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Intracellular transport via the microtubule motors kinesin and
dynein plays an important role in maintaining cell structure and
function. Often, multiple kinesin or dynein motors move the same
cargo. Their collective function depends critically on the single
motors’ detachment kinetics under load, which we experimentally
measure here. This experimental constraint—combined with other
experimentally determined parameters—is then incorporated into
theoretical stochastic and mean-field models. Comparison of mod-
eling results and in vitro data shows good agreement for the
stochastic, but not mean-field, model. Many cargos in vivo move
bidirectionally, frequently reversing course. Because both kinesin
and dynein are present on the cargos, one popular hypothesis ex-
plaining the frequent reversals is that the opposite-polarity motors
engage in unregulated stochastic tugs-of-war. Then, the cargos’
motion can be explained entirely by the outcome of these oppo-
site-motor competitions. Here, we use fully calibrated stochastic
and mean-field models to test the tug-of-war hypothesis. Neither
model agrees well with our in vivo data, suggesting that, in addi-
tion to inevitable tugs-of-war between opposite motors, there is
an additional level of regulation not included in the models.

Bidirectional motion of subcellular cargos such as mRNA par-
ticles, virus particles, endosomes, and lipid droplets is quite
common (1), driven by plus-end kinesin and minus-end dynein.
Bidirectional motion emerges when frequent switches occur be-
tween travel directions, and travel direction reflects which motor
(s) dominates. Cells can regulate the switching frequency to con-
trol “net” transport, but the physical mechanism(s) underlying
this control remains open. Two mechanisms have been proposed.
The first suggests that plus-end and minus-end motors always
engage in stochastic unregulated tugs-of-war, and overall cargo
motion is explained by the outcomes of these mechanical tugs-
of-war. This model was proposed theoretically to explain lipid-
droplet motion (2) but has been adopted to explain endosome
motion (3, 4). An alternative model suggests that in addition to
competition between opposite-polarity motors, there is a “switch”
mechanism or mechanisms that achieve further coordination
between the motors. Such regulation may be dynamic (5), static
(6), or a combination of the two. The crucial question is this: Can
tug-of-war models, which exclusively consider cargos with fixed
distributions of motors moving along microtubules unaffected
by regulatory pathways, explain the characteristics of motility
invivo? Alternatively, are there significant motility characteristics
not captured by tug-of-war models, pointing to a richer transport
subsystem with important regulatory contributions?

There are two theoretical approaches to modeling collective
motor transport. The mean-field approach (Fig. 14) assumes all
engaged motors share load equally (7). The stochastic model
(Fig. 1B) simulates individual motors going through their me-
chanochemical cycle (8), where each motor’s movement is deter-
mined by the load the cargo applies to that motor. The external
load on the cargo and instantaneous positions of each motor
define the cargo’s position. Thus, different motors in the group
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move with different rates and experience different instantaneous
forces; the cargo mechanically couples the motors. Each unidir-
ectional model is the basis for a corresponding bidirectional
tug-of-war model (Fig. 1 C and D).

Here, we consider both classes of models and compare theo-
retical predictions with experimentally observed motility. We start
with models maximally constrained by experimental observations
of single-motor behavior and then relax these constraints to in-
vestigate both quantitative and qualitative differences between
model predictions and actual data. We note that motor detach-
ment kinetics under high load affect motors’ ensemble function
(9), but complete data was not available. We thus measured sin-
gle-motor detachment kinetics in the superstall regime and used
this to constrain the models. The stochastic unidirectional model
quantitatively captured multiple-motor function as measured
experimentally in vitro, but the mean-field model did not. In vivo,
neither model explains bidirectional lipid-droplet motion.

Results

Experimental Measurement of Kinesin and Dynein Detachment
Kinetics. Kinesin’s superforce off rate was reported as 2/s (10),
and limited measurements showed that dynein’s off rate slightly
above stall was about 10/s (9). Here, we measured the off rates
more systematically, using an optical trap-based method. We ra-
pidly increased the force on a moving bead (S 7ext) and measured
the time to detachment (Fig. 24, kinesin; Fig. 2B, dynein). From
such events, we determined the detachment time distributions
for specific superforce values, shown, e.g., for kinesin and dynein
at approximately twice the stall force (Fig. 2 C and D) (see also
SI Text). The detachment times for each superforce value are sum-
marized for kinesin (Fig. 2E) and dynein (Fig. 2F). In contrast to a
possible constant off rate (10), kinesin had an off rate increasing
with force. At low loads, dynein is sensitive to load, detaching ea-
sily (9), but at higher load it exhibited a catch-bond type behavior,
with off rate decreasing with load. The superforce experiments
also allowed us to determine the probability of backward stepping
for the motors. Kinesin (11) and dynein (12) can back-step under
load, but this was relatively rare in both directions (<20%), and
the typical backward travel distance was short, so we believe it is
functionally irrelevant with regard to the behavior of kinesin or
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Fig. 1. Models of unidirectional (A and B) and bidirectional (C and D) trans-
port schematic illustrations of a cargo (green) moved by N = 3 kinesin (red) or
dynein (dark blue) motors, as modeled by the mean-field theory (A) or the
stochastic model (B). Overall forces opposing motion (f o, freg) are distribu-
ted equally in the mean-field model (f4 per dynein, f, per kinesin), but not
in the stochastic model (f,-f. for dynein, f,—f, for kinesin). (C and D) A
tug-of-war between kinesin and dynein, as modeled in the mean-field
theory (C) where motors share load equally, or the stochastic model (D) where
they need not.

dynein ensembles opposing each other. It was not included in our
theoretical model.

Development of a Stochastic Unidirectional Theoretical Model for
Kinesin and Dynein. Our older stochastic models for kinesin (8),
and dynein (9, 13) were experimentally verified under some
conditions (8, 9, 13). Here, we incorporate the measured detach-
ment data into these models. The force-dissociation rate below
stall is given by Q(F) = exp(F/Fd), as determined previously
to match experimental data (8, 9). In the superstall regime, it
was obtained by using simple fitting functions to approximate
the measured detachment rates in Fig. 2 E and F. For kinesin,
it was Q(F) = 1.07 4+ 0.186 x F, and for dynein was Q(F) =1/
(0.254 % [1 — exp(—F/1.97)). The stall forces for kinesin and dy-
nein were 4.7 £ 0.04 pN and 1.36 + 0.02 pN, respectively, deter-
mined from in vitro stall-force distributions (see the Definitions of
the Stall Force (F) and Detachment Force (F ;) and Their Measure-
ments section in SI Text). F,; was the average detachment force
obtained from experimental data (4.01 £0.07 pN for kinesin
and 0.87 £ 0.04 pN for dynein). The dissociation rate near stall
may be smoother than assumed in our model, but the model
correctly captures the decline of the dissociation rate above stall.
Associated corrections, if any, are not expected to alter the con-
clusions of this paper. The complete force-dissociation relations
in our model are summarized in Fig. 2 G and H (see also SI Text).
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Fig. 2. Experimental characterization of in vitro single-molecule kinesin and

dynein detachment kinetics. (A and B): Examples of experimental data traces.
Beads with a single active kinesin (A) or dynein (B) (binding fraction < 0.35)
were brought in contact with the microtubule at saturating ATP. Motion
started (at approximately —0.2 s in these plots), causing displacement of
the bead from the optical-trap center (traces start increasing). At a prede-
fined displacement (here occurring at t = 0), the laser power was automati-
cally increased, applying enough force to stall the moving bead (plateau
immediately after t = 0). After a delay, the motor detached from the micro-
tubule (black arrow), allowing the bead to rapidly return to the trap center.
By controlling optical-trap power, we controlled the applied force. The de-
tachment time was the interval between when trap power increased and
when the bead detached; a histogram of such times is shown for one specific
force for kinesin (C) and dynein (D). The characteristic detachment times were
determined by fitting with decaying exponentials (red curves in C and D); the
results of such fits are summarized in E and F for kinesin and dynein, respec-
tively. G and H show the complete in vitro force-dissociation rate curves
including detachment probabilities below stall (see S/ Text).

Comparison of Stochastic and Mean-Field Theories with in Vitro
Experiments for Unidirectional Motion: Detachment Times for Two-
Motor Superstall Experiments. We experimentally tested the newly
constrained theories using detachment times under superstall for
two-motor events. With moderate motor density, beads are
mostly moved by single motors, but are occasionally moved by
two (motor density is chosen to make three-motor events rare).
If a bead in a parabolic potential produced by an optical trap
moved past a well-defined threshold force (slightly larger than
F, for a single motor), it was moved by two motors, and software
increased the laser power abruptly to put the two motors into the

PNAS | November 22,2011 | vol. 108 | no.47 | 18961

BIOPHYSICS AND
COMPUTATIONAL BIOLOGY


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107841108/-/DCSupplemental/pnas.1107841108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107841108/-/DCSupplemental/pnas.1107841108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107841108/-/DCSupplemental/pnas.1107841108_SI.pdf?targetid=STXT

Bane

/

\

=y

superstall regime. We then measured the detachment time distri-
bution, for either kinesin (Fig. 34) or dynein (Fig. 3B).

Constrained experimentally by measured single-molecule
properties, and setting the total number of motors N equal to 2
instead of 1, there is only a single “free” parameter for the mod-
els, the single-motor on rate. Others have measured this to be
approximately 5/s for kinesin (at saturating microtubule concen-
tration), so we used this value; for dynein, it was a fitting para-
meter, and 5/s yielded the best description of the data. From the
experimental distributions we calculated the mean detachment
time, and then compared this with the predicted mean detach-
ment times for the stochastic and mean-field theories (Fig. 3 4
and B). The stochastic theory’s predictions were consistent with
experiments, but the mean-field predictions were not (Fig. 3 C
and D), either when we assumed real experimental detachment
kinetics, or when we assumed nonexperimental exponential
detachment kinetics as has been done previously (7). Relative
to the mean-field model, motors in the stochastic model were less
sensitive to detachment under load (see SI Text).

The in Vivo Case: Model for a Bidirectional Tug-of-War. Given the sto-
chastic model’s in vitro success, we used it to develop a bidirec-
tional tug-of-war model. We used the in vitro-measured de-
tachment kinetics above stall, and other experimental constraints.
First, our previous in vivo measurements established that in the
absence of specific mutations, the forces powering plus-end and
minus-end lipid-droplet motion were approximately the same
(14), so any theoretical model must conform to this. Second,
although the mechanism is currently unknown, our in vivo data
suggests that the unitary (single-motor) stall force in each direc-
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Fig. 3. Comparison of experimental measurements and theoretical predic-
tions for detachment kinetics of two kinesin or dynein motors. Experiments
were done as in Fig. 2 A and B, but a higher concentration of motors was
used, so there was a small probability of having two simultaneously engaged
motors. These relatively rare events were detected by force measurements:
When a bead was moved further from the trap center than possible for a
single motor (experimentally a threshold of 5.2 and 2.0 pN was used, for ki-
nesin or dynein, respectively), the laser power was automatically increased to
provide a superstall force. The distribution of detachment times (experimen-
tal bars, red hash marks; A and B) was compared to theory (parameter values
in SI Text). The single-molecule properties (including single-motor detach-
ment kinetics as measured in Fig. 2) constrained the model parameters. Using
these constraints, the stochastic model (ST) with experimental detachment
kinetics (EXPT) correctly predicted both the shape of the detachment distri-
bution (A and B) and the correct average detachment time for both kinesin
and dynein (C and D, respectively). The mean-field model with the same
detachment kinetics did not, and the mean-field model with exponential
detachment kinetics (EXPN) was even worse.
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tion is approximately 2.5 pN, which is different from its value in
vitro, so we decreased the kinesin stall force, and increased the
dynein stall force (resulting in scaled force-dissociation curves
shown in SI Text). Third, our recent quantitative measurements
of droplet motion in phase II of Drosophila development (14)
indicated that typically a few, but up to a maximum of four to
five, motors could be instantaneously active. We assumed that in
vivo on rates are the same as in vitro (i.e., approximately 5/s
for both kinesin, and dynein) and that the motors had the same
stiffness in vivo as in vitro. To constrain processivity, we purified
kinesin from Drosophila embryos, and measured its single-mole-
cule processivity to be 1.3 pm (S Text). We have not yet deter-
mined Drosophila dynein’s processivity, but assume it to be the
same as for bovine dynein in the presence of dynactin (approxi-
mately 2.0 pm). With these constraints, we developed a stochastic
tug-of-war model, as indicated in Fig. 1D. We estimate that the
effective cytosolic viscosity affecting droplet motion is approxi-
mately 10x that of water, so that value was used in the simulations.

Thus, we implemented a bidirectional stochastic model with
N =5 motors. After incorporating the above experimental con-
straints, there were no free parameters; the model yielded simu-
lated traces such as those shown in Fig. 4B. Using our parsing
program (15), these traces were processed in the same way as
for real motion, and a variety of metrics were compared to experi-
mental values (see next).

Comparing in Vivo Experimental Data to the Stochastic Bidirectional
Model. Our past studies developed multiple metrics to charac-
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Fig. 4. Examples of experimental (A) and simulated (B-F) trajectories of
single bidirectionally moving lipid droplets, projected along the axis of
microtubules. For experimental data (A) and stochastically simulated motion
(B-D), the properties of motion (run lengths and velocities, pause durations,
etc.) were determined by parsing the motion identically using a Bayesian
approach (15). The blue line corresponds to run and pause segments as
parsed. For the mean-field model variants (E and F), the segments were
determined directly.
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terize motion. Individual lipid droplets are tracked using image
processing combined with differential interference contrast
microscopy, allowing us to determine the position of individual
droplets with few-nanometer resolution at 30 frames per second.
The trajectories of motion are projected along the microtubule
axis, and then a Bayesian statistical approach (see ref. 15) is used
to parse the motion into plus-end runs, minus-end runs, and
pauses, taking into account the uncertainties in tracking and
thermal noise effects (Fig. 44). From this analysis, we extract
velocities, lengths of plus-end and minus-end runs, and the fre-
quency and duration of pauses.

With the stochastic model maximally constrained by experi-
ments as discussed above, the predicted motion was quite differ-
ent from what was observed experimentally: Runs (periods of
uninterrupted motion) were very short (Fig. 4B), and approxi-
mately unidirectional, in contrast to the longer back-and-forth
motion experimentally observed (Fig. 44). Further, the predicted
motion spent much more time paused than what was observed
experimentally [Table 1, third (ST, 5 K~ 5 D, NoTuning) row].

Because the completely constrained model failed, we consid-
ered variants by relaxing specific constraints. We started by adjust-
ing the motors’ on rates, which could be somewhat different from
their in vitro values, because of the presence of proteins such as
dynactin and the microtubule-associated proteins present in vivo
but absent in vitro. The “untuned” case initially investigated ex-
hibited excessive interruption from opposite motors, so we de-
creased on rates to decrease the frequency of potential tugs-of-
war, until we matched the mean values of the wild-type run-length
and velocity data reasonably well with the simulations [Table 1,
fourth (ST, 5 K~5 D, EXPT, WT) row]. However, the rate-
adjusted model did not capture certain features. Experimentally
[Table 1, first (Experiment, WT, N) row], in the wild type, droplets
spend about 24% of the time paused, but in the stochastic simula-
tion with N = 5 motors of each type, pauses were still too fre-
quent, and motion was predicted to be paused 48% of the time.
Because our experiments are quite reproducible, and the experi-
mental variation is only a few percent, this theoretical prediction
was considered to deviate significantly from reality. Furthermore,
the stalls were too long, predicted to be about 0.68 £ 0.02 s vs. the
experimentally observed pauses with a duration of 0.5 + 0.003 s.

In addition to the incorrect pausing frequency and duration,
the distribution of run lengths was not completely correct. Ex-

perimentally, the distribution of bidirectional runs is frequently
described by the sum of two decaying exponentials (16), and
our Bayesian analysis (15) previously determined that this is a
real feature of the underlying motion and not an artifact due
to thermal noise or other uncertainties. Indeed, our wild-type
experimental data is described by such a distribution (SI Text),
as were the simulated runs in the minus-end direction, but this
was not true for the plus-end simulated data, which can be
fit by a single decaying exponential (SI Text).

Given these discrepancies, we considered other possibilities.
Stall durations were too long, so we decreased the total motor
number, N, present on the droplets. This would be consistent with
the observation that the pauses were too frequent [compare “time
between pauses,” in first (Experiment, WT, N) row to fourth (ST,
5 K ~5 D, EXPT, WT) row in Table 1), because we hypothesized
that pauses occurred when there is a tug-of-war between opposite
motors, and the larger the N, the larger the probability of such
a tug-of-war occurring. Stall forces measured experimentally
suggest that a maximum of N = 5 motors are engaged, but many
times only a few motors were instantaneously active; perhaps
most droplets are moved by fewer than five motors. We therefore
considered a stochastic model with N = 2.5 motors, that is a
mixed population where 50% of the droplets had N = 3 motors,
and the others had N = 2 motors (a choice lower than N = 2.5
would be clearly inconsistent with experiments). We adjusted on
rates and velocities to match wild-type observations. Results were
somewhat better [Table 1, sixth (ST, 2.5 K~ 2.5 D, EXPT, WT)
row]: The percentage of time paused was 26%, consistent with
the experimental value of 24%, and time between pauses was
reasonable. Further, approximately 65% of the reversals in travel
direction were rapid (with no obvious pause between), consistent
with the experimental observation of 65%. The mean run lengths
and velocities were also acceptable.

The stochastic model with N = 2.5 was thus considerably
better than the N =5 case, though there was still a discrepancy
with the actual experimental data, in that the pause duration was
now too short (Table 1). Interestingly, the distribution of plus-end
run lengths was now appropriately modeled by a double-decaying
exponential distribution (SI Text), though the contribution of the
fast-decay component was small; the minus-end runs were still
reasonably modeled by such a distribution (SI Text).

Table 1. Table of run length and pause behavior

% duration Time between

% of quick reversal,

Positive run length, Negative run length,

Parameter characterized paused pauses, s out of run segments Pause duration, s nm (skip pause) nm (skip pause)
Experiment, WT, N 24% 3.57 65% 0.524 + 0.003 558 + 21 431 = 21
Experiment, KHC, N/2 21% 3.89 63% 0.518 + 0.004 695 x 23 588 + 24
ST, 5 K~ 5 D, NoTuning 85% 1.78 16% 1.298 + 0.024 365+ 14 104 + 3
ST, 5 K~5 D, EXPT, WT 48% 2.03 45% 0.679 = 0.020 550 + 15 395 = 15
ST, 2.5 K~ 2.5 D, EXPT, Mut 29% 2.59 59% 0.478 + 0.013 639 + 27 486 + 30
ST, 2.5 K~ 2.5 D, EXPT, WT 26% 3.03 65% 0.445 + 0.005 581 = 19 473 + 23
ST, 1.5 K~ 1.5 D, EXPT, Mut 13% 4.74 77% 0.383 + 0.009 585 + 27 570 + 40
ST, 5 K~5 D, EXPN, WT 3% 15.68 95% 0.213 = 0.006 584 + 14 436 = 15
ST, 2.5 K~ 2.5 D, EXPN, Mut 2% 17.17 94% 0.185 + 0.019 652 + 25 494 + 29
ST, 3 K~ 12 D, EXPT, WT 38% 2.38 54% 0.502 + 0.004 540 x 15 417 + 16
ST, 1.5 K~ 6 D, EXPT, Mut 23% 3.01 65% 0.360 = 0.005 599 + 22 554 + 35
MF, 5 K~ 5 D, EXPT, WT 48% 1.6 5% 0.770 + 0.009 530 + 10 420 + 19
MF, 2.5 K~ 2.5 D, EXPT, Mut 56% 1.84 4% 1.043 = 0.021 597 = 21 478 + 29
MF, 5 K~5 D, EXPN, WT 10% 4.06 15% 0.403 + 0.002 583 +5 452 £ 5
MF, 2.5 K~ 2.5 D, EXPN, Mut 14% 2.84 19% 0.390 + 0.004 367 £5 402 + 6

The tug-of-war process involves competition between opposite motors and results in pauses in motion if this competition is not immediately resolved. The
pause kinetics thus provides quantitation of tugs-of-war, so we focus on them both experimentally and theoretically. In several cases, two adjacent rows are
related to each other. For instance, the experimental characterization of motion in the wild type is in the first row, and the experimental characterization of
motion in the mutant background where there is half as much kinesin is in the second row. Similarly, the fourth row shows the prediction from the stochastic
(ST) model for five kinesins (5 K) vs. five dyneins (5 D), with experimental detachment kinetics (EXPT), tuned to match the experimental data by adjusting the
motors’ on rates. Then, the fifth row is the prediction of the same model, with the same parameters and no tuning, with only the number of motors present
changed to be N = 2.5 motors. The only unpaired row is row 3, which represents the stochastic model’s prediction when completely constrained to use in vitro
parameters. EXPN, exponential detachment kinetics.
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Critical Test of the Stochastic Theory: Prediction of Motion in a
Decreased Kinesin Heavy Chain (KHC) Background. Many aspects of
this N = 2.5 version of the stochastic model [Table 1, sixth (ST,
2.5 K~2.5 D, EXPT, WT) row] were acceptable, so we tested it
further. A good way to test a theory is to fix unknown parameters
by fitting experimental data under one in vivo condition, and then
use the theory (with fixed parameters) to predict what should
occur in a second in vivo condition where any changes in para-
meters are known/measured a priori [see, e.g., the prediction of
lysosomal run lengths in neurons, as affected by decreasing
dynein processivity (13)]. Here, we took such an approach. Using
a kinesin-null mutation KHC-27 (which makes no protein), we
created embryos from KHC-27/+ mothers, that is, mothers that
had one null and one wild-type copy of the gene (14). In this back-
ground, lipid droplets are moved by 50% less kinesin (as deter-
mined by biochemistry, measuring droplet-bound kinesin, and
by force measurements, assessing the number of active motors)
(14). Thus, by construction, instead of N = 2.5, in this new back-
ground N = 1.25; for simplicity (and also to match experimental
constraints, which clearly indicate significant contribution from a
second motor in the mutant case), we modeled this theoretically
using an equal combination of N = 1 and N = 2 droplets. Force
measurements indicate that the number of active dynein motors
was also decreased by 50% (14); such feedback is common, and
has been observed in a number of systems (17), although its
mechanistic underpinnings are unknown. We looked at the same
developmental phase as for the wild-type embryos, so we used
the same values of all the adjustable parameters that we fixed by
fitting the wild-type motion. With these constraints, there are no
adjustable parameters.

In this test, the stochastic N = 1.5 theory [Table 1, seventh (ST,
1.5 K~ 1.5 D, EXPT, Mut) row] failed to correctly reproduce
the experimental observations in a number of qualitative as well
as quantitative ways. First, the stochastic model simulations
predicted that the percentage of time paused decreased (from
26% to 13%). This was theoretically expected (given the pause
frequency differences between the N =5 and N = 2.5 simula-
tions, and see discussion in SI 7ext), but not what was observed
experimentally, where total time paused was approximately con-
stant within experimental error [24% vs 21%; Table 1, first
(Experiment, WT, N) row vs. second (Experiment, KHC, N/2)
row]. Similarly, theoretically, the time between pauses increased
dramatically [Table 1, seventh (ST, 1.5 K~ 1.5 D, EXPT, Mut)
row vs. sixth (ST, 2.5 K~ 2.5 D, EXPT, WT) row], and pause
duration decreased, because of fewer engaged motors, but this was
not observed experimentally. Finally, experimentally, the decrease
in N resulted in longer run lengths in both directions, but in theory,
the effect was not observed in the plus-end direction, and the pre-
dicted increase in minus-end run length (21%) was smaller than
observed (36%). Thus, although some of the model predictions
were qualitatively in agreement with the experimental data (e.g.,
the predicted increase in velocities in each direction), some were
not (pause frequencies and durations, and plus-end run lengths
increasing), and even those that had a correct trend had magni-
tudes that were not consistent with experiments. We conclude that
although the stochastic tug-of-war model with actual in vitro de-
tachment kinetics and in vitro processivities recovers some of the
features observed in the wild-type motion, it is not an accurate
model of the experimental process.

Additional Variants. Overall, we considered relaxing a number of
other constraints, including adjusting single-motor processivity, try-
ing exponential instead of experimentally measured detachment
kinetics, and allowing uneven numbers of motors (see SI 7ext for
details). We also investigated mean-field tug-of-war models in ad-
dition to the stochastic models (see SI 7éxt). None of these variants
correctly described the data (see SI Text and Table 1).
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Discussion

Experimental Measurements and Their Ramifications. Our recent
NudE/Lis1 studies (9) highlight the importance of single-motor
detachment kinetics for ensemble function under load; such ki-
netics are expected to be of particular importance in determining
outcomes of hypothetical tugs-of-war between groups of motors.
We systematically measured both kinesin and dynein detachment
kinetics in vitro, and found neither as expected. Dynein had
“catch-bond” detachment kinetics, with its detachment rate de-
creasing with increasing load. This could, in principle, contribute
to dynein being able to serve as an “anchor” to hold subcellular
organelles in place (18) under high load. We expect that these
characterizations of the motors’ detachment kinetics will be use-
ful for theoretical models describing how ensembles of motors
function together. We constrained two classes of models—sto-
chastic and mean-field—by these data and compared their pre-
dictions to ensemble motor behavior in vitro. The stochastic
model describes the in vitro data reasonably well, but the mean-
field theory model does not.

Tug-of-War Scenarios to Explain Bidirectional Motion. Many cargos
move bidirectionally, reversing travel direction every few seconds.
The key determinant in net, or average transport, is the duration
of runs (periods of travel between reversals) in each direction.
Because run length is determined by reversal frequency, it is
important to understand the reversal process. Tug-of-war models
are appealing because they suggest that the reversals reflect
unregulated (stochastic and mechanical) competitions between
opposite-polarity motors on the cargo (a group of plus-end kine-
sins and a group of minus-end dyneins), allowing us, in principle,
to use single-motor properties measured in vitro to predict and
understand emergent transport in vivo.

We evaluated such models critically, within the context of
lipid-droplet (LD) motion in Drosophila embryos, using a strategy
previously used studying multiple dynein motors in vivo, in cul-
tured neurons. We constrained the models’ “free” parameters as
much as possible via experimental data and then determined the
values of any unconstrained parameters by fitting the theory’s
predictions to one experimental set of in vivo (wild-type) data.
Once the theory’s parameters were fixed, it was used to predict
the outcome of a known change, with no further adjustment. In
the previous study, modeling essentially unidirectional transport
(13), the “known change” was a (in vitro measured) reduction in
single-motor processivity, caused by the dynein Loa mutation.
Here, the known change was the reduction in the total motor
number N on the cargo. In the dynein Loa study we achieved
quantitative agreement between theory and experiment, but here,
for bidirectional transport, we were unable to do so. Thus, we
conclude that although tugs-of-war likely exist some of the time,
using this mechanism alone one cannot explain bidirectional mo-
tion—there must be an additional mechanism (likely enzymatic)
that contributes to regulation of the motors.

One could wonder about whether we failed to find the right
choice of parameters, but specific qualitative discrepancies
between the theoretical predictions and experimental observa-
tions (discussed below) suggest to us that this is unlikely.

The Importance of Pauses. In a tug-of-war model, pauses occur
when the opposite motors “battle,” and as such are a crucial read-
out, sensitive to the tug-of-war process. The frequency of pauses
is determined by a combination of the number of motors present
on the cargos, and the on rates of those motors. The pause dura-
tions are determined both by the number of motors engaged in
the tug-of-war, the individual motors’ on rates, and the detach-
ment kinetics of the motors under load. One key feature of
tug-of-war models is that the more motors are present, the more
opportunities for battles one has, and thus the higher the fre-
quency of pauses. This was true for almost all variants of the tug-
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of-war models we examined, but not observed experimentally.
The only exception to this occurs when the motors detach easily
(some exponential-detachment models), so that the majority of
pauses are so short that they are undetected. In this case, pause
frequency may be less affected by the number of motors present,
but pause duration will be extremely short. A second qualitative
feature of pauses/tug-of-war models is that more motors fre-
quently lead to longer pauses; this can be seen experimentally
in vitro in the detachment studies (Fig. 2). However, this change
in pause duration is also not experimentally observed in the lipid-
droplet system when the number of motors is altered.

The Relationship Between Run Lengths and the Number of Motors
Present. For unregulated unidirectional motors, more motors
move further (6, 12). If detachment kinetics of the motors are
sufficiently fast above stall (e.g., in some variants of the exponen-
tial detachment models), this is also true for bidirectional models,
because, e.g., one dynein motor stochastically attaching to oppose
three kinesin motors is quickly overwhelmed and releases before
there is a significant chance for additional dynein motors to bind
and help it sustain the competition. However, for actual single-
motor detachment kinetics (measured in vitro), the motors’ off
rates under load are slow enough that when a single motor
stochastically attaches to oppose a group of opposite-polarity
motors moving the cargo, it is able to “hold on” for a time com-
parable (or longer than) the typical on time of its compatriots. In
this case, a stochastic attachment event from a single motor has
a high probability of turning into a full-out tug-of-war between
approximately evenly matched sets of opposite motors, and thus
can cause a reversal. Then, for otherwise fixed parameters, the
more motors present, the more tugs-of-war, and the shorter
the travel of the cargo between pauses or reversals.

Qualitative Mismatch Between Theory and Experiments. Overall,
as discussed above, in tug-of-war scenarios, for fixed parameter
values, more motors lead to more frequent tugs-of-war, as long as
a single motor can successfully (at least temporarily) pause a
group of opposite-polarity motors. This occurs when the motors’
detachment kinetics are not exponential above stall. Hence, in
the models, more motors imply more pauses. Further, in the mod-
els, and confirmed in vitro, more motors tend to lead to longer
pauses. We tested both these general properties in vivo, by com-
paring motion in wild-type embryos to motion in embryos with
reduced kinesin on the LDs [reduced LD kinesin reduces num-
ber of engaged motors (14)]. Our analysis of motion in these
two backgrounds shows that reduced motors did not lead to a
decrease in pause frequency, nor a change in pause duration.
Thus, in addition to quantitatively not matching the experimental
data, the general trend predicted by the tug-of-war models is not
observed in our experiments.

In any theoretical investigation, one makes simplifications. If a
theory fails, one might question the simplifications, or whether
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the wrong parameter set was chosen, rather than concluding
the theory is fundamentally wrong. Here, we ignore potential
effects of NudE/Lisl to decrease dynein’s detachment under load
(9). Whether this specific effect on dynein’s motor output contri-
butes to bidirectional transport is unclear, but if so, the effect
would be to make the models even worse: Tugs-of-war would
be more severe, and pauses would be even longer. In the most
likely variants of the models, motion is already predicted to spend
too much time paused.

The mean-field models have other difficulties. The stochastic
models are better in vitro; the justification for ignoring this, and
believing that the mean-field models will suddenly do better in
vivo, is unclear. Further, our experiments clearly constrain the
number of motors per wild-type droplet to between N = 2.5
and N =5, and over this range pausing predictions are dramati-
cally wrong: With real detachment kinetics, cargos spend twice as
much time paused as they ought to, and for exponential detach-
ment kinetics, they spend only half as much time paused.

Conclusion

As studied, neither the stochastic nor mean-field tug-of-war mod-
els describe our observations, and the difference in qualitative
trends (see above) support the notion that slightly different
choices of parameter values is unlikely to be better. Conceivably,
there could be unknown/unconsidered factors that exist in vivo
that very significantly modulate the properties of the motors
(and the outcomes of tugs-of-war) in ways that we have not con-
sidered. Thus, although we favor the hypothesis that a significant
portion of lipid-droplet directional switching does not result from
unregulated tugs-of-war, this hypothesis should be revisited as
new motor regulators are discovered.

In addition to providing strong indication that the tug-of-war
picture is insufficient to capture all aspects of transport dynamics
in vivo, our work provides a convenient template for future eva-
luations of the correspondence between tug-of-war models and
experimental observations. Further studies across different motor
species and in different in vivo environments should allow in-
creasingly better understanding of the limits of tug-of-war
models.

Methods

Quantitation of lipid-droplet motion was as described in ref. 14, and optical-
trapping assays, data recording, particle tracking, and stalling-force analysis
were performed as described in refs. 6 and 12. Theoretical modeling was
done as described in ref. 8, with modifications described above. Further
methods details are in the S/ Text.
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SI Text

Details of Detachment Studies. To measure the off rates more
systematically, we used an optical trap—based method. Kinesin
or dynein were attached to polystyrene beads, but in limited
amounts, so that approximately one of every three beads bound
and moved, making sure that we were in the single-motor regime.
We then applied the following automated approach. First, the
bead was brought into contact with the microtubule, and its
position in the optical trap was detected using the quadrant
photodiode. For the subset of beads with active motors, when
the motor attached to, and started walking along, the microtu-
bule, it moved the bead toward the edge of the optical trap. When
the bead reached a predefined location (typically 100 nm for
kinesin, and 70 nm for dynein, from the trap center), our auto-
mated software increased the laser power, so that the motor was
suddenly under a “superforce” situation; the magnitude of the
superforce was determined by how much power was used. We
then measured the time to detachment (i.e., the time between
when the laser power was increased and the moment when the
motor detached from the microtubule, allowing the bead to fall
back rapidly toward the trap center). Examples of such events
are shown in Fig. 24 for kinesin and Fig. 2B for dynein. By fitting
a single decaying exponential function to such distributions, we
extracted a characteristic off rate for each superforce value, sum-
marized for different applied superforces in Fig. 2E for kinesin
and Fig. 2F for dynein.

Performance of Unidirectional Stochastic vs. Mean-Field Model
Under Load. We previously suggested that because of uneven load
sharing (1), the stochastic model had improved ensemble perfor-
mance under load. However, at that time the two models had
different superforce assumptions. Now, more appropriately, we
compare models with identical parameter values and superforce
behavior. Consistent with the previous suggestion, we find that
binding events even below stall last longer for the stochastic mod-
el (Fig. S14) than for the mean-field model, with the difference
increasing as one goes to higher loads. Runs are a bit more con-
fusing: The mean-field model predicts slightly longer runs than
for the stochastic model (Fig. S1 B and C), but this actually re-
flects the fact that the stochastic model allows brief backward
“blips” of motion of the cargo because of detachment of the
lead motor, whereas the mean-field model does not consider the
possibility that motors could be ahead or behind each other.
When corrected for the blips, the stochastic run lengths are long-
er, consistent with the longer binding times (Fig. S1 B and C,
arrow marked) Note that the superstall behavior we implement,
based on the experimental measurements, dramatically improves
the ensemble behavior when compared with the use of exponen-
tial detachment kinetics above stall (as originally assumed by
Klumpp et al. (2) (compare MF, EXPN in Fig S94 to ME, EXPT
in Fig S9C). Specifically, the exponential detachment assumption
makes the ensemble very sensitive to applied load (Fig. S1 B
and C showing predicted run lengths), and thus the group of
motors detaches quickly. Obviously, a mean-field prediction with
this kind of detachment is even further from actual experiments
(compare MF, EXPN in Fig S94 to MFE, EXPT in Fig S9C). In
conclusion, constrained by single-molecule data, the stochastic
model appears to describe ensemble behavior in vitro reasonably
well, whereas neither version of the mean-field theory is as
accurate.

Kunwar et al. www.pnas.org/cgi/doi/10.1073/pnas.1107841108

Variants of the Stochastic Model: Lower Processivity. Because relax-
ing the on rate and motor number constraint failed, we consid-
ered relaxing further constraints. Although some studies suggest
that single-motor kinesin processivity is the same in vivo as in
vitro (3), we considered the possibility that here it was lower. We
therefore looked at a stochastic model with N = 5 motors, where
both kinesin and dynein processivities were chosen to be approxi-
mately 500 nm. As for the long-processivity N = 5 case above,
droplets spent too much time paused (39% vs. the experimental
24%), so this model was rejected. We thus again considered
the possibility of the wild type being described by N = 2.5 motors.
As for the long-processivity case above, by tuning on rates appro-
priately, this was again close enough that it reasonably matched
the wild-type experimental data. We thus examined predictions
for the kinesin heavy chain 27/+ embryos, modeled using the
same parameters as the wild type, but now choosing N = 1.5.
Similar to the longer processivities N = 1.5 case, this was closer
to experimental data, but still unacceptable. In particular, there
was still the qualitative problem that the percentage of time
stalled decreased (from 23% to 15%), whereas experimentally
they did not, and although the plus-end and minus-end run
lengths did increase, the magnitude of the effect (between 4%
and 12%) was much smaller than observed experimentally (be-
tween 25% and 36%). Thus, we conclude that neither the N =5
nor N = 2.5 stochastic tug-of-war models with in vitro superstall
behavior are acceptable, regardless of the choice of on rates or
single-motor processivities.

Variants of the Stochastic Model: Exponential Detachment Kinetics.
In principle, there could also be factors in vivo that alter single-
motor detachment kinetics. Others have suggested that tug-of-
war models correctly reproduce the data, when exponential
detachment kinetics are assumed (4), so we considered them with
the N = 5 stochastic model (Fig. 4D). Because the motors detach
much more readily under load, exponential detachment kinetics
makes pauses less likely, and when we tuned the motors’ on rates
to reproduce the observed run lengths, we observe very few
pauses [3% of time paused vs. the experimentally observed 24%;
Table 1, eighth (ST, 5 K~ 5 D, EXPN, WT) row], and the time
between pauses was extremely long. The predicted mean pause
duration (0.21 £ 0.006 s) was much shorter than that observed
experimentally (0.52 +£0.003 s). Again, the increase in run
lengths with decreasing number of motors present (Table 1) is
significantly smaller than that observed experimentally.

Variants of the Stochastic Model: Uneven Numbers of Motors. Our
experimental measurements indicate that overall stall forces in
each direction are approximately balanced, and suggest that
the single-motor stall force is approximately 2.5 pN. In principle,
one could get such a force of approximately 2.5 pN from approxi-
mately two dynein motors, though it is unclear how such a force
would come about from kinesin functioning with in vitro proper-
ties. Nonetheless, because others have modeled bidirectional
transport assuming uneven numbers of motors (5), we considered
the case of the wild-type lipid droplet with three kinesin motors
functioning with in vitro (approximately 5 pN) stall forces, op-
posed by 12 dynein motors with in vitro (1.25 pN) stall forces
(chosen to balance forces, because this is observed experimen-
tally). We assumed experimental in vitro detachment kinetics and
single-molecule processivities, and tuned the on rates of the
motors, in order to match mean experimental run lengths for
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the wild type. When we matched run lengths, droplets spent too
much time paused (38%), though the durations were acceptable
[Table 1, tenth (ST, 3 K~ 12 D, EXPT, WT) and eleventh (ST,
1.5 K~6 D, EXPT, Mut) rows]. Further, quantitatively, the
N /2 case did not correctly predict the experimentally observed
changes in run lengths, and was qualitatively incorrect in predict-
ing decreased frequency of pausing, and shorter pause durations,
both of which were not observed experimentally.

Comparing in Vivo Experimental Data to the Mean-Field Bidirectional
Model. Because of its more accurate predictions of ensemble func-
tion in vitro, the stochastic model had been our preferred model
to investigate the tug-of-war hypothesis in vivo. Because it failed,
regardless of which experimental constraints were relaxed, and
because in vivo there could, in principle, be a physical linkage
resulting in motors approximately equally sharing load, we also
evaluated the mean-field tug-of-war model previously reported
to explain lipid-droplet motion (4). The original model assumed
exponential detachment kinetics for the motors, so we started
by investigating this. That is, we relaxed both the constraint on
detachment kinetics and on rates, and tuned on rates by fitting
the wild-type data, and then looked at how well the model pre-
dicted motion in the kinesin-mutant background. The wild-type
fit was acceptable as far as run lengths [Table 1, fourteenth (ME,
5 K~ 5 D, EXPN, WT) row], but pause durations were too short,
and the percentage of time paused was too little. Further, the
prediction for the mutant background was quite far off [Table 1,
fifteenth (ME 2.5 K~ 2.5 D, EXPN, Mut) row] both quantita-
tively and qualitatively: Run lengths were predicted to go down
in the mutant, whereas in fact experimentally they increased, and
in fact the model predicts a loss in net plus-end transport, though
one does not occur experimentally. Time between pauses was
predicted to go down, which was also incorrect. We therefore
incorporated the experimental superstall behavior into the mean-
field theory [Table 1, twelfth (ME 5 K~ 5 D, EXPT, WT) and
thirteenth (ME 2.5 K~ 2.5 D, EXPT, Mut) rows]. In this case,
again, the wild-type fit is acceptable, but here, pauses are too
frequent, last too long, and overall the predicted amount of time
paused is much more than what is observed experimentally
(Table 1).

Other Factors Relevant for Models of Bidirectional Transport. We
considered both stochastic and mean-field tug-of-war models,
and we concluded that they are inadequate. This supports the
general hypothesis that some significant portion of lipid-droplet
directional switching does not simply result from unregulated
tugs-of-war, but instead reflects additional factors that actively
engage or disengage motors, regulating reversals, and perhaps
pauses. In principle, a number of molecular interactions are
implicated in this control. First, past studies on lipid-droplet mo-
tion suggest dynactin may contribute to avoiding tugs-of-war (6),
a finding supported in other systems (7). Second, more generally,
we now have examples of proteins (NudE and Miro) capable of
inactivating either dynein or kinesin, respectively (8, 9). Whether
these proteins play broad roles in bidirectional transport is un-
known. Finally, in some specific bidirectional transport situations,
there are clearly feedback mechanisms to regulate motor activity.
We observed that a decrease in the number of active kinesin
motors moving lipid droplets was correlated with a decrease in
the number of active dynein motors (10). A similar observation
was made for bidirectional peroxisome motion, where lack of
one set of active motors resulted in inactivation of motion in
the opposite direction (11). Intriguingly, for the peroxisomes, this
inactivation could be rescued by a second type of opposite-polar-
ity motor, not usually present, suggesting the inactivation resulted
from lack of force production rather than a specific molecular
interaction. In vitro, neither kinesin nor dynein requires exter-
nally applied load to be active (12, 13), suggesting that this
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requirement in vivo reflects the presence of additional as-yet-
unknown regulatory factors, perhaps including dynactin. It will
be particularly exciting to understand the molecular details of
this unexplored regulatory mechanism.

S| Materials and Methods

Protein Purification. Cytoplasmic dynein was purified from wild-
type rat brain as described in ref. 8. Full-length Drosophila kinesin
was purified from the wild-type Drosophila embryos as in ref. 14.

Bidirectional Study of Lipid Droplets. Studies of lipid droplets in WT
and mutant embryos are as described in ref. 10. Experimental and
theoretical trajectories of motion were parsed into segments as in
ref. 15. Table parameters were calculated from this analysis.

In Vitro Optical Bead Assay. Optical-trapping motility assays, data
recording, particle tracking, and stalling-force analysis were
performed as previously described in refs. 12 and 16.

For dynein and kinesin assays, a 489-nm-diameter carboxylated
polystyrene bead (PolySciences), with nonspecifically attached
motors, was positioned in a flow chamber above a stabilized mi-
crotubule for 30 s. The single-motor range was attained when the
percentage of beads exhibiting binding events (the motor binds
to the microtubule and is processive) is smaller than or equal
to 30%. For the run-length measurements of single Drosophila
kinesin, an individual run was defined as the travel between a
bead binding to, and then detaching from, a microtubule (with
optical trap turned off). The distribution of kinesin run lengths
was fitted to single exponential decay to obtain its mean run
length and uncertainty.

Definitions of the Stall Force (F,) and Detachment Force (F4) and Their
Measurements. We define the stall force (F;) as the mean value of
the load force at which the motor stops moving. For dynein or
kinesin stall-force measurements, a trap stiffness of 2.08 or
5.6 pN per 100 nm, respectively, was used. An event was classified
as a stall if the bead coated with single-motor moved away from
trap center and held its plateau position for >500 ms for kinesin,
or 100 ms for dynein, before detachment. In order to be counted
as a stall, the mean velocity of the bead during the stall was
required to be within 10 nm/s of 0 nm/s. The distribution of
stall forces was fitted with a Gaussian function, and the fitted
Gaussian peak position (and uncertainty) represents the mean
stall force (and SEM).

We define the detachment force (F;) as the characteristic
value of the force detaching a single moving motor from the
microtubule. The detachment force F; was defined earlier (2)
as Fy = kgT /5, where kgT is thermal energy and §; is extension
of the potential barrier between the attached and detached state
of the motor. Equivalently, if the rate of detachment as a function
of the load force F is proportional to exponential factor
Exp(F/F,;), as assumed in recent models (17, 18) based on
Kramer’s theory, then the inverse of the coefficient 1/F, in this
factor is the detachment force.

In our case, to experimentally determine the detachment force
F,, we first obtained the distribution of such forces below the
stall, by recording the forces at which the motors detached
abruptly while moving. These forces were obtained by multiplying
the trap stiffness by the distance between the detachment loca-
tion and the trap center. For dynein and kinesin, a trap stiffness of
2.08 and 5.6 pN per 100 nm, respectively, were used. The distri-
bution of the detachment force is not symmetric, and hence the
mean value was obtained using the statistical average of the data.

Superforce Experiments. For the detachment kinetics experiments,

we applied the following automated approach: First, the bead was
brought into contact with the microtubule, and its position in the
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optical trap was detected using the quadrant photodiode. For the
subset of beads with active motors, when the motor attached to,
and started walking along, the microtubule, it moved the bead
toward the edge of the optical trap. When the bead reached a
predefined location (typically 100 nm for kinesin, and 70 nm
for dynein, from the trap center), our automated software in-
creased the laser power, so that the motor was suddenly under
a superforce situation; the magnitude of the superforce was de-
termined by how much power was used. We then measured the
time to detachment (i.e., the time between when the laser power
was increased and the moment when the motor detached from
the microtubule, allowing the bead to fall back rapidly toward
the trap center). The distribution of detachment times was fitted
to a single exponential decay. The obtained decay constant and
uncertainly presented in each plot represent the average
detachment time and SEM, respectively. Statistical significance
was determined using the Student’s ¢ test.

Theoretical Simulations. Generalized mean-field models of multiple
motor transport. Generalized mean-field model of unidirectional
transport. Force-velocity relations of single motors can be well
approximated by the following mathematical expression:

V(F) = v(1 = (F/F)"), [S1]

where v is the unloaded velocity of the single motor, F is the load
force, and F| is the stall force. If the motor moves in steps of
length d, then the motor can be described effectively with the
load-dependent rate of stepping:

kstep(F) = (V/d)[l - (F/Fs)w] [S2]

The force-dissociation relation of a single motor can be written
as

e(F) = eQ(F), [S3]

where ¢ is the load-free dissociation rate, and function Q(F)
determines the load dependence of the detachment-rate. Recent
models have assumed function Q(F) as exponential function
based on Kramer’s theory (i.e., Q(F) = Exp(F/F,), where F,
is the detachment force).

Recent work (17) extended the mean-field model proposed
in ref. 18 onto a variety of single-motor force-velocity relations.
Importantly, in both refs. 17 and 18, the force-dissociation rate
for motors was assumed to be an exponentially increasing func-
tion of load, so that ¢;(F) = ieExp(F /iF ;), where i is the number
of engaged motors. In our generalized model, a cargo particle is
transported cooperatively by N molecular motors; out of N, vari-
able number i(f) motors are engaged at any given moment. The
engaged motors share the applied load F equally, so the force F /i
is applied to each of i engaged motors. Thus, the cargo has the
velocity:

_ [ v(1 = (F/iF,)") for F <iF;
vilf) = { 0 for F > iF, " [S4]

Here, exponent w determines the linearity/nonlinearity of the
force-velocity curve. For w = 1, the force-velocity curve is linear
and reduces to the case investigated in ref. 18; for w > 1, force-
velocity curves are superlinear; and for w < 1, force-velocity
curves are sublinear.

The number of engaged motors increases with the rate

m=(N-in [S5]

and decreases with the rate
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&(F) = ieQ(F /i), [S6]

where 7 is the attachment rate of a single motor, ¢ is the detach-
ment rate of unloaded single motor, and N is the total motor
number on the cargo. The new feature of the mode is the force
dependence of the dissociation rate of a single motor is given
by function @, which can, in principle, have many different
functional forms.

We use the stationary solutions of the master equation
obtained in ref. 18 expressing the probability for the system to
have i engaged motors in terms of the motor parameters,

N-1 i 7 -1 i-1 7
Py= |1+ — and P; =P , [S7]
0 g‘ g €iy1 ' ’ ,-11 E+i
to find the average velocity of the cargo,
N
P;
V= 21 VTP [S8]
i

and average run length of the cargo,

N-1 i

X=1+ i

—_— [S9]
i

For w =1 and Q(F) = Exp(F/F,) for any F, the model is iden-
tical to the one proposed in ref. 18. For kinesin motors, we use
w = 2, and for dynein motors we use w = 1/2 in the force-velocity
relations, unless otherwise stated.

The average detachment time of cargo can be obtained from a
simple argument that in the stationary state effective unbinding
rate of cargo from any one of the attached state is equal to
the effective binding rate of an unattached cargo. The resulting
expression is given by (18):

1 N—liﬂ_
Tiv=—|[1 n.
(B

[S10]
1

Generalized mean-field model of bidirectional transport. To study
the bidirectional transport, Muller et. al. (4), developed a model
of bidirectional cargo transport in which N, plus-directed and
N_ minus-directed motors attach and detach from a microtubule
stochastically with given on and off rates. The bidirectional model
is an extension of the model of unidirectional transport (18). The
force-velocity relation for the motors was assumed to be a linear
function of the applied load, and force-dissociation rate of the
motors was assumed to be an exponentially increasing function
of the load. When bound to the microtubule, the motor walks
forward with the velocity vy, which decreases linearly with the
external force and reaches zero at the stall force F. Under super-
stall external forces (F > F), the motor walks backward slowly
with backward velocity vy

vp(l = F/F)

for F < F;
Vi) = {v3<1 ~F/F,)

for F > F;° [S11]
The rates for unbinding of one of the bound motors and for bind-
ing of an additional motor on the cargo are found based on the
assumption that (i) the presence of opposing motors induces
a load force, and (ii) each plus motor feels the load F, (and
generates the force —F ), and each minus motor feels the load
—F_ (and generates the force F_); this means that the force
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balance on a cargo pulled by n, plus and #»_ minus motors is given
by

n,F,=-n_F_=F,. [S12]
The sign of the force was chosen positive if a load was on the
plus-directed motors (i.e., if the force pointed into the minus
direction).

The effective unbinding rate for the plus-directed motor is

n.e, explF./(n,Fy,). [S13]
and the effective rate for the binding of one plus-directed motor
is

Ny—-n)m,. [S14]
Above and hereafter, the index “+” labels the plus-directed
motors properties and index “—” labels the minus-directed
motors properties.

The cargo force F. is determined by the condition that the
plus-directed motors, which experience the force F./n,, and the
minus-directed motors, which experience the force —F, /n_, move
with the same velocity, which is the cargo velocity v,:

ve(nyon ) =v (F./n,)=—-v_(-F./n_). [S15]
Here, the sign of the velocity is taken positive in the plus direction
and negative in the minus direction.

In the case of stronger plus-directed motors, n Fy, >n_F_,
the cargo force and velocity are given by the expressions

F.(n.n_)=Mm_F, +(1-)n_F,_ [S16]

and

ve(nyn_) = [”+Fs+ _n—Fs—]/[(n+Fs+/VF+) + (n_Fs_/vp_)].
[S17]

Here, 4 is given by

A=1/[14+ (n, Fyvg_/n_F,_vep,). [S18]

In this case, the cargo moves to the plus direction with velocity
v. > 0. In the opposite case of the stronger minus-directed motors
(ie, n Fy, <n_F;_), in Egs. S16 and S17, the plus-directed
motor forward velocity vg, has to be replaced by its backward
velocity vg,, and the minus motor backward velocity vg_ has to
be replaced by its forward velocity vi_. The cargo moves into the
minus direction: v, < 0.

In order to obtain run lengths and run velocities, individual
cargo trajectories were generated using the Gillespie algorithm
for the motor attachment/detachment kinetics, and cargo was
allowed to move with the velocity v, in the intervals between
the attachment/detachment events.

In order to generalize this model, we use the generalized form
of force-velocity relations in Eq. S11 (i.e., Eq. S1). We use a
superlinear-force-velocity relation (w = 2) for kinesin motors
and a sublinear-force-velocity relation (w = 1/2) for dynein
motors, unless otherwise stated. In addition, we also use detach-
ment kinetics given by function Q instead of a purely exponential
detachment kinetics. Function Q is obtained from the experimen-
tally constrained detachment kinetics of kinesin and dynein
motors as above. The analysis of the simulated trajectories was
performed using the criteria given for runs and pauses in ref. 4.

Stochastic model of multiple motor transport. Stochastic model of
unidirectional transport. To model the multiple motor transport,

Kunwar et al. www.pnas.org/cgi/doi/10.1073/pnas.1107841108

we place N motors on the cargo, so that motor heads are attached
to a single spot by elastic linkages. According to recent measure-
ments (19), the linkage between the motor domain and the bead
is highly nonlinear: when stretched beyond the rest length, it be-
haves as a relatively stiff linear spring characterized by the spring
constant ~0.32 pN/nm (1). However, its effective compressional
rigidity is very low, ~0.05 pN/nm, i.e. the link buckles almost
without resistance when compressed (19). Thus, we model each
linkage as a linear spring exerting restoring force when stretched
beyond the rest length and not generating any force if the
distance between the bead attachment point and the motor heads
is less than the rest length. The model is one dimensional, so all
distances are measured along the motors’ track. In the simula-
tions, we use the appropriate values of linkage stiffness and rest
lengths for kinesin and dynein. Each dissociated motor binds
to the track with the constant on rate, and each engaged motor
detaches with the rate given by Eq. S3 dependent on the instan-
taneous force applied to this motor head by the elastic link. Each
motor makes a forward step with the force-dependent rate Eq. S2.
Probabilities of binding, unbinding and stepping events are com-
puted by multiplying the respective rate by the time step. The
instantaneous position of the cargo is calculated at each step
from the requirement that the total force on the cargo from the
load and all elastic links is equal to zero in absence of thermal
noise and viscosity of the medium.

Simulation of the single motor. We use the Monte Carlo proce-
dure (1, and 20) to update the state (position and engaged or
detached state) in increments of the time step Az. The time step
At is chosen to be sufficiently smaller than the fastest character-
istic time (in our case, detachment of the last attached motor
under a high load). We used At = 107 s that conforms with this
requirement.

The computational procedure is as follows.

1. Initial condition: At t =0, x = 0, where x is the position of
the motor on the track.

2. Updating procedure: Repeat the following steps up to £y, in
increments of At.

i If £ >t go to step 3.

ii. Detachment: Calculate Py = (F) = At. First try detachment
with the probability P.. If the detachment occurs, go to step
3, else go to step (iii).

iii. Stepping: If the motor remains attached after step (ii),
stepping occurs with probability Py, = kg, (F) * At. After
stepping, x is changed to x + d, where d = 8 nm.

3. Run length is the current value of x. Velocity is obtained by
dividing the current position x by the current time .

Simulation of the multiple motors. We put N motors on the cargo,
so that the motor heads are attached to the cargo via the linkage
of the rest length /. Each linkage exerts a restoring force when
stretched beyond their rest length. The linkages have no compres-
sional rigidity (i.e., they exert no force when compressed). Initi-
ally, we place the bead’s center of mass at the origin and allow
all motors to attach to any discrete binding site on the track with-
in distance / on either side of the bead. Once the motors are
attached, we calculate the initial position of the bead’s center
of mass so that the sum of all elastic forces applied to the bead
is equal to zero; in what follows, the bead’s position is calculated
at each step so that the sum of all elastic forces from the motor
links has to be equal to zero when no viscous load and thermal
noise are present.

For each time step, we visit each of the N motors and deter-
mine their tentative states (attached or detached) and positions.
During the updating procedure, at each computational step,
each motor’s state is updated once. If the motor is currently
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unattached, we allow it to attach with a probability P, = 7 * At,
determined by the on rate r, to any binding site on the track with-
in distance / on either side from the bead’s center of mass. If
the motor is currently attached, a load F; felt by the ith motor
is obtained by multiplying the extension of its link A/; by the link’s
stiffness k, and there are three possibilities: The motor can re-
main stationary, advance, or detach. Probabilities of these three
events are determined from the single-motor model based on
the current load on the motor: (i) P is calculated using Eq. S3
irrespective of the direction of the force applied to the motor; (i7)
Py, is calculated using Eq. S2 for backward loads F; < F; for
backward load greater than Fy, Py, = 0; a forward load does
not alter the motor cycle, so we substitute F; = 0 for forward
loads in Eq. S2. If the motor steps, its position x; is changed
to x; +d. When we determine the tentative states and positions
of all N motors, we update the states and positions of all motors
simultaneously. Then, the number of engaged motors n and their
locations are recorded and the bead position is updated.

Updating cargo position in the presence of viscous load and thermal
noise. In the presence of the viscous load, the position of the bead
is determined not by the balancing of the elastic motor forces to
zero, but by the viscous force and thermal force that the bead
experiences. In the absence of any force, the bead would execute
a Brownian motion due to the thermal noise. Over a time interval
of At, the displacement of the bead due to these thermal kicks
can be drawn from a normal distribution with a mean-square dis-
placement 2DAt, where D is the diffusion constant of the bead.
We neglected the thermal motion of the linkages. If the bead is
subjected to the net force f, this causes it to move with velocity
varte =f/7- The net motion of the bead over the time interval At
is given by the sum of deterministic drift xq.f = Vg * Af and
diffusion 2D At due to thermal noise. The net force f on the cargo
isgivenbyf = YN f;, where f; is the elastic restoring force exerted
by the ith linkage on the cargo, which magnitude depends on the
extension of the ith linkage.

Stochastic model of bidirectional transport. The stochastic model
of the unidirectional transport can be easily extended for the
bidirectional transport by just adding motors that move in the op-
posite direction (which have different single-motor parameters,
such as on rate, off rate, velocity, etc.). The length of the linkage
for kinesin motors was taken as 110 nm, and the length of the
linkage for dynein motors was taken as 50 nm. Calculation of
the cargo position is done similar to the unidirectional case. In
the absence of viscous drag and thermal noise, position of the
cargo is calculated using the simple force balance. In the presence
of thermal noise and viscous drag, the cargo position is calculated
in the manner similar to the unidirectional case. However, in this
case net force f is the sum of the forces exerted by both sets of
motors moving in opposite directions.

Parameter Values Used. Fig. 3: (4) Parameter values used for
the simulations of stochastic model were v =1 pm/s, k=
0.32 pN/nm, F;,=4pN, F,=5pN, #=5/s, e=1/s with
Q(F) =Exp(F/F;) for F<F; and Q(F)=1.07+0.186 * F
for F > F,. Simulations were started with the initial number of
motors set to steady-state values. (C) Parameters used for
mean-field models (ME, EXPT & MF, EXPN) were N =2,
F;=4pN, F;=5pN, n=5/s, e=1/s. Q(F)=Exp(F/F,;)
for all F was used for exponential detachment kinetics (B) Para-
meter values used for the simulations of stochastic model were
v=0.8 pm/s, k=0.32 pN/nm, F; =0.87 pN, F; =1.25pN,
m=5/s,& =1/swith Q(F) = Exp(F/F,) for F < F; and Q(F) =
1/(0.254 = (1 — Exp(—F/1.96646))) for F >F,. Simulations
were started with the initial number of motors set to steady-state
values.(D) Parameters used for mean-field models (MF, EXPT &
ME EXPN) were N =2, F; = 0.87 pN, F, = 1.25 pN, 7 =5/s,
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e=1/s. Q(F) = Exp(F/F,) for all F was used for exponential
detachment kinetics.

Table 1: (ST, 5 K~ 5 D, NoTuning) Data was obtained from
100 simulated tracks with maximum duration of 30 s for five
kinesin versus five dynein motors on a cargo with all motors
initially attached to the microtubule. The radius of cargo was
taken as 0.25 pm. Parameter values for kinesin were v = 1 pm/s,
k=032 pN/nm, F;=2.00pN, F;=250pN, #=15/s, ¢=
0.71/s with Q(F) = Exp(F/F,) for F < F; and Q(F) = 1.535+
0.186 « F for F > F,. Parameter values for dynein were
v=0.8 pm/s, k=0.32 pN/nm, F;=1.74 pN, F; =2.50 pN,
r=5/s, e=04/s with Q(F)=Exp(F/F;) for F <F,; and
Q(F) =1/(0.254 « (1 — Exp(—F/1.96646))) for F > F,.

(ST, 5 K~5 D, EXPT, WT) Data was obtained from 100 simu-
lated tracks with maximum duration of 30 s for five kinesin versus
five dynein motors on a cargo with all motors initially attached
to the microtubule. (ST, 2.5 K ~ 2.5 D, EXPT, Mut) Data was
obtained from a mixture of, 50 simulated tracks for three kinesin
versus three dynein motors and 50 simulated tracks for two kine-
sin versus two dynein motors, on a cargo with all motors initially
attached to the microtubule where each track had a maximum
duration of 30 s.

The radius of cargo was taken as 0.25 pm. Parameter values
for kinesin were v = 0.57 pm/s, k = 0.32 pN/nm, F,; = 2.00 pN,
F, =250 pN, 7 =0.95/s, ¢ =0.35/s with Q(F)=Exp(F/F,)
for F < Fy and Q(F) = 1.535 4 0.186 « F for F > F,. Parameter
values for dynein were v =0.85pum/s, k = 0.32 pN/nm,
F; =174 pN, F; =2.50 pN, = = 1.19/s, ¢ = 0.37 /s with Q(F) =
Exp(F/F;) for F <F; and Q(F)=1/(0.254«(1—-Exp
(—F/1.96646))) for F > F,.

(ST, 2.5 K~2.5 D, EXPT, WT) Data was obtained from a
mixture of 50 simulated tracks for three kinesin versus three
dynein motors and 50 simulated tracks for two kinesin versus
two dynein motors, on a cargo with all motors initially attached
to the microtubule where each track had a maximum duration of
30s. (ST, 1.5 K~ 1.5 D, EXPT, Mut) Data was obtained from a
mixture of 50 simulated tracks for two kinesin versus two dynein
motors and 50 simulated tracks for one kinesin versus one dynein
motor, on a cargo with all motors initially attached to the micro-
tubule where each track had a maximum duration of 30 s.

The radius of cargo was taken as 0.25 pm. Parameter values
for kinesin were v = 0.52 pm/s, k = 0.32 pN/nm, F, = 2.00 pN,
F, =250 pN, = =1.10/s, ¢ =0.35/s with Q(F) = Exp(F/F,;)
for F < Fy and Q(F) = 1.535 4 0.186 = F for F > F,. Parameter
values for dynein were v =0.80 um/s, k = 0.32 pN/nm,
F;=1.74 pN, F; = 2.50 pN, # = 1.29/s, ¢ = 0.37 /s with Q(F) =
Exp(F/F;) for F<F; and Q(F)=1/(0.254x(1-Exp
(=F/1.96646))) for F > F.

(ST, 5 K~ 5 D, EXPN, WT) Data was obtained from 100 si-
mulated tracks with maximum duration of 30 s for five kinesin
versus five dynein motors on a cargo with all motors initially
attached to the microtubule. (ST, 2.5 K ~2.5 D, EXPN, Mut)
Data was obtained from a mixture of 50 simulated tracks for three
kinesin versus three dynein motors and 50 simulated tracks for
two kinesin versus two dynein motors, on a cargo with all motors
initially attached to the microtubule where each track had a
maximum duration of 30 s.

The radius of cargo was taken as 0.25 pm. Parameter values for
kinesin were v = 0.50 pm/s, k= 0.32 pN/nm, F, = 0.60 pN,
F;, =250pN, = =09/s, ¢ =0.26/s with Q(F)=Exp(F/F,;)
for all F. Parameter values for dynein were v = 0.75 pm/s,
k=0.32pN/nm, F;=055pN, F;=250pN, z=09/s,
e =0.27/s with Q(F) = Exp(F/F,) for all F

(ST, 3 K~ 12 D, EXPT, WT) Data was obtained from 100
simulated tracks with maximum duration of 30 s for 3 kinesin
versus 12 dynein motors on a cargo with all motors initially at-
tached to the microtubule. (ST, 1.5 K~ 6 D, EXPT, Mut) Data
was obtained from a mixture of, 50 simulated tracks for two
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kinesin versus eight dynein motors and 50 simulated tracks for
one kinesin versus four dynein motor, on a cargo with all motors
initially attached to the microtubule where each track had a
maximum duration of 30 s. The radius of cargo was taken as
0.25 pm. Parameter values for kinesin were v = 0.57 pm/s,
k=032 pN/nm, F;=4.00pN, F;=5.00pN, z=1.25/s,
e = 0.35/swith Q(F) = Exp(F/F,) for F < Fyand Q(F) = 1.07+
0.186 xF for F >F;. Parameter values for dynein were
v =0.78 pm/s, k = 0.32 pN/nm, F, = 0.87 pN, F; = 1.25 pN,
7 =0.50/s, ¢ = 0.37/s with Q(F) = Exp(F/F,;) for F < F; and
Q(F) = 1/(0.254 % (1 — Exp(—F/1.96646))) for F > F;.

(ME 5 K~ 5 D, EXPT, WT) Data was obtained from 1,000
simulated tracks with total 1,000 attachment and detachment
events for N, = N_ =5 motors on a cargo with all motors
initially attached to the microtubule. (ME 2.5 K~2.5 D,
EXPT, Mut) Data was obtained from 1,000 simulated tracks
with total 1,000 attachment and detachment events. Tracks with
N, =N_=3and N, = N_ =2 were chosen with equal prob-
ability. All motors were initially attached to the microtubule.

Parameter values for kinesin were vp,. =0.52 um/s,
vg, = 0.001 um/s, F,, =2.00 pN, Fy, =2.50 pN, 7, = 0.28/s,
e, =0.5/s with Q(F) =Exp(F/F,) for F < F;, and Q(F) =
1.5354+0.186 « F for F > F,, . Parameter values for dynein
were vp_ =0.70 pm/s, vg_ =0.001 pm/s, F,_ = 1.74 pN,
F,_ =250pN, n_ =0.18/s, e_ = 0.5/s with Q(F) = Exp(F/F,)
for F<F, and Q(F)=1/(0.254 % (1 — Exp(—F/1.96646)))
for F > F,.

(ME 5 K~ 5 D, EXPN, WT) Data was obtained from 1,000
simulated tracks with total 1,000 attachment and detachment
events for N, = N_ = 5 motors on a cargo with all motors initi-
ally attached to the microtubule.(MF, 2.5 K~ 2.5 D, EXPN,
Mut) Data was obtained from 1,000 simulated tracks with total
1,000 attachment and detachment events. Tracks with N, =
N_=3 and N, = N_ =2 were chosen with equal probability.
All motors were initially attached to the microtubule. Linear
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e, =090/s with Q(F)=Exp(F/F;) for all F. Parameter
values for dynein were vp_ = 1.45 um/s, vg_ = 0.067 pm/s,
F,_ =191 pN, F,_=250pN, n_=1.95/s, e =0.96/s with
Q(F) = Exp(F/F,) for all F.

Fig. S1: In stochastic model, average temporal duration of
run was calculated from 10,000 configurations where each con-
figuration was started with the initial condition of all N motors
attached to microtubule. The common parameter values used in
stochastic and mean-field models were v = 1 pm/s, F; = 4 pN,
F,=5pN, z =5/s, e = 1/s with Q(F) = Exp(F/F,) for F < F;
and Q(F) = 2 for F > F,. Additional parameters for stochastic
model were At = 107> and k = 0.32 pN/nm. In stochastic and
mean-field models with exponential detachment kinetics, Q(F) =
Exp(F/F,;) was used for all F.

Fig. S4: (A, A1, B, and BI) Parameter values same as ST,
5 K~5 D, EXPT, WT in Table 1. (C, C1, D, and DI) Parameter
values same as ST, 2.5 K ~ 2.5 D, EXPT, Mutin Table 1. (E, E1, F,
and F1) Parameter values same as ST, 2.5 K ~ 2.5 D, EXPT, WT
in Table 1. (G, GI, H, and HI) Parameter values same as ST,
1.5 K~ 1.5 D, EXPT, Mut.

Fig. S8: (ST, 5 K ~ 5 D, EXPT) Parameter values same as ST,
5K ~5D, EXPT, WT in Table 1. (ST, 2.5 K~ 2.5 D, EXPT)
Parameter values same as ST, 2.5 K~2.5 D, EXPT, WT in
Table 1. (ST, 5 K~ 5 D, EXPN) Parameter values same as ST,
5 K~5D,EXPN, WT in Table 1. (ST, 3 K~ 12 D, EXPT) Para-
meter values same as ST, 3 K ~ 12 D, EXPT, WT in Table 1. (ME
5 K~5D, EXPT) Parameter values same as ME 5 K~ 5 D,
EXPT, WT in Table 1. (ME, 5 K ~ 5 D, EXPN) Parameter values
same as MF, 5 K~ 5 D, EXPN, WT in Table 1.

Fig. S9: (4 and C) Parameter values same as Fig. 3C. (B and D)
Parameter values same as Fig. 3D.
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Fig. S1. (A) Force run duration and force travel distance relationships for different unidirectional models. For run durations, for otherwise identical parameter
values (assuming exponential detachment-rate for F < F; and a constant detachment-rate, lower than detachment-rate at stall, for F > F;), the stochastic model
(ST) predicts slightly longer duration runs than the mean-field model, when there are two motors present (N = 2; red) or three motors present (N = 3; blue).
When two or three motors are present (B or C, respectively), the predictions of the models depend on the assumptions. In particular, performance is lower with
exponential detachment kinetics for both the stochastic (ST, EXPN) and mean-field (MF, EXPN) models, because of quick detachment under load, thus causing
smaller run lengths. Performance is better for real detachment kinetics (MF or ST); however, it appears that for high load, the MF model has improved per-
formance (red line above green line), in contradiction to the longer duration of the ST runs relative to the MF runs. This is explained by the back-travel present
in the stochastic model (due to preferential detachment of the forward motor, and subsequent backward motion of the cargo’s center of mass, discussed in
Kunwar et al. (1), but absent in the MF model. Eliminating this backward motion from the ST model (for comparison), the ST model shows longer travel than the
MF model (blue, marked with arrow).
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Fig.S2. Experimental characterization of single kinesin. The functional form used below stall of Q(F) = exp(F/F,) implies that the off rate increases with load,
which is somewhat different from the assumption in Kunwar et al. (1). To test the appropriateness of this assumption, we did the following. F4 was experi-
mentally measured (see Fig. S6 below). Further, full-length kinesin was used in the optical bead assay to determine kinesin’s approximate single-molecule
detachment rate as a function of load, and indeed, whether or not it increased with load below stall. (A) The experimentally measured probability to detach
in 0.1, for beads moved by single kinesins, characterized for low-load (0-1.8 pN) medium load (1.8-3.6 pN) and high load (within 0.1 pN of stall, including stall).
Once this histogram was experimentally determined, the approximate probability of detachment per second was then estimated by multiplying the experi-
mental probability by 10, and the corresponding expected duration of an event was then found by dividing this per second detachment probability into 1. The
resultant expected durations are shown in the lower curve (B), and are consistent with the theoretical detachment-rate curve used in the simulations, shown in
Fig. 2G. Kinesin purified from wild-type Drosophila embryos were used in the optical bead assay to study kinesin’s single-molecule run length. (C) The ex-
perimentally measured distribution of run lengths for single kinesin. By fitting the distribution with decaying single exponential function (red curve) the
average run length of single Drosophila kinesin is found to be 1.28 +0.12 pm.
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Fig. $S3. Run-length distributions of lipid droplets in WT Drosophila embryo. Negative and positive run-length distributions of lipid droplets in WT embryos;
the distributions were fit with the sum of two-decaying exponentials (red curve).
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Fig. S4. Simulated run-length distributions for lipid droplets using ST models. The above plots illustrate simulated negative and positive run-length distribu-
tions obtained by using stochastic model (ST) with experimental detachment kinetics with N = 5 motors (A, B, A1, and B7), N = 2.5 motors (E, F, E1, and F1) and
their corresponding mutants N = 2.5 motors (C, D, C7, and D7) and N = 1.5 motors (G, H, G1, and HT). Negative run-length distributions are fitted by sum of
two-decaying exponentials as shown in the scattered plots with log scale. Distribution of positive run length for N = 5 motor case is single exponential, whereas
for N = 2.5 motors the positive run length can be described by using two-exponential decays with a small dependence from shorter run length as illustrated in
scattered plots F1 and HT.
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Fig. S5. Different force-dissociation kinetics used in this study. The in vitro experimentally constrained force-dissociation kinetics for kinesin is shown in A, and
for dynein in D. These were modified to reflect the difference in stalling forces in vivo versus in vitro, to yield experimentally constrained in vivo force-dis-
sociation kinetics for kinesin (C) and dynein (F). For kinesin, instead of Q(F) = 1.07 + 0.186 = F appropriate for the in vitro case, we used Q(F) = 1.535 + 0.186 * F
so that that in vivo kinesin (C) has a dissociation rate of 2/s at stall. Q(F) for dynein was unchanged. Past work assumed exponentially increasing detachment
kinetics for kinesin (B) and dynein (E), and we considered these as well.
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Fig. $6. Stall force and detachment force measurements. Experimentally determined stall force (F;) and detachment force (F,) distribution of single kinesin
(A and B) and single dynein (C and D). Each stall-force distribution was fitted with a Gaussian function. The peak value of Gaussian function provides the mean
of the stalling force. The distribution of detachment force is not symmetric and hence the mean value was obtained using the statistical average of the data.
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Fig. S7. Invitro single-molecule detachment kinetics at various loads: Histogram of experimentally measured detachment times for kinesin at force 5.6 pN (A)
and 15 pN (B) and for dynein at 3.4 pN (C), 5 pN (D), and 9.75 pN (E) forces. The characteristic detachment times were determined by fitting the histograms with
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Fig. S8. Graphical representation of changes in velocity and run lengths between the wild-type and kinesin-dosage mutant, compared between experiment
and the different theoretical predictions. In each case, from the mutant value we subtract the wild-type value, and the legend indicates the number of motors
present in the wild-type version of the model; the mutant version has half as many. For instance, D shows that for the stochastic (ST) theory modeling the wild-
type as having five motors (red) (and thus the mutant having 2.5 motors), the negative run lengths on average are predicted to be 80 nm longer in the mutant
than in the wild-type. This compares with the experimental finding (orange) that in fact they are approximately twice this value.
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Fig. $9. Comparison of experimental measurements and unidirectional mean-field model predictions for detachment kinetics of two kinesin or dynein motors
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(histogram representation of additional data summarized in Fig. 3 C and D). The experimental conditions are described in Fig. 3 caption (main text). The
distribution of detachment times (experimental bars, red hash marks; A, B, C, and D) was compared to the mean-field model with either experimental detach-
ment kinetics (EXPT) or exponential detachment kinetics (EXPN). The single-molecule properties below stall (including single-motor detachment kinetics as
measured in Fig. 2) constrained the model parameters as well. Using these constraints, the mean-field model with the EXPT detachment kinetics did not explain

the experimental results (C and D), and the mean-field model with exponential detachment kinetics (EXPN) was even worse (A and B).
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