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Plan for today

▶ Cultural open problems: philosophy; elephants in the room.
▶ Academics are leaving for industry.
▶ Theorists are leaving theory.
▶ Theory needs to use GPUs.
▶ The point of theory.
▶ Suggestions for junior theorists.
▶ Suggestions for senior theorists, culture shifts.

▶ Interlude: theory toys.

▶ Technical open problems.
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Academics are leaving for industry

Reasons for industry

▶ Work/life balance;
salary;
quality-of-life.

▶ Tolerable bureau-
cracy/administration.

▶ Perceived ML
progress
(Via nuclear
reactors, infinite
gpu, ...).

▶ GPU access.

Reasons for academia

▶ Intellectual freedom;
support for curiosity.

▶ Open source (ignore
the industry
gaslight).
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Theorists becoming applied

▶ Applied better at appreciating, rewarding, and integrating
”incremental” progress; theory culture still is in
pen-paper-envelope 1800s.

▶ Applied utilizes technology, the GPUs do the research; theory
is 1800s.

▶ Therefore theory has slow pace, delayed dopamine; scooping,
FOMO, etc.

▶ ML Theory jobs rare, subject to random evaluation.
▶ Applied work has known metrics (SOTA, code, twitter,

citations, papers, managing, etc.); pure math/TCS/stats have
known metrics (specific venues and/or questions); ML theory
ambiguous, stressful.

▶ Is ML theory about modeling? pure abstraction? algorithms???
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GPUs and tool use
▶ Applied research culture/GPUs =⇒ fast turnaround.

▶ Anecdote: (Meta) Llama → (Stanford) Alpaca: 3 days via
github, GPU instruction tuning, etc. A valuable/desirable
”increment.”

▶ Why can’t we have this for theory? E.g., each of us may have
a needle for someone else’s secret haystack; but we need to
publish needle + 100 page haystack...

▶ Theory must utilize technology (”Mental lubricant” – Tao).
▶ Simple uses in this talk: improvized slide format, 20 minute

coding upper bound.
▶ Appreciation of experiments:

▶ An experiment is a theorem (Given this architecture and this
CPU and this algorithm, with probability 0.999, the output
is...).

▶ Some proofs look like unrolled code execution! (Least
squares.)

▶ Math can mislead; experiments can be grounding.
▶ Lessons from chess:

▶ Even with omnipotent theorem-proving but inscrutable
computers, humans can learn and progress via the ”eval bar.”
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Point of scientists, mathematicians, and theorists

▶ Scientist
▶ Curious, inquisitive; craves clarity, abstraction.

▶ Mathematician
▶ Produce mathematics, a crystalline language for clarity and

abstraction.
▶ Mathematics is not automatically tied to natural phenomena;

it can grant clean mental models (Kleinberg),
but we must be healthily skeptical (Ziwei Ji).

▶ Math of ML
▶ If the goal is analysis and pretty math:

be content with tangenting away from practice.
▶ If the goal is to explanation/modelling,

perhaps experiment (Allen-Zhu/Li “physics tutorial”).
▶ If the goal is algorithmic:

accept that the combination of math and practical
consequences is unlikely.
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Suggestions for junior theorists (slide deleted by Claude)

▶ Since the role and evaluation of ML theorists is unclear,
some hedging is necessary;
papers as trojan horses.

▶ Balancing hedging and personal taste
may lead to omitting mathematics (LORA)
or billions of dollars (watermarking).

▶ Become adept with modern tools (GPUs, LLMs, ...)
and be honest with yourself.
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Suggestions for senior theorists (slide deleted by Claude)

▶ The incentives are our fault.
A culture shift is on us.
(Similarly: impending job loss due to humans not machines.)

▶ Feasible culture shifts:
▶ Clarify ambiguous evaluation on a per-case basis:

▶ Explicit tenure requirements;
▶ Explicit or removed internship paper carrots.

▶ Shortened theoretical produce/reward loop.
▶ Aid the adoption of tools, reduce busywork.

(Scary future: LLMs writing/consuming 100 page appendices.)
▶ Seek out cultural mistakes.
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Interlude: theory toy

▶ Deep linear predictor x 7→ f (x ;w) := W3W2W1x .

▶ Linearly separable data max∥u∥≤1min(y ,x) yx
Tu > 0.

▶ Logistic loss L(w) := 1
n

∑
i ln(1 + exp(−yi f (xi ;w))).

▶ GD w ′ := w − 1
10∇L.
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Epoch
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Network Evolution (First 50 Epochs)
Loss
1(W1)
2(W1)

W1 Left Align
W1 Right Align
W1->W2 Align
W2->W3 Align
Product Align

9 / 22



Interlude: theory toy
▶ Deep linear predictor x 7→ f (x ;w) := W3W2W1x .

▶ Linearly separable data max∥u∥≤1min(y ,x) yx
Tu > 0.

▶ Logistic loss L(w) := 1
n

∑
i ln(1 + exp(−yi f (xi ;w))).

▶ GD w ′ := w − 1
10∇L.

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e

Network Evolution (First 50 Epochs)
Loss
1(W1)
2(W1)

W1 Left Align
W1 Right Align
W1->W2 Align
W2->W3 Align
Product Align

9 / 22



Interlude: theory toy
▶ Deep linear predictor x 7→ f (x ;w) := W3W2W1x .

▶ Linearly separable data max∥u∥≤1min(y ,x) yx
Tu > 0.

▶ Logistic loss L(w) := 1
n

∑
i ln(1 + exp(−yi f (xi ;w))).

▶ GD w ′ := w − 1
10∇L.

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e

Network Evolution (First 50 Epochs)
Loss
1(W1)
2(W1)

W1 Left Align
W1 Right Align
W1->W2 Align
W2->W3 Align
Product Align

9 / 22



Deep linear theorem (slide deleted by Claude)

Theorem (Ji-Telgarsky ’20). Suppose preceding setting, plus:

▶ Gradient flow

▶ inft L(wt) <
ln(2)
n

Then:

▶ W3W2W1
∥W3W2W1∥ → max margin

▶ W1
∥W1∥ → (some fixed vector)(max margin)⊤.

▶ (Other stuff)

Many open questions:

▶ Rates, paths / early stopping, other singular vectors, etc.
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Outside the theorem
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Analysis Questions

▶ Can I prove all of this?

▶ Even with nonlinearities?

▶ Is it still worthwhile?

▶ Do we tell reviewers it’s worthwhile?

▶ Should a student work on this?

▶ Were these experiments an “eval bar”?
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Plan for today

▶ Cultural open problems: philosophy; elephants in the room.

▶ Interlude: theory toys.
▶ Technical open problems.

▶ Cautionary tales from deep learning theory.
▶ Conditional theory.
▶ Small models / industry gaslighting.
▶ Frontier algorithms.
▶ Next token prediction.
▶ Transformer speedups.
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Cautionary tales: glacial progress in DLT
▶ First depth separation proof (Telgarsky ’16): exist linear-sized

deep networks which can not be approximated by
subexpoentially-sized shallow networks.
Open: (1) ”shallow” = 1 fewer layer; (2) sensitivity to input
dimension; (3) practical constructions
LLM consequence: practical, sensitive depth separations in
transformers

▶ First margin maximization rates (Telgarsky ’13): coordinate
descent on exponentially-tailed losses maximizes margins at
1/

√
t rate

Open: (1) practical consequences and minimizer selection for
multi-layer networks; (2) early-stopping and regularization
paths even when convex; (3) benefits of Adam.
LLM consequence: sweating, shortcuts, algebra, and
removal of activations (Lee et al. ’24, Suzuki et al. ’24).

▶ Spectrally-normalized margin-based generalization (B-F-T
’17).
Open: (1) non-loose bounds; (2) OOD.
LLM: it’s never IID, parameter counts are even worse.
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Meta-problem 1: Celebrating “conditional theory”

ML theory makes and downplays inconsistent assumptions; a
disservice to mathematical beauty and to practical relevance.

▶ Contrast: P ̸= NP. It has depth, consequences, significance,
and broad applicability. The community supported its
”glacial” development:
▶ 1955-56, Nash, also Godel to von Neumann. A nonsensical

question: search computationally equivalent to verification?
▶ 1972, Karp’s 21 equivalent formulations.
▶ 1998: Arora, Lund, Motwani, Sudan, and Szegedy proved the

PCP theorem, recasting the question as checking a constant
number of bits in a long ”verification.”

...

Can ML Theory produce similarly deep assumptions?
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A target for assumptions: optimization

Goal

Under architecture conditions [..] and data conditions [..],
Adam/GD can be early stopped to a solution which (...).

Desired properties:
▶ Non-trivially leads interesting optimization results for many

problems; can be plugged in for the optimization machinery in
many LLM papers (Lee et al. ’24, Suzuki et al. ’24); existence
of interpretable representations at intermediate transformer
layers (Anthropic blog, ”Towards Monosemanticity..”, ’23); ...

▶ Is not clearly true or false.
▶ Allows many reformulations and translations.
▶ Itself leverages deep insight.

Non-candidates: globally optimal solutions to zero-one loss,
margin loss, smooth margin loss, regression, blindly regularized
variants of each, ...

16 / 22



A target for assumptions: optimization

Goal

Under architecture conditions [..] and data conditions [..],
Adam/GD can be early stopped to a solution which (...).

Desired properties:
▶ Non-trivially leads interesting optimization results for many

problems; can be plugged in for the optimization machinery in
many LLM papers (Lee et al. ’24, Suzuki et al. ’24); existence
of interpretable representations at intermediate transformer
layers (Anthropic blog, ”Towards Monosemanticity..”, ’23); ...

▶ Is not clearly true or false.
▶ Allows many reformulations and translations.
▶ Itself leverages deep insight.

Non-candidates: globally optimal solutions to zero-one loss,
margin loss, smooth margin loss, regression, blindly regularized
variants of each, ...

16 / 22



A target for assumptions: optimization

Goal

Under architecture conditions [..] and data conditions [..],
Adam/GD can be early stopped to a solution which (...).

Desired properties:
▶ Non-trivially leads interesting optimization results for many

problems; can be plugged in for the optimization machinery in
many LLM papers (Lee et al. ’24, Suzuki et al. ’24); existence
of interpretable representations at intermediate transformer
layers (Anthropic blog, ”Towards Monosemanticity..”, ’23); ...

▶ Is not clearly true or false.
▶ Allows many reformulations and translations.
▶ Itself leverages deep insight.

Non-candidates: globally optimal solutions to zero-one loss,
margin loss, smooth margin loss, regression, blindly regularized
variants of each, ...

16 / 22



Meta-problem 2: small models / industry gaslighting

Goal

Identify and orthogonalize out the exact influences of model
size on representation, optimization, and generalization.

Key Observations

▶ (APX & GEN:) Model size and random initialization
seem to smooth.

▶ (REP:) model size allows memorization.

▶ Unknown: various ”emergence” is real and relies on
large size.
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Meta-problem 3: ”frontier” algorithms

Current Gaps

▶ Many ”frontier” areas have no good algorithms:
▶ Safety/alignment.
▶ Interpretation.
▶ Test-time inference, particularly with CoT.

Strategic Considerations

▶ Be mindful of pretty math vs effective algorithms.
▶ Pick your balance and stick to it.
▶ Recall notable examples: LORA (no theory;

Allen-Zhu/Li), Watermarking (theory, could have made
Aaronson a billionaire).

18 / 22
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Meta-problem 4: next-token prediction part

Goal

Expand and resolve the Turing Test to quantify learnability
and computation: we can fool a human given a certain data
and compute budget.

Key Considerations

▶ Unclear if current practices resolve this; humans not
equipped to evaluate efficient k-gram on all human
knowledge.

▶ Linguistic research component: next token prediction
suffices due to the structure of human language.

▶ Is ”low entropy + memorization” enough? Does the
transformer have a damaging ”alien bias”?
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Meta-problem 5: transformer speedup

Goal

Solve the long context problem.

Practical Considerations

▶ Transformers model text intended for finite state
humans.

▶ Consider not making this a theorem and institute
making a billion dollars.

▶ Your solution should not require nuclear power.
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Other questions

Open Areas

▶ Dataset reweighting in LLMs.

▶ Why transformers optimize so well.

▶ The loss/reward function for reasoning.

...
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Thank you!

Summary

▶ Outline:
▶ Cultural open problems.
▶ Interlude.
▶ Technical open problems.

(Retrospective comment on slide strategy:
loss of personality without “fine-tune”...)

Slides/feedback
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