observations be-
comes smaller (Figure 6C). The simple reason is that in a
large cell, very few MTs could reach the cell boundary, so
the dynamic MT probing would work less efficiently.

Cells plated on microfabricated substrates can be forced
into particular geometries (Théry et al., 2006). To examine
the model-predicted behavior on such cells, we simulated
the stochastic force-balance model on the square- (Figure 6E)
and fan-shaped (Figure 7) domains mimicking the cells

Figure 7. Model predictions for the fan-shaped cell. (A) Hypoth-
esized centripetal actin flow field (green arrows) with flow center
(cross) near the centroid. (B–D) Snapshots of the simulations with
isotropic MT nucleation (B), anisotropic MT nucleation with density
of MTs growing toward the round edge being twice the density
of MTs growing toward the corner (C), and anisotropic MT
nucleation as described in B, but with additional motors at the
cell “leading edge” (marked with red dots). Green lines, MTs.
Blue circle, CS. Thick gray lines, cell periphery. White crosses,
flow center. Bar, 10 �m.
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shapes reported in Théry et al. (2006). The pattern of the actin
centripetal flow in such cells was not observed, so for the
square cell we assumed a radially symmetric inward flow,
whereas for the fan-shaped cell that resembles motile epi-
thelial cells we chose the flow pattern (Figure 7A) with the
convergence point closer to the round edge (and almost at
the cell centroid) characteristic for the motile cells. The sim-
ulations for the square cell predict, not surprisingly, the
stable CS centering (Figure 6E) in agreement with the obser-
vations (Théry et al., 2006). Nontrivially, when we switched
off dynein force in the simulations, the CS moved to the
middle of the cell edge and then either drifted along the
edge or went to one of the four cell corners and stayed there
(Figure 6E). In the virtual fan-shaped cell, the CS stabilized
at the convergence point of the flow (Figure 7B). We inves-
tigated what happens if the MT distribution becomes asym-
metric, with twice the MTs oriented to the round edge
(corresponding to the observed situation in the motile cell
where the round edge would be leading). The CS was
shifted to the rear (Figure 7C, in agreement with the obser-
vations in Théry et al., 2006) due to the dominant effect of the
actin retrograde flow near the round edge. The simulations
showed that with extra dyneins accumulated at the leading
edge of the cell (Figure 7D), the CS shifted toward this edge,
similar to what is observed in motile epithelial cells (Dujar-
din et al., 2003).

Kinesin Pushing along the MT Lengths Can Generate the
Decentering Force
A distinct possibility for the nature of the decentering force
is the pushing action of plus-end–directed kinesin motors
along the MT lengths (Figure 1F). It is easy to see from
comparison between Figure 1, C and F, that the kinesin
pushing is opposite to the dynein pulling; other than this,
the kinesin and dynein forces would scale similarly with the
sizes and distances. Thus, kinesin pushing along the MT
lengths can generate the decentering force. In the Supple-
mental Material, we demonstrate that as far as the total
kinesin force in control cells is less than the total dynein
force, the kinesin-based mechanism is consistent with all
experimental results. However, this mechanism is subject to
two requirements. First, kinesin motors should be anchored
to stationary structures in the cell, which is possible: binding
of kinesin to intermediate filaments have been described
previously (Helfand et al., 2004); in addition, conventional
kinesin interacts with myosin V, which in turn interacts with
actin filaments (Huang et al., 1999). Second, experimental
result 4 indicates that the decentering force is switched off if
the MTs are stabilized by Taxol. However, kinesin can push
the stabilized MTs. Due to this caveat, we favor the hypoth-
esis that it is MT end pushing, rather than kinesin action,
that is responsible for the decentering factor. One possibility,
however, is that the Taxol-treated MT is mechanically rigid
enough so that the kinesin force cannot move the aster off
center. Future inhibition of kinesin experiment will be able
to resolve this issue.

DISCUSSION

The fundamental questions of whether it is the pushing or
the pulling force that positions the nucleus and organelles in
cells and what is the origin of this force have been answered
in the past decade with a combination of experimental and
modeling research (Kimura and Onami, 2005). Here, we
used modeling to address this question for the CS centering
in the interphase cell (Burakov et al., 2003). The most impor-
tant result of our study is that in addition to a strong dynein

pulling and a weak myosin-powered actin drag, there is an
anticentering pushing force that is generated by the growing
MTs throughout the cell. One possible origin for such force
is the polymerization ratchet force exerted by the MT plus-
ends on obstacles or organelles that are scattered throughout
the cell and anchored to the cytoskeletal scaffold (Bjerknes,
1986). Another possibility is that the MTs interact along their
lengths with kinesin motors that are anchored to the actin
network (Brito et al., 2005). Dynamic MT pushing or pulling
on the cell periphery or plus-ends pulling on structures
throughout the cell are incompatible with the experiment.

Furthermore, our modeling results argue for the dynein
servomechanism—dyneins are anchored to the cortex across
the cell and pull on MTs along their lengths—and are incon-
sistent with the case that dyneins mainly pull on the MT
plus-ends from the cell boundary. This conclusion is sup-
ported by recent experimental data (Brodsky et al., 2007). By
calibrating the model with multiple experimental measure-
ments, we constrain the model parameters to an extent that
we are able to predict the order of magnitude of character-
istic forces. Namely, we predict that �100 dynamic MTs are
responsible for average pushing force of �1 pN per filament.
This anticentering force is overwhelmed by a dynein-gener-
ated pN-range pulling force on each 30-�m length of MT
and is assisted by a drag force that is caused by 1-2 molec-
ular links between each MT and the centripetally flowing
actin network. We also estimate the necessary dynein den-
sity to be 1-2 motors per square micron. Finally, we suggest
that the viscous-like drag on the shifting CS originates from
the dynamic breakage of MT–actin links. We then estimate
the CS–MT-aster mobility to be a few hundredths of �m/
(min � pN). We also find that a force of the order of 100 pN
is needed to push the aster at a characteristic speed of a few
microns per minute, in agreement with Reinsh and Gönczy
(1998).

We predict that the centering mechanism is robust: all that
is needed for the CS to find the cell center is for total dynein
force to be greater than a modest threshold of �1 motor
pulling per MT. The experiments and simulations of the
nocodazole application demonstrate that significant pertur-
bations of the MT dynamics lead to relatively small shifts of
the CS. The reason is the opposing action of dynein and
myosin-powered flow on individual MTs: whereas dynein
pulls an MT outward from the center, the actin flow pulls it
inward, so altering the MT distribution leads to changes in
the opposing forces that partially cancel each other. Addi-
tional indication for the robustness of the centering mecha-
nism is that the CS is predicted to be positioned close to the
cell center in square and fan-shaped cells (Figures 6E and 7)
in a way insensitive to MTs’ anisotropy and system pertur-
bations. The scan of the model parameter space shows that
the mechanism becomes even more robust in the elongated
cells (Figure 6D)—and in practice, all cells are elongated to
some extent. Finally, increasing cell size makes the centering
mechanism less robust (Figure 6C), because fewer MTs
reach the cell boundaries, in agreement with discussion in
Wühr et al. (2009). However, a proportional increase of the
MT length would restore the centering effectiveness.

The centering mechanism is not only robust but also ver-
satile: the dynein pulling alone can overpower the destabi-
lizing MT pushing to stabilize the CS’s centering, so the
myosin-powered actin drag seems redundant for the center-
ing. However, the CS’s equilibrium point is between the
convergence points of the actin centripetal flow and dy-
neins’ pulling field. Therefore, introducing asymmetry and
heterogeneity to the two centering forces (by manipulating
the dynein and myosin distributions) could shift the CS to a
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desired position (Figure 7, B and C). For example, concen-
trated dyneins at the leading edge of the motile cell could
shift the CS toward the front (Figure 7D; Dujardin et al.,
2003) against the rearward myosin force (Grabham et al.,
2007).

Here, we did not discuss the interactions between the CS
and nucleus that are linked intimately to the CS (Robinson et
al., 1999) and other elements of cytoskeleton (Starr, 2007).
We showed above that the centering is nucleus independent,
because the experiments in cell cytoplasts resulted in a sim-
ilar CS behavior (Burakov et al., 2003). Besides, positions of
the nucleus and the CS are established by separate regula-
tory pathways (Gomes et al., 2005). Nevertheless, mechanical
effect of the CS–nucleus interaction is an important future
challenge.

The model we proposed is minimal and does not consider
factors such as orientation-dependent forces (Tsou et al.,
2003), MT length regulation (Tolić-Nørrelykke, 2010), force–
velocity properties, and force-driven detachment of dynein
(Vogel et al., 2009), and MT bending (Bicek et al., 2009). There
are also other positioning processes working in the cell—
forceless centering mechanism (Malikov et al., 2005) and cell
adhesions determining CS stabilization (Théry et al., 2006),
to name but a few. Potentially all these factors are not
negligible; future investigations will be needed to see
whether they change our model predictions. To further test
our force-balance model of centering, suggestions for future
experiments include 1) using nanotechnology to build local
barriers in the cytoplasm, which would perturb the pushing
force and shift the CS in a predictable way; 2) using UV light
to locally cancel global nocodazole effect (Hamaguchi and
Hiramoto, 1986) to dissect three forces locally; and 3) using
laser ablation of MTs to segregate pulling and pushing
forces and test the length dependence of the pulling force
from dynein (Vogel et al., 2009).
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Distribution of microtubule plus-ends

Microtubules (MTs) in interphase cells grow radially from the centrosome (CS), with plus-ends facing
outwards and minus-ends anchored in the CS (see Figure 2A). MTs display dynamic instability, during
which they in turn grow steadily with speed v1 and shorten with speed v2 (see Figure S1). The MTs
switch from the growing to the shortening state with the catastrophe rate k1, and from the shortening
to the growing state with the rescue rate k2. The dynamic instability model we use follows closely the
two-state dynamic instability model [1]. We define the densities of the MT plus-ends in the growing and
shortening states to be ρ1 and ρ2, respectively. The steady-state distribution of the densities ρ1 and ρ2
in two-dimensional (2D) space satisfy the conservation equations:

∂ρ1
∂t

= −v1
r

∂

∂r
(rρ1)− k1ρ1 + k2ρ2 = 0, (S1)

∂ρ2
∂t

=
v2
r

∂

∂r
(rρ2) + k1ρ1 − k2ρ2 = 0, (S2)

where r is the distance from the CS. At the steady state, the outward flux of ρ1 and the inward flux of
ρ2 should be balanced everywhere, which gives

v1ρ1 = v2ρ2. (S3)

At CS (r = 0), we assume that new MTs are nucleated at a constant rate k0 from the CS, and that
new MTs are always in the growing state. Then, the nucleation rate of growing MTs should balance the
extinction rate of shortening MTs. At the steady state, k0 should be balanced by the flux of ρ2 into a
small circular area A around the CS with radius r → 0. Let v⃗2 = −v2êr be the velocity vector of the
shortening MTs with êr being the unit radial vector, then the flux balance gives

k0 = −
∫
A

∇ · (v⃗2ρ2) dA =

∫
∂A

v2ρ2 dl = 2πrv2ρ2, (S4)

where ∂A is the boundary of the area A, l is the length along ∂A, and the second equality is obtained
from Gauss’s law. This argument results in the following equation:

ρ2 =
k0

2πv2r
if r → 0. (S5)

From Eqs. S1-S5, the steady-state solutions can be found as

ρ1 =
k0

2πv1r
e−r/L, (S6)

ρ2 =
k0

2πv2r
e−r/L, (S7)
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where L = v1v2/(k1v2−k2v1) is the length scale for MT dynamic instability. Equations S6 and S7 describe
MTs in an infinite 2D space. Since the distribution of MTs in a cell is limited by the cell membrane, we
assume that MTs in the growing state immediately switch to the shortening state when they reach the
cell boundary. With this assumption, the flux balance still holds. Therefore, the expressions for ρ1 and
ρ2 inside the cell are not affected by the existence of the cell boundary.

The concentration of all MT plus-ends in the cell is the sum of ρ1 and ρ2:

ρ = ρ1 + ρ2 =
k0

2πvr
e−r/L, (S8)

where v = v1v2/(v1 + v2). The values of v1, v2, k1 and k2 are taken from [2] and are given in Table S1.
From the same source, we can glean that the cell radius to be R ≈ 20 µm. Since the total number of
MTs in a cell can be calculated as

N = 2π

∫ R

0

ρ r dr =
k0L

v

(
1− e−R/L

)
, (S9)

we take k0 = 100 min−1, which corresponds to N ≈ 300. In the continuous deterministic model, we
ignore the stochastic effects of the MTs and treat the distribution of the plus-ends of MTs as smooth
functions of r as shown above.

Force on the centrosome

In a flat disc-like cell with radius R, we assume that the distance between the CS C and the cell’s center
O is x (see Figure 2A). A microtubule CP with length r is growing toward the cell periphery B. The
angle between the MT and the x-axis is θ. We define fx(r, θ) to be the x-component of force on the CS
generated by an individual MT with length r and orientation θ. Because of symmetry, the total force on
the CS is simply the integral of ρfx over the entire area of the cell:

Ftot = 2

∫ π

0

dθ

∫ rm

0

ρfxr dr =
k0
πv

∫ π

0

dθ

∫ rm

0

fx e
−r/Ldr, (S10)

where rm is the distance from C to the cell periphery at angle θ:

rm(θ) = CB =
√

R2 − x2 sin2 θ − x cos θ. (S11)

We consider three possible interaction mechanisms: 1) MTs can be pulled away from the CS by
dyneins in the cortex, with force being proportional to MT lengths; 2) MTs can be dragged toward the
center of the cell by the actomyosin-driven inward flow of the actin network; and 3) MT growing plus-ends
can bump into obstacles in the cortex and push back on the CS. Equation S10 can be expressed as

Ftot = Fdyn + Fact + Fpush, (S12)

where Fdyn, Fact and Fpush are the total forces from dynein, actin-flow drag and MTs’ pushing, respec-
tively.

Mechanism 1: MTs are pulled by the cortex dyneins
Since dyneins in the cell cortex pull the MT along its length in the outward direction, the pulling

force fdyn on each MT is proportional to r:

fdyn = ar, (S13)

where a is a constant (dynein force per MT unit length). The force component along the x-direction is

fx = fdyn cos θ. (S14)
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Then, Eq. S10 gives

Fdyn = −aL2k0
πv

∫ π

0

(1 + u)e−u cos θ dθ, (S15)

where u = rm/L. Eq. S15 can be solved numerically. Figure 3A shows the Fdyn-x with Fdyn being
normalized by the factor aL, which is the characteristic dynein force applied to a MT of length L. For
positive x, Fdyn is always negative, and the magnitude of Fdyn increases with x. Therefore, the CS is
always pushed back toward the cell center, so dynein stabilizes the centering of the CS.

Mechanism 2: MTs are dragged by the inward flow
The inward flow of the actin network caused by the actin-myosin contraction produces drag forces

on the MTs. The drag force on each segment of a MT is proportional to the velocity of the flow, and is
pointing toward the cell’s center O. We assume that the actin network’s flow speed at a displacement d⃗
from point O is proportional to −d⃗:

v⃗flow(d) ∝ −d⃗. (S16)

This assumption is in qualitative agreement with experimental observations; it can also be justified with
the following argument. In a disc-shaped shell of actin network that is centered at O with radius r and
area A = πr2, the shrinking rate of the network due to actomyosin contraction is proportional to the
amount of myosin inside this region, which is proportional to A. Therefore, the shrinking rate of this
region is

−dA

dt
∝ A ∝ r2. (S17)

The velocity of the inward flow at distance r from the cell center is simply the shrinking rate of the
network radius at r:

vflow =

∣∣∣∣drdt
∣∣∣∣ = ∣∣∣∣ drdA dA

dt

∣∣∣∣ ∝ r. (S18)

For a segment of MT that is at a distance s from the CS C (see Figure 2A), its displacement from point
O is

d⃗(s) = x⃗+ sn̂, (S19)

where n̂ is the direction of MT growth. We assume that the force density on the segment is proportional
to v⃗flow. From Eq. S16, the total force on the MT is the integral of drag forces on the MT:

f⃗act = −b

∫ r

0

d⃗ ds = −b

(
rx⃗+

r2

2
n̂

)
, (S20)

where b is a constant (drag force per unit area). Then, the value of the force component fx is

fx = f⃗act · êx = −b

(
rx+

r2

2
cos θ

)
, (S21)

where êx is the unit vector in the x-direction. Thus, the total force on the CS can be obtained from
Eq. S10 as

Fact = −bL2xk0
v

+
bL3k0
πv

∫ π

0

[(
1 + u+

u2

2

)
cos θ +

x

L
(1 + u)

]
e−udθ. (S22)

Figure 3A shows the Fact-x relation with Fact being normalized by bL2, which is the characteristic drag
force on a MT of length L at a distance L from the cell center. Similar to mechanism 1, for positive
values of x, Fact is always negative. Thus, the CS is always pushed by myosin-driven flow toward the
center of the cell. This mechanism also stabilizes the CS centering.

Mechanism 3: growing MTs plus-ends push on structures that are uniformly scattered
in the cortex



4

Growing MTs can bump into obstacles in the cortex. We assume that the obstacles are evenly
distributed in the cortex, and that the average force on each individual growing MT is proportional to
the frequency of collisions. Since v1 is a constant, the frequency of collisions should be the same for all
the growing MTs, so the average force on each growing MT should be the same. We define that average
force with which each growing MT pushes back on the CS as fpush. Then the x-component of the force
(see Figure 2A) is

fx = −fpush cos θ. (S23)

By replacing ρ with ρ1 in Eq. S10, the total force on the CS can be obtained as

Fpush =
fpushLk0

πv1

∫ π

0

e−u cos θ dθ. (S24)

The normalized Fpush-x relation is shown in Figure 3A. For positive x, Fpush is always positive, and the
magnitude of Fpush increases as x increases. Therefore, this force would push the CS away from the cell
center and de-stabilize the centering.

Effects of local application of nocodazole
Figures 2E-F, 3C show the schematics of a cell with a partially cut MT aster by the local application

of nocodazole. We assume that the cut is made perpendicular to the x-axis at x = −xc (see Figure S2).
Let D be one of the intersections between the cutting line and the cell periphery, the angle between line
DC and the x-axis is

θc = π − tan−1

(
h

x+ xc

)
, (S25)

where h =
√
R2 − x2

c is the half-length of the cutting line. We define r′m(θ) to be the maximum length
of MTs with angle θ after the cut is made. It is easy to find that r′m satisfies

r′m(θ) =

{
rm(θ) if 0 ≤ θ ≤ θc,

−(x+ xc)/ cos θ if θc < θ ≤ π.
(S26)

We assume that when the growing MTs reach the cutting line, they immediately convert to the shortening
state. Similar to the effect of the cell boundary, the existence of the cutting line does not change the
distributions ρ1 and ρ2 inside the region that is unaffected by nocodazole. Therefore, the forces on the
CS in mechanisms 1–3 can still be obtained from Eqs. S15, S22 and S24 by replacing u with u′ = r′m/L:

F ′
dyn = −aL2k0

πv

∫ π

0

(1 + u′)e−u′
cos θ dθ, (S27)

F ′
act = −bL2xk0

v
+

bL3k0
πv

∫ π

0

[(
1 + u′ +

u′2

2

)
cos θ +

x

L
(1 + u′)

]
e−u′

dθ, (S28)

F ′
push =

fpushLk0
πv1

∫ π

0

e−u′
cos θ dθ. (S29)

Forces’ dependencies on the distance computed with these integrals are shown in Figure S3, A–C. As xc

decreases, more MTs are cut, force F ′
dyn shifts toward the positive direction because the pulling force

along the negative x-direction is reduced by the cutting of respective MTs. The equilibrium position of
the CS also shifts toward the positive x-direction, which indicates that the CS tends to move away from
the nocodazole source. F ′

act shifts to the negative x-direction for small x, but to the positive direction
at large x. Therefore, previously centered CS tends to move toward the nocodazole source. F ′

push shifts
toward the negative x-direction, because the opposing forces on MTs in that direction decreases. The CS
tends to move toward the nocodazole source.

The overall effect on the CS’s positioning should be the sum of all three mechanisms. Although the
values of the force constants a, b and fpush are unknown, their relative magnitudes are constrained by
the experimental observations as discussed in the main text.
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Constraints on the parameters from the experimental results

For an initially centered CS in a disc-like cell that is unaffected by nocodazole, forces Fdyn, Fact and
Fpush are always zero at x = 0. Therefore, the CS’s direction of motion at x = 0 is determined by the
sign of the x-derivative of the total force. For an initially centered CS in a nocodazole-applied cell, forces
F ′
dyn, F

′
act and F ′

push are non-zero. Thus the CS’s direction of motion is determined by the sign of the
total force at x = 0.

Cell unaffected by nocodazole. In the control, the CS is stable at the cell center. In our model, this
can be formulated as (

∂Fdyn

∂x
+

∂Fact

∂x
+

∂Fpush

∂x

)∣∣∣∣
x=0

< 0. (S30)

Observation 1. When dynein is inhibited, the CS moves away from the center to the cell periphery.
In this case, only mechanisms 2 and 3 contribute to the force. The following should hold:(

∂Fact

∂x
+

∂Fpush

∂x

)∣∣∣∣
x=0

> 0,

(Fact + Fpush)|0<x≤R > 0.

(S31)

Observation 2. When myosin is inhibited, the CS stays at the center. In this case, only mechanisms
1 and 3 have contributions: (

∂Fdyn

∂x
+

∂Fpush

∂x

)∣∣∣∣
x=0

< 0. (S32)

Observation 3. When both dynein and myosin are inhibited, the CS moves away from the center. In
our model, it can be formulated as

∂Fpush

∂x

∣∣∣∣
x=0

> 0. (S33)

Observation 4. When dynein is inhibited and the dynamics of MTs is inhibited by taxol, the CS stays
at the center. This can be expressed as

∂Fact

∂x

∣∣∣∣
x=0

< 0. (S34)

Observation 5. When nocodazole is applied locally, the CS moves toward the nocodazole source. This
indicates

(F ′
dyn + F ′

act + F ′
push)|x=0 < 0. (S35)

Observation 6. If nocodazole is applied locally to a myosin-inhibited cell, the CS moves away from
the nocodazole source. In our model, this shows

(F ′
dyn + F ′

push)|x=0 > 0. (S36)

Observation 7. In addition to observation 6, when dynein is weakened by the inhibition of Cdc42, the
CS oscillates near the cell center. This can be written as

(ϵF ′
dyn + F ′

push)|x=0 = 0, (S37)

where 0 < ϵ < 1 is a factor indicating the weakening of dynein action.
Among the above equations, Eqs. S33 and S34 are always satisfied in our model, and Eq. S37 is

similar to Eq. S36. The suitable range of aL/fpush and bL2/fpush for each of the rest of the equations
are shown in Figure 6B. The range of parameter values that can satisfy all the experimental observation
is the intersection of all those regions. We find that the final range of parameters is simply determined
by Eqs. S31, S35 and S36.
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Figure 6C shows the ranges of aL/fpush and bL2/fpush that will satisfy all the experimental observa-
tions for various cell shapes and sizes. We find that for cells with a similar shape, the suitable range of
parameters decreases as the size of the cell increases. For a circular cell, when R increases from 20 µm
to 40 µm, both the maximum and the minimum values of aL/fpush decrease by a factor of 2, while the
maximum value of bL2/fpush decreases roughly by a factor of 4. To understand this result, we consider
an extreme case where L → ∞ and find Fdyn ∝ aR, Fact ∝ bR2 and Fpush ∝ fpush. Indeed, for the case
of L → ∞, the term e−r/L disappears from Eq. S10:

Ftot =
k0
πv

∫ π

0

dθ

∫ rm

0

fxdr. (S38)

For mechanism 1, Eq. S38 becomes

Fdyn =
ak0
2πv

∫ π

0

r2m cos θ dθ ≈ −aRk0
2v

x. (S39)

The last term is obtained by approximating r2m ≈ R2 − 2xR cos θ for |x| ≪ R. For mechanism 2, without
expanding rm near x = 0, the following relations can be found by keeping only the even terms regarding
to θ = π/2: ∫ π

0

r3m cos θ dθ = −3π

2
R2x, (S40)∫ π

0

r2m dθ = πR2. (S41)

Eq. S38 then gives

Fact = −bk0
πv

∫ π

0

(
1

6
r3m cos θ +

1

2
xr2m

)
dθ = −bR2k0

4v
x. (S42)

For mechanism 3, by keeping the even terms with respect to θ = π/2, Eq. S38 becomes

Fpush = −fpushk0
πv1

∫ π

0

rm cos θ dθ =
fpushk0
2v1

x. (S43)

This indicates that to keep a certain balance between Fdyn, Fact and Fpush, factors a and b should satisfy
a ∝ 1/R and b ∝ 1/R2. We find numerically that this relation still roughly holds if L is greater than or
comparable to R.

Figure 6C also shows that the suitable range of aL/fpush and bL2/fpush can be affected by the shape
of the cells. Given the same cell area, an elliptical cell has a greater range of suitable parameter values
than a circular cell has. This is mainly because of the increased maximum value of bL2/fpush, which
is determined by the dynein-inhibition experiment. In this experiment, if the CS moves away from the
center along the short-axis of the cell, the effective size of the cell becomes smaller than R. From the
analysis above, the cell will allow for a higher maximum value of bL2/fpush. The shape of the cells affects
aL/fpush in a similar way. The minimum value of aL/fpush is determined by the nocodazole-application
experiment on myosin-inhibited cells. If the nocodazole is applied at one of the pointed ends of the cell,
the motion of the CS should be along the long-axis of the cell. Then, the effective size of the cell becomes
greater than R, which results in a decreased minimum value of aL/fpush as shown in Figure 6C. On the
other hand, if the nocodazole is applied at one of the flat sides of the cell, the motion of the CS should
be along the short-axis of the cell. If the CS still moves away from the nocodazole source, the effective
size of the cell would become smaller than R and would lead to an increased minimum value of aL/fpush.

We notice that in our previous study [2], MTs in some cells tend to form parallel patterns along the
cell’s long-axis. To evaluate the influence of the orientational anisotropicity in the distribution of MTs,
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we study a one-dimensional (1D) model as an extreme case for all MTs being perfectly aligned. In 1D,
Eqs. S1 and S2 become

∂ρ1
∂t

= −v1
∂ρ1
∂r

− k1ρ1 + k2ρ2 = 0, (S44)

∂ρ2
∂t

= v2
∂ρ2
∂r

+ k1ρ1 − k2ρ2 = 0. (S45)

Considering the flux balance conditions of v1ρ1 = v2ρ2 for any r and k0 = v2ρ2 for r → 0, the solutions
of the above equations are

ρ1 =
k0
v1

e−r/L, (S46)

ρ2 =
k0
v2

e−r/L. (S47)

The total density of plus-ends is

ρ = ρ1 + ρ2 =
k0
v
e−r/L. (S48)

Assuming the CS is at x and the half-length of the cell is R, the distances from the CS to the left and
right cell boundaries are R+ x and R− x, respectively. For mechanism 1, the total force on the CS is

Fdyn = −
∫ R+x

0

ρ r dr +

∫ R−x

0

ρ r dr = −ak0
v

∫ R+x

R−x

r e−r/L dr

= −aL2k0
v

[
(1 + u1)e

−u1 − (1 + u2)e
−u2

]
,

(S49)

where u1 = (R − x)/L and u2 = (R + x)/L. For mechanism 2, similar to the calculations in Eq. S20,
the forces on a left-growing and right-growing MT are fL = −b(xr − r2/2) and fR = −b(xr + r2/2),
respectively. Then, the total force on the CS is

Fact =

∫ R+x

0

ρfLdr +

∫ R−x

0

ρfRdr

= −bL2xk0
v

[
2− (1 + u1)e

−u1 − (1 + u2)e
−u2

]
+

bL3k0
v

[(
1 + u1 +

u2
1

2

)
e−u1 −

(
1 + u2 +

u2
2

2

)
e−u2

]
.

(S50)

For mechanism 3, the total force is simply

Fpush =

∫ R+x

0

ρ1fpushdr −
∫ R−x

0

ρ1fpushdr =
fpushk0

v1

∫ R+x

R−x

e−r/Ldr =
fpushLk0

v1

(
e−u1 − e−u2

)
. (S51)

When the nocodazole is applied at xc on the left of the cell center, the cutting line now becomes the left
boundary of the MTs. The distance from the CS to the cut is xc+x. By replacing u2 with u3 = (xc+x)/L
in Eqs. S49–S51, one obtains the total forces on the CS with the application of nocodazole. For L → ∞,
Eqs. S49–S51 become

Fdyn = −2aRk0
v

x, (S52)

Fact = −2bk0
3v

x3, (S53)

Fpush =
2fpushk0

v1
x. (S54)
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The suitable parameter values for a 1D cell are also shown in Figure 6C. The most noticeable difference
is that the maximum value of bL2/fpush is higher than that of circular or elliptical cells. The reason is
that the centering effect from the myosin contraction flow is much weaker in 1D. In a limiting case of
L → ∞, we find dFact/dx ∝ x2 ≈ 0 near x = 0. Therefore, to keep a certain balance between Fact and
Fpush, a higher maximum value of b is allowed.

Figure 6C allows us to choose suitable values of aL/fpush and bL2/fpush, and then evaluate the
motion of the CS under various conditions. For a cell with R = 20 µm, we choose aL/fpush = 3 and
bL2/fpush = 8. The total forces on the CS under various conditions are shown in Figure 3, B and F.
Once the total force on the CS is found, the CS’s motion can be obtained as

dx

dt
= µFtot, (S55)

where µ is the mobility of the CS. To estimate the value of µ, we consider the following reasoning.
We assume that the CS’s mobility is determined by the interactions between the MT aster and the actin
networks. In mechanism 2, the dragging force on a MT segment of length s can be written as fs = ζsvflow,
where ζs is the friction constant of the segment. We take vflow = αd and ζs = βs, where α and β are
constants. Comparing to Eq. S20, we have αβ = b. For the CS, we estimate its friction coefficient to be
ζ = βltot, where ltot is the total length of all the MTs in the aster:

ltot ≈ 2π

∫ R

0

ρ r2dr =
k0L

2

v

[
1−

(
1 +

R

L

)
e−R/L

]
. (S56)

The CS’s mobility can be written as µ = 1/ζ = α/bltot. We take α = 0.1 min−1, which corresponds to a
flow rate of 2 µm/min at a distance of 20 µm from the cell center [3]. For b = 8fpush/L

2, k0 = 100 s−1

and L = 60 µm, we find ltot ≈ 3000 µm and µfpush ≈ 0.02 µm/min. We estimate fpush ∼ 0.6 pN (see
main text), then we have µ ∼ 0.03 µm/(pN·min).

Stochastic simulations

To check our analytical results, we have also performed stochastic simulations in a 2D space. In the
simulations, we assume that new MTs are created at the CS at rate k0 with zero initial lengths and random
growth directions, and that each growing MT elongates at speed v1 until it switches to the shortening
state. We treat the switching events as a Poisson process, in which the occurrence of the switching within
time τ follows a Poisson interval distribution P1(τ) = k1e

−k1τ . The growth duration τ that is associated
with each MT is obtained using a random number generator with exponential distribution. Each MT then
switches to the shortening state after this particular time. At the shortening state, each MT shortens at
velocity v2 until its length reaches zero. Similar to the calculation of the growth duration, the shortening
duration τ that is associated with each MT is obtained from the distribution P2(τ) = k2e

−k2τ . At the
end of the shortening state, if the length of the MT remains positive, the MT switches to the growing
state again. In addition to these switching events, the cell periphery and the application of nocodazole
prevent further elongation of MTs. In the simulations, this effect is treated by immediately switching the
MTs into the shortening state when the MTs reach these regions.

The simulation time step is chosen to be smaller than 1/10 of the inverse of the growth/shortening
rate, such that on average each growth/shortening state lasts for at least 10 time steps. At each time
step, the force on each MT is calculated from our analytical equations (see Eqs. S10 and S15). The
total force on the CS is obtained by summing up forces from all the MTs. The motion of the CS is then
determined by Eq. S33 in a vector form in 2D.

Our stochastic simulations agree well with the analytical results. In the stochastic simulations, we
also find that in a dynein-inhibited elliptical cell, the CS tends to move away from the cell center along
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the short-axis of the cell, which agrees with the experimental observations [2]. This can be explained
as follows. The motion of the CS in this experiment is determined only by the force balance between
the centering force Fact and the de-centering force Fpush. The magnitude of Fact is very sensitive to the
size of the cell, because the speed of the myosin contraction flow is assumed to be proportional to the
distance from the cell center. Therefore, in an elliptical cell, Fact is weaker along the short-axis than
along the long-axis. On the other hand, Fpush is less affected by the geometry of the cell, because most
of the growing ends of the MTs are distributed near the CS (see Eq. S6). Thus, the magnitude of Fpush

is roughly independent of the CS’s moving direction. The combined effect is that the CS is more likely
to move away from the cell center along the short-axis of the cell.

Dynein pulling from the boundary

The experimental observations [2] indicate that dyneins stabilize the centering of the CS. In our model, we
treat the force from the dyneins on a MT to be proportional to the length of the MTs. This assumption
requires dyneins to be evenly distributed in the cortex. There is another possible dynein-dependent
mechanism that can give similar results [4]: pulling from sparsely distributed dyneins at the cell periphery.

If the number of dyneins on the cell periphery is much lower than the number of MTs being in
touch with the cell periphery, the pulling force is limited by the availability of dyneins and is therefore
independent of the density of MTs. Assuming that Ndyn dynein molecules are evenly distributed along
the cell periphery, the linear density of the dyneins is ρdyn = Ndyn/2πR. If each dynein exerts a constant
pulling force f1 on a MT (see Figure S4A, the x-component of the force is fx = f1 cos θ. It is easy to find

cos θ = (R cosφ− x)/rm, where rm =
√
R2 + x2 − 2Rx cosφ. Because of symmetry, the total force from

the dyneins on the CS is along the x-direction:

F bnd
dyn = 2

∫ π

0

ρdynfxR dφ =
Ndynf1

π

∫ π

0

R cosφ− x

rm
dφ. (S57)

We used Eq. S57 to find the regions of parameter values (Figure S4B) that satisfy all experimental
constraints. We found that these constraints can be satisfied only for 0 < xc < R/4. This figure indicates
that the region of suitable parameters is very sensitive to the value of xc, so this mechanism would not
be very robust.

Figures S4C and S4D show the F -x relations for boundary dynein and cortex dynein in nocodazole-
affected normal cells, respectively. We focus on the differences near x = 0, since the CS was initially
close to the cell center in the experiment. We can see that as xc decreases (nocodazole-affected region
increases), force from the cortex dyneins at x = 0 increases evenly, while the force from boundary dyneins
increases rapidly at high xc, but more slowly at low xc. This trend can be seen more clearly in Figure S4E,
where the normalized dynein forces at x = 0 are shown as functions of xc. At high xc (less cut), force
from the boundary dynein is significantly higher than that from the cortex dynein, so the CS is more
likely to move in the positive x-direction, which is against the experimental observation. At low xc (more
cut), force from the boundary dynein is comparable to that from the cortex dynein, therefore the other
two mechanisms are able to counteract this force and pull the CS in the negative x-direction, which
agrees with the experiment. Our conclusion is that due to geometric reasons (line versus area), the force
from the boundary dyneins is greater than that from the cortex dyneins, especially at high xc values.
This would make the CS more likely to move away from the nocodazole source, which disagrees with the
observations. Therefore, the boundary dynein pulling mechanism requires far more stringent constraints
on the model parameters, which makes it less likely.
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Kinesin pushing along the MT lengths

The forces on the CS from kinesins have a similar form as those from dyneins, albeit with an opposite
sign and a different prefactor c indicating different kinesin density and strength. The kinesin force on a
MT of length r can be written as fkin = −cr. Since dynein motors produce the centering forces on the
centrosome, kinesin motors produce the de-centering forces. We replace the MT pushing mechanism with
this kinesin-pushing mechanism, and scale the dynein and myosin forces with cL. The parameter space
satisfying all experimental constraints is shown in Figure S5A. We choose aL = 1.2cL and bL2 = 3cL
(star in Figure S5A) and plotted the F -x relations for the net forces on the CS without (Figure S5B)
and with (Figure S5C) nocodazole. These plots show that the kinesin pushing mechanism can have the
similar de-centering effect to the MT-pushing action.

Calculations and results for the square and fan-shaped cells

We introduced the anisotropic and isotropic components of the centripetal actin flow field as follows. The
isotropic component is given by the formula

v⃗iso = −αr⃗, (S58)

while the anisotropic one is defined by

v⃗aniso =

0 if y ≥ 0,

α′
(
y2

r2

)
r⃗ if y < 0,

(S59)

where α and α′ are constants. In the case of the square cell we use just the isotropic flow. For the
fan-shaped cell, the net flow is given by (see Figure 7A)

v⃗ = v⃗iso + v⃗aniso =

−αr⃗ if y ≥ 0,

−α

[
1− g

(
y2

r2

)]
r⃗ if y < 0,

(S60)

where g = α′/α < 1 is the reduction factor of the net field at the rear. In the simulations, we choose
g = 0.5.

The total drag force on a MT is the sum of the forces from the flow. Considering a MT with one
end at r⃗1 = (x1, y1) and the other at r⃗2 = (x2, y2) (see Figure S6), its length is l = |r⃗2 − r⃗1| and
direction is n̂ = (nx, ny) = (r⃗2 − r⃗1)/l. The coordinates of any point on the MT can be expressed as
r⃗ = (x, y) = r⃗1 + sn̂, where s is the distance between the point and r⃗1. The drag force on the MT from
field v⃗iso is

f⃗iso = β

∫ l

0

v⃗isods = −b

(
lr⃗1 +

l2

2
n̂

)
, (S61)

where β = b/α, as defined previously, is the friction constant per MT length. If the MT is completely
in the y ≥ 0 region, the drag force from field v⃗aniso is 0. If it is completely in the y < 0 region, the drag
force from field v⃗aniso is

f⃗aniso = β

∫ l

0

v⃗anisods = b′
∫ l

0

(
y2

r2

)
r⃗ds, (S62)

where b′ = α′β = gb and y = y1 + sny. The x- and y-components of f⃗aniso can be found as

faniso,x =
b′

2
{BC2nx(1− 4n2

y) + 2AC2ny(4n
2
x − 1) + lny[lnxny + 2n2

xC + 2(n3
yx1 + n3

xy1)]}, (S63)

faniso,y =
b′

2
[−2AC2nx(1− 4n2

y) +BC2ny(4n
2
x − 1) + ln2

y(lny + 2y1 + 4nxC)], (S64)
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where A, B and C are given by

A = tan−1

[
nxy1 − nyx1

l + nxx1 + nyy1

]
, (S65)

B = ln[l2 + 2l(nxx1 + nyy1) + x2
1 + y21 ], (S66)

C = nxy1 − nyx1. (S67)

If the MT is partly in the y ≥ 0 region and partly in the y < 0 region, the drag force from field v⃗aniso
acts only on the part that is in the y < 0 region. Then, the total force on the MT is

f⃗ = f⃗iso + f⃗aniso. (S68)

If the flow center is not at the origin but at (xflow, yflow), the drag force can be obtained by simply
replacing (x1, y1) with (x1 − xflow, y1 − yflow) in the above equations.

Based on the above force calculations, we performed stochastic simulations in the fan-shaped cell.
The main results are described in the main text. Interesting additional results include: (i) when dynein
is inhibited, the CS shifts to the sharp corner; (ii) when either myosin is inhibited or nocodazole is applied
locally, the CS’s shift from the centroid of the cell is not dramatic – the CS remains closer to the centroid
than to any of the cell edges.
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Table and Figures

Table S1. Definition of symbols and parameter values (known values are from Ref. [2]).

Symbol Definition Value
v1 MT’s growing velocity 7.5 µm/min
v2 MT’s shortening velocity 16 µm/min
k1 Switching rate from growing to shortening state 2 min−1

k2 Switching rate from shortening to growing state 4 min−1

R Cell radius 20 µm
L length scale for MT dynamic instability 60 µm
k0 MT’s nucleation rate 100 min−1

ρ1 Plus-end density of growing MTs varies
ρ2 Plus-end density of shortening MTs varies
ρ Plus-end density of all MTs varies
x Distance between centrosome and cell center varies
a Dynein’s pulling force per unit length unknown
b Actomyosin’s drag force per unit area unknown

fpush Average pushing force per growing MT unknown
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Growing MT

Shrinking MT

v1

v2

k1k2
r

Figure S1. Schematic of the dynamics of MTs (green lines). In the growing state, MTs grow with
speed v1 and can switch to the shortening state with rate k1. In the shortening state, MTs shorten with
speed v2 and can switch to the growing state with rate k2. Blue circles represent the centrosome.
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Figure S2. Schematic of a cell with nocodazole applied to the left. Blue dot: centrosome.
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Figure S3. (A-C) Normalized forces on the CS from dynein (A), myosin (B) and pushing (C)
mechanisms in the nocodazole-treated cell. The normalization of the forces is the same as those in
Figure 3A. The dotted lines, for comparison, correspond to the control cell. The dashed lines
correspond to the cell with the nocodazole-affected wedge extending half-way to the center. The solid
lines correspond to the nocodazole-affected wedge extending all the way to the cell center.
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Figure S4. Alternative model with dynein molecules sparsely distributed on the cell periphery instead
of across the cortex. (A) Schematic of the force calculation. Each dynein molecule (yellow circles)
exerts a pulling force f1 on the CS (blue circle) through MTs (green line). The net force from all the
dyneins on the CS is Fdyn. The nocodazole affected region is on the left side of the red dashed line at
the distance xc from the cell center. (B) The rectangular parameter regions satisfying all experimental
constraints for various values of xc. Red: xc = 0.1R. Yellow: xc = 0.15R. Green: xc = 0.2R. Blue:
xc = 0.25R. Regions for lower values of xc are not completely shown since they are covered by others.
(C and D) x-dependence of the net dynein force on the CS, with dyneins located (C) on the cell
boundary and (D) across the cortex. Black solid line: xc = 0. Red dashed line: xc = 0.25R. Green
dotted line: xc = 0.5R. Blue dot-dashed line: xc = 0.75R. Purple dot-dot-dashed line: xc = R. (E)
xc-dependence of the net dynein forces at x = 0. Solid circles: dyneins on cell boundary. Open circles:
across the cortex. Forces are normalized by their maximum values at xc = 0.
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Figure S5. Results of the model with dynein and myosin mechanisms as above and alternative kinesin
mechanism. (A) Region of suitable parameter values (yellow). The position of the chosen parameters
aL = 1.2cL and bL2 = 3cL is shown with the star. (B) x-dependence of the force on the CS. Solid black
line: control cell. Dashed red line: dynein-inhibited cell. Dotted green line: myosin-inhibited cell. Blue
dot-dashed line: cell with both dynein and myosin inhibited. (C) F -x relation for the
nocodazole-affected cell (the nocodazole-affected wedge extends half-way to the center). Black solid
line: control cell. Red dashed line: myosin-inhibited cell.
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Figure S6. Schematic of force calculation in a fan-shaped cell.
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Figure S7. If the MT growth is biased to the distal cell edge when the CS shifts away from the center,
then both MT pushing on the cell periphery and the actin centripetal flow mechanism destabilize the
centering.


