
An Introduction to Numerical Methods for ODEs
Mariya Savinov, email: mariyasavinov@nyu.edu

A few remarks:
These lecture notes are intended to be roughly two lectures of material, providing an introduction
to solving ordinary differential equations (ODEs) numerically. These notes have primarily been
adapted from:

� Elementary Numerical Analysis by Atkinson and Han, 3rd edition, Chapter 8

� Elementary Differential Equations and Boundary Value Problems by Boyce and DiPrima,
Chapter 8

� Numerical methods for ordinary differential equations - initial value problems by Griffiths
and Higham, Chapters 1 and 2

For those who have not taken an ODEs course, Boyce and DiPrima’s text provides an introduction
to the theory and applications at the undergraduate level. However, these notes are aimed at
students who have taken multivariable calculus – no prior knowledge of ODEs is required, as we
will give a brief introduction to first order differential equations to start.

1 Introduction

In science, engineering, economics, sociology, and a number of other disciplines, it is often necessary
to understand the rate at which things change. Ordinary differential equations (ODEs) provide
a way to describe and predict the nature of chemical reaction systems, n-body interactions in
physics, current flow in electronic circuits, long-term economic growth, population statistics, and
more. The majority of ODEs, however, do not have closed-form, known solutions. As such, it is
necessary to have methods which allow us to approximate the true, unknown solutions of ODEs
in a way which is robust with reliable accuracy. Over the past 50 or so years of scientific comput-
ing, a great number of advancements, theoretical and practical, have made it that robustness and
accuracy are attainable for many ODEs of interest. Nonetheless, many challenges remain, which
we will not even begin to address here.

In these lecture notes, we provide an introduction to numerical methods for ODEs. We will
introduce first-order differential equations, providing examples with and without solutions, as well
as a statement on existence and uniqueness. We then discuss the Euler methods, motivating us
to define error and convergence. Given an understanding of the rate of convergence, Richardson
extrapolation will be introduced as a way to improve accuracy. Finally, we present two second
order methods, ending with introductions to Runge-Kutta Methods and Multistep methods.

1.1 First-order differential equations

We will limit our focus to first-order differential equations, in particular to initial value problems
of the form {

y′(t) = f(t, y(t))

y(t0) = y0
(1)

For some simple ODEs, it is possible to find closed form solutions. Let us illustrate a simple case
where f depends only on time t:

1

mariyasavinov@nyu.edu

Example 1.1.1. Consider the problem where the position y of, e.g., a particle, changes in time t
like a sinusoidal:

y′(t) = sin(t)

Integrating both sides, it is clear that the general solution is

y(t) = sin(t) + c

where c is an arbitrary integration constant. Without any additional information, there are
infinitely-many solutions to the problem y′(t) = sin(t). However, suppose that we also know
that at initial time t = 0, the position of the particle is y(0) = 3. Then we have a unique solution
for t ≥ 0:

y(t) = sin(t) + 3

As illustrated above, the general solution of first-order ODEs depends on an arbitrary inte-
gration constant that must be specified with an additional condition. This condition appears in
(1) as y(t0) = y0, an “initial value”. However, setting an initial condition does not necessarily
guarantee the existence of a unique solution. Depending on the properties of f(t, y) and choice of
initial condition y0, one may only have a unique solution on a finite interval t ∈ [t0, T], or not at
all.

Example 1.1.2. For example, consider the initial value problem:{
y′(t) = 2t [y(t)]2

y(0) = y0

The ODE is separable and can easily be solved analytically, yielding the following unique solution
to the IVP:

y(t) =
1

−t2 + y−1
0

Notice that, depending on the sign of y0, the solution may or may not exist for all t ≥ 0. If
y0 < 0, then the solution exists ∀t ≥ 0. However, if y0 > 0, then the solution does not exist when

t =
√

1/y0. I.e., the solution exists only on the finite interval t ∈
[
0,
√

1/y0

)
.

1.2 Existence and Uniqueness of the IVP

There exists a general theorem on the existence of a unique solution to the IVP (1), which we will
not prove but simply state here:

Theorem 1.2.1. Let f(t, y) and fy(t, y) be continuous functions of t and y at all points (t, y) in
some neighborhood S of (t0, y0) (see Fig. 1). Then, there is a unique function y = ϕ(t) defined on
some interval t ∈ [t0 − δ, t0 + δ] satisfying (1).

Remark 1.2.1. Theorem 1.2.1 only guarantees existence and uniqueness in an interval close to
the initial condition – this interval itself might be quite small. Additionally, the continuity of
f(t, y) and fy(t, y) do not imply the existence of a ϕ(t) which is continuous for the same t.

Example 1.2.1. Let us return to Example 1.1.2. In this case, we had f(t, y) = −2ty2, thus
fy(t, y) = 4ty. Both of these functions are continuous for all (t, y) pairs. However, the solution

only exists on the interval t ∈
[
−
√

1/y0,
√

1/y0

]
. If the initial condition large, y0 ≫ 1, then this

interval of existence is quite small.

2

φ(t)

t

y

(t0,y0)

S

t0+δt0−δ

Figure 1: Domain S with a unique solution ϕ(t) from Thm. 1.2.1.

1.3 The need for numerical methods

In Examples 1.1.1 and 1.1.2, we had analytical solutions, so a numerical method would not be
necessary. However, the general first-order initial value problem (1) may or may not be possible
to solve analytically.

Example 1.3.1. For example, suppose you have

y′(t) = exp
(
−t y(t)4

)
Regardless of choice of initial condition, this ODE cannot be solved analytically. So, we must
resort to numerical methods.

2 Basic numerical methods for solving the IVP

We will concentrate on the first-order IVP (1), from now on assuming f and fy are continuous on
some region S in the (t, y) plane containing (t0, y0). Then by Theorem 1.2.1, there exists a unique
solution y = ϕ(t) in some interval about t0. We will further assume that this ϕ(t) solution exists
in our interval of interest for all remaining problems.

Suppose we want to approximate the solution ϕ(t) of (1) in some interval t ∈ [t0, T]. Of course,
we cannot solve ∀t in this interval, so we must consider discrete nodes t0 < t1 < ... < tn−1 < tn ≤ T .
Our aim is to construct y1, y2, ..., yn approximate values of the true solution ϕ(t) at these t1, t2, ..., tn
times. For simplicity, we assume that the times ti are equally spaced, such that the timestep
ti+1 − ti = h for all i indices. Though these methods do not all require equally space timesteps,
this simplification eases discussions of convergence and stability.

3

f(t,φ(t))

tn tn+1 t

y’

φ(t)

tn tn+1

yn

yn+1

t

y

Figure 2: (Left) Approximation of the integral in (2) to derive the Euler Method. (Right) Graphical
depiction of one step of the Euler method (3).

The methods we mention here can be derived in a number of ways. We choose here to ap-
proach numerical methods for IVPs from the perspective of integral equations, and how we can
approximate integrals (numerical integration). Notice that the IVP (1) can be rewritten as an
integral equation: given a solution y = ϕ(t), we have

dϕ

dt
(t) = f (t, ϕ (t))

At some point t = tn, this is equivalent to the integral equation:∫ tn+1

tn

ϕ′(t) dt =

∫ tn+1

tn

f(t, ϕ(t)) dt

Integrating both sides, it follows that

ϕ (tn+1) = ϕ (tn) +

∫ tn+1

tn

f (t, ϕ(t)) dt (2)

The integral in the above right-hand-side defines the area under the curve f (t, ϕ(t)) from tn to tn+1.
Intuitively, if we can approximate this integral “accurately,” it should lead us to an “accurate”
numerical method (we will later discuss what we mean by “accurate”).

2.1 Euler / Tangent Line Method

One simple approach to the integral in (2) is to approximate f (t, ϕ(t)) by a constant – say,
f (tn, ϕ (tn)), as shown in the left plot of Fig. 2. Then, (2) becomes:

ϕ (tn+1) ≈ ϕ (tn) + (tn+1 − tn) f (tnϕ (tn))

4

Figure 3: Approximate solutions to the IVP in Example 2.1.1, with true soloution shown.

Replacing ϕ (tn) with its approximate value yn, following our earlier notation, we arrive at the
Euler method :

yn+1 = yn + h f (tn, yn) (3)

Geometrically, one can think of this as stepping forward along the tangent line to the graph
y = ϕ(t) at time tn (the slope at this point is ϕ′ (tn) = f (tn, ϕ (tn))), as shown in right plot of
Fig. 2.

Example 2.1.1. Consider the case of the IVP{
y′(t) = (1− 2t)y(t)

y(0) = 1

on the interval 0 ≤ t ≤ 3. We choose a case with a true solution:

y(t) = exp

(
1

4
−
(
1

2
− t

)2
)

so we can consider the error of the method. In this case, one step of the Euler method (3) is

yn+1 = yn + h (1− 2tn) yn = (1 + h (1− 2tn)) yn

Suppose we consider timesteps h = 0.25, 0.125, 0.0625 (each timestep is half the previous). Fig. 3
shows the numerical approximation in time, plotted against the true solution. It is clear that
the smaller timestep h you consider, the better the approximation. Considering even smaller
timesteps, we can look directly at the maximum deviation from the true solution in all time (L∞
error), finding that:

5

h Euler L∞ error

0.25 0.23047
0.125 0.10967
0.0625 0.05405
0.03125 0.02674
0.015625 0.013308

Notice how considering half the timestep tends to half the error. We will return to this example
when discussing error and convergence rate.

Remark 2.1.1. One alternative way to derive the Euler method is to rewrite ϕ′(t) with a forward
difference quotient, giving

ϕ (tn+1)− ϕ (tn)

tn+1 − tn
≈ f (tn, ϕ (tn))

Replacing ϕ (tn) with its approximate value yn, you once again arrive at (3).

Another perspective is to approximate ϕ (tn) with its Taylor series about tn:

ϕ (tn + h) = ϕ (tn) + ϕ′ (tn)h+ ϕ′′ (tn)
h2

2
+ ...

= ϕ (tn) + f (tn, ϕ (tn))h+ ϕ′′ (tn)
h2

2
+ ...

Keeping only the zeroth and first order terms (in h), you once again have Euler’s method. Notice
a more accurate formula can be obtained if more terms in the series are retained (this is the
idea behind Taylor series methods for timestepping), but this requires taking higher derivatives of
f(t, y), and the formula quickly becomes complicated. It is also possible to estimate the magnitude
of the error by considering the Taylor series remainder term, which we will return to shortly.

2.2 Backward Euler

For Euler, we approximated the integral equation (2) by setting f(t, ϕ(t)) ≈ f (tn, ϕ (tn)). If
instead we approximate f(t, ϕ(t)) with the value at time tn+1, as shown on the left in Fig. 4, we
arrive at the Backward Euler method:

yn+1 = yn + h f (tn+1, yn+1) (4)

Notice however that this equation defines yn+1 implicitly.

Remark 2.2.1. Depending on the nature of f , it may not be easy to solve this equation to get
yn+1 at the next time. A possible approach in such cases is to use an iteration technique:

y
(j+1)
n+1 = yn + hf

(
tn+1, y

(j)
n+1

)
So long as h is sufficiently small, conditionally dependent on the nature of fy, as j → ∞ then y

(j+1)
n+1

will converge to yn+1. In practice, it is often sufficient to do this iteration only once – however,
the stability of the method will be different.

6

f(t,φ(t))

tn tn+1 t

y’

f(t,φ(t))

tn tn+1 t

y’

Figure 4: Approximation of the integral in (2) to derive the Backward Euler Method (Left) and
Trapezoidal Method (Right).

Example 2.2.1. Let us return to the IVP we visited in Example 2.1.1. In this case, we can
actually rewrite the implicit equation to have an explicit formula for each timestep:

yn+1 = yn + h (1− 2tn+1) yn+1

yn+1 (1− h (1− 2tn+1)) = yn

=⇒ yn+1 =
1

1− h (1− 2tn+1)
yn

We can then consider the maximum error over the time domain t ∈ [0, 3] for Backward Euler, and
compare this to our results with the Euler method:

h Euler Backward Euler

0.25 0.23047 0.19036
0.125 0.10967 0.10177
0.0625 0.05405 0.051833
0.03125 0.02674 0.026218
0.015625 0.013308 0.013174

Notice that Backward Euler appears approximately as accurate for this case as Euler when h
is small, and the error follows a similar trend with decreasing h. This once again prompts us
to consider defining convergence and error, and how these properties depend on our numerical
method.

7

3 Convergence and Error

Thus far, we have not considered the issue of convergence: for a chosen numerical method, is it
true that

lim
h→0

nh=T−t0

yn = ϕ (T)

Meaning, as you take smaller timesteps h (increasing n proportionately such that yn is the ap-
proximation of ϕ at time T), does yn converge to the true value? Moreover, if so, how quickly
does the approximation over the interval converge? How small of a timestep h does one need to
achieve a desired accuracy? To answer these questions, we need to qualify error and understand
the relationship error and a chosen step-size h.

3.1 Global and local truncation error

We define the global truncation error as

En = ϕ (tn)− yn

i.e. the error due to applying an approximate formula to approximate data, since inherently yn
depends on the previous steps yn−1, yn−2, Suppose however that we know the previous steps
exactly, computing y∗n with known ϕ(t) at previous times. Then, we define the local truncation
error as the error induced by one step of an approximate formula to exact data:

en = ϕ (tn)− y∗n

For example, if we are interested in the local truncation of Euler (3), y∗n would be given by

y∗n = ϕ (tn−1) + h f (tn−1, ϕ (tn−1))

So en is the error introduced by taking one approximate step.

In reality, computations also suffer from round-off error, since computers only have finite pre-
cision. However, as a general rule, until h is very small, the global truncation error will dominate
the observed error.

3.2 Local truncation error of the Euler method

In the case of the Euler method, we will now demonstrate how one can derive the local truncation
error of a numerical method. Let us assume that the true solution ϕ(t) of the IVP (1) has a
continuous 2nd derivative (note that this is true if f , fy, ft are continuous). Then, expand ϕ(t)
about tn with a Taylor polynomial:

ϕ (tn + h) = ϕ (tn) + hϕ′ (tn) +
1

2
ϕ′′ (ξn)h

2

= ϕ (tn) + hf (tn, ϕ (tn)) +
1

2
ϕ′′ (ξn)h

2

where for a given h, there exists some ξn ∈ [tn, tn + h].

8

Now, consider y∗n+1 be the approximation of ϕ (tn+1) = ϕ (tn + h) using one step of Euler with
exact data, i.e.

y∗n+1 = ϕ (tn) + hf (tn, ϕ (tn))

It follows that the local truncation error at tn+1 = tn + h is

en+1 = ϕ (tn + h)− y∗n+1 =
1

2
ϕ′′ (ξn)h

2 (5)

It is natural then that, in general, the local truncation error on the interval of interest [t0, T] is
bounded as:

|en| ≤
1

2
Mh2 where M = max

[t0,T]
|ϕ′′(t)| (6)

Note that this bound is typically an overestimation. One might be tempted to use (5) and (6) to
estimate the error of the numerical solution – however, estimating M may not be easy or possible.
The most important point here is that (6) is a statement about the order of convergence of the
local truncation error.

3.3 Orders of convergence

We say that the local truncation error converges with order p in h if it satisfies the inequality:

|en| ≤ Chp =⇒ equivalently, |en| = O (hp) (7)

Note that this means that as h → 0, |en| → 0 at least as fast as hp → 0. So, in the previous section,
we demonstrated that the local truncation error of the Euler method converges with second order.
The larger the order p, the faster convergence you expect.

Our interest, however, is often in global accuracy. While one can derive the global order of
convergence for a method, the local truncation error tends to be more easily accessible and is an
easy measure of the accuracy of a numerical method. As a general rule-of-thumb, the order of
convergence for the global truncation error is typically one order lower than the local truncation
error. So if you have a method of order p, this means, given our definitions of local and global
truncation error,

|en| = O
(
hp+1

)
and |En| = O (hp) (8)

Note that this considers the global error on a finite interval. A technically wrong but intuitive ex-
planation is as follows: suppose at each step i = 1, 2, ..., n you make an error that is approximately
the size of your local truncation error ∼ ei. As you take more steps, this error accumulates, such
that at n steps you have global error like

En ∼
n∑

i=1

ei

If the method has local truncation error which is O(hp+1), then

|En| ≤
n∑

i=1

|ei| ≤
n∑

i=1

Chp+1 = Cnhp+1

9

Necessarily, n relates to the step-size such that n = (tf − t0) /h. So,

|En| ≤ C (tf − t0)h
p = C̃hp

Thus, the global truncation error is O(hp), one order lower than the local truncation error.

However, note that error is not strictly additive in this way – the local truncation error ei at
step i may be compounded by errors in later steps, or there may be a dependence on the nature of
the ODE. This explanation is especially not true if the method is not stable. In the next section,
we will give a more rigorous proof for Euler in the case of linear f (the proof for the general case
is rather technical, because f may be nonlinear, so we will illustrate the idea through Euler in an
easier, linear case).

We can now put our observations of the behavior of the Euler and Backward Euler methods in
the case given by Example 2.1.1 into perspective: since Euler and Backward Euler are first order
methods (the global truncation error decays like O(h)), halving the timestep h results in roughly
halving the error (it is not exactly, since the order of convergence is true only asymptotically).

3.4 Global truncation error of Euler

To illustrate how global truncation error can be derived from the local truncation error, let us
consider the linear IVP: {

y′(t) = λy(t) + g(t)

y (t0) = y0

Applying Euler’s method to this problem yields steps like

yn+1 = yn + h (λyn + g (tn)) = (1 + λh) yn + hg (tn) (9)

Recall that in deriving the local truncation error en+1 of the Euler method, we considered a Taylor
expansion of ϕ (tn+1). Doing the same for this case, we get

ϕ (tn+1) = ϕ (tn) + hϕ′ (tn) +
h2

2
ϕ′′ (ξn) = (1 + λh)ϕ (tn) + hg (tn) + en+1 (10)

where we have replaced the Taylor remainder with en+1, as it is identically the local truncation
error. Subtracting (9) from (10), we have

ϕ (tn+1)− yn+1 = (1 + λh) (ϕ (tn)− yn) + en+1

Notice that this gives a relation between the global truncation error at tn+1 and tn:

En+1 = (1 + λh)En + en+1

The first few global truncation errors are then

E1 = e1

E2 = (1 + λh)E1 + e2 = (1 + λh) e1 + e2

E3 = (1 + λh)E2 + e3 = (1 + λh)2 e1 + (1 + λh) e2 + e3
...

En =
n∑

j=1

(1 + λh)n−j ej

10

From here, we can proceed with bounding the global truncation error En. We know that

|1 + λh| ≤ exp (h |λ|)

so
|1 + λh|n−j ≤ exp ((n− j)h |λ|) ≤ exp (nh |λ|)

Note that nh = tf − t0. Thus, knowing the local truncation error is O(h2), we have

|En| ≤
n∑

j=1

|1 + λh|n−j |ej|

≤
n∑

j=1

exp ((tf − t0) |λ|)Ch2

= n exp ((tf − t0) |λ|)Ch2

= (tf − t0) exp ((tf − t0) |λ|)Ch

Therefore, we have that
|En| ≤ C̃h

where C̃ = (tf − t0) exp ((tf − t0) |λ|)C. This is exactly saying that the global truncation error of
Euler is O(h).

3.5 Richardson Extrapolation

Considering the behavior of the leading order term in the global error over the domain [t0, T]
requires knowledge of the true solution ϕ(t) of (1), which we rarely have. However, if we know
the order of convergence of the method, we can improve the accuracy of our numerical solution
through a method called Richardson Extrapolation.

Suppose we have two numerical solutions, yh and yh/2, at time t∗ using timestep sizes h and
h/2, respectively. Additionally, suppose the numerical method used has order p. Let ϕ (t∗) denote
the true solution. Then, we know that

ϕ (t∗)− yh = C hp +O
(
hp+1

)
ϕ (t∗)− yh/2 = C

(
h

2

)p

+O
(
hp+1

)
Note C is the same constant since we are considering error at time t∗. Subtracting the two, we
have

yh − yh/2 +

[
C hp

(
1− 1

2p

)]
= O

(
hp+1

)
Rearranging,

C hp = − 2p

2p − 1

(
yh − yh/2

)
+O

(
hp+1

)
Thus, the first term on the right-hand-side is an estimate of the leading-order term of the error
for yh. Specifically,

− 2p

2p − 1

(
yh − yh/2

)
11

is the Richardson error estimate of yh. We can then construct a better numerical solution which
we call the Richardson Extrapolation of the solution:

R (h, t∗) = yh + Chp = yh −
2p

2p − 1

(
yh − yh/2

)
=

2p yh/2 − yh
2p − 1

(11)

Notice, necessarily by our derivation, that

ϕ (t∗)−R (h, t∗) = O
(
hp+1

)
Therefore, via Richardson extrapolation we increased the order of convergence from p to p+ 1.

Remark 3.5.1. “Tricks” like those above used to estimate the error and increase accuracy are
employed in adaptive timestepping methods!

4 More methods for solving IVPs

So far, the numerical methods we have considered are the Euler and Backward Euler methods.
Both are 1st order methods, whose global truncation error decays like O(h). Due to their low or-
der of convergence, they are rarely used in practice, but are easy methods which help demonstrate
fundamental principles of numerical methods for IVPs.

Note that the larger the desired order p, the more “complicated” and/or expensive computa-
tionally the methods become to solve for yn+1. On the other hand, the smaller your timestep h,
the more timesteps are necessary to approximate the solution on a finite time interval; moreover,
if h becomes too small, or too many steps are required in a calculation, roundoff error may begin
to dominate. So a numerical method should be chosen wisely to balance these factors, and others.

Recall that we derived the Euler and Backward Euler methods through crudely approximating
the integral in (2) by replacing f(t, ϕ(t)) with a constant defined either by its value at tn (Euler)
or tn+1 (Backward Euler). We can obtain better, higher order, methods by approximating this
integral more accurately. Here we outline a few 2nd order methods which do so.

4.1 Trapezoidal Method

Suppose we approximate the integral (2) using the trapezoidal rule – i.e., approximate the area
under the curve with a trapezoid defined by the initial value at tn and final value at tn+1, as shown
in the right of Fig. 4. Then we have∫ tn+1

tn

f(t, ϕ(t)) dt ≈ (tn+1 − tn)
f (tn, ϕ (tn)) + f (tn+1, ϕ (tn+1))

2

This then leads to the Trapezoidal Method for timestepping the IVP:

yn+1 = yn +
h

2
(f (tn, yn) + f (tn+1, yn+1)) (12)

Notice that this method can also be obtained by taking the average of the Euler and Backward
Euler methods. The trapezoidal method is, unsurprisingly, second order accurate, but note that
(12) still defines the next step yn+1 implicitly.

12

Example 4.1.1. Returning to the IVP we visited in Example 2.1.1, this is, similarly to Backward
Euler, also a case where we can write an explicit solution to the implicit equation at each timestep.

yn+1 = yn +
h

2
((1− 2tn) yn + (1− 2tn+1) yn+1)

yn+1 (1− h (1− 2tn+1) /2) = (1 + h (1− 2tn) /2) yn

=⇒ yn+1 =
1 + h (1− 2tn) /2

1− h (1− 2tn+1) /2
yn

Comparing the error of Trapezoidal method to that of Euler and Backward Euler, we have:

h Euler Backward Euler Trapezoidal

0.25 0.23047 0.19036 0.0090254
0.125 0.10967 0.10177 0.0022883
0.0625 0.05405 0.051833 0.00057406
0.03125 0.02674 0.026218 0.00014364
0.015625 0.013308 0.013174 0.000035917

It is clear that the Trapezoidal rule much more accurate – moreover, notice that taking half a
timestep smaller results in about a quarter of the error, as we would expect for a second order
method.

4.2 Heun’s Method

In some cases, it may not be possible to easily solve a step of the Trapezoidal method (12),
particularly if f(t, y) is nonlinear in y. To overcome this, we can instead consider a two-stage
approach where we replace the implicit use of yn+1 with one step of Euler:

Stage 1: y∗n+1 = yn + hf (tn, yn)

Stage 2: yn+1 = yn +
h

2

(
f (tn, yn) + f

(
tn+1, y

∗
n+1

)) (13)

This is Heun’s method. It is also a second order method, but note that the stability properties
(not discussed in these notes) will have changed from that of Trapezoidal Rule. Notice we have
achieved greater accuracy at the expense of more computational work: evaluating the function
f(t, y) twice, which could potentially be quite costly.

Example 4.2.1. Let us return once again to the IVP we visited in Example 2.1.1. Applying
Heun’s method is fairly straightforward, so let us jump to comparing the error of Heun’s method
to that of Euler, Backward Euler, and Trapezoidal Method:

h Euler Backward Euler Trapezoidal Heun

0.25 0.23047 0.19036 0.0090254 0.020025
0.125 0.10967 0.10177 0.0022883 0.0041702
0.0625 0.05405 0.051833 0.00057406 0.0009556
0.03125 0.02674 0.026218 0.00014364 0.00023048
0.015625 0.013308 0.013175 0.000035917 0.000056629

Notice how Heun’s method is slightly less accurate than the Trapezoidal Method, but still fol-
lows the O(h2) behavior we expect.

13

Remark 4.2.1. If f(t, y) = f(t), then there is no difference between Heun’s method (13) and
the Trapezoidal Method (12). Both are, in that case, just implementing the trapezoidal rule for
numerical integration.

4.3 Runge-Kutta Methods

Euler’s method (3) and Heun’s Method (13) are part of a larger class of methods called Runge-
Kutta methods. These methods evaluate f(t, y) at many points along the interval [tn, tn+1] to
achieve greater accuracy, and are generally of the form:

yn+1 = yn + hF (tn, yn;h) (14)

where F defines multiple stage evaluations of f(t, y). For example, the original “Runge-Kutta
Method” is the 4-stage, 4th order RK method, which utilizes a weighted average of f(t, y) values
along the interval t ∈ [tn, tn+1]:

k1 = f (tn, yn)

k2 = f

(
tn +

1

2
h, yn +

1

2
hk1

)
k3 = f

(
tn +

1

2
h, yn +

1

2
hk2

)
k4 = f (tn + h, yn + hk3)

yn+1 = yn + h
k1 + 2k2 + 2k3 + k4

6

(15)

One can show that if f(t, y) = f(t), RK4 (15) reduces to Simpson’s rule for approximating the
integral in (2).

Example 4.3.1. We would expect that solving the IVP of Example 2.1.1 with RK4 will be sig-
nificantly more accurate to methods we have considered thus far.

h Euler Backward Euler Trapezoidal Heun RK4

0.25 0.23047 0.19036 0.0090254 0.020025 5.1357e-4
0.125 0.10967 0.10177 0.0022883 0.0041702 2.4685e-5
0.0625 0.05405 0.051833 0.00057406 0.0009556 1.3451e-6
0.03125 0.02674 0.026218 0.00014364 0.00023048 7.8404e-8
0.015625 0.013308 0.013174 0.000035917 0.000056629 4.7318e-9

Indeed, we can see that the most accurate method for the IVP of Example 2.1.1 is RK4, and
the error decays roughly by 1/16 when the timestep is multiplied by 1/2, as we would expect of a
fourth order method.

4.4 Multistep Methods – Adams-Bashforth and Adams-Moulton

Thus far, we have only discussed one-step methods, where the approximation yn+1 ≈ ϕ (tn+1) is de-
fined only by data at tn. However, it is natural to ask: if we know all of the past steps y0, y1, ..., yn,
can we utilize that information to gain a more accurate approximation to the solution at tn+1 ?

This is the basis of multistep methods. Here, we will outline the ideas behind two sub-categories
of multistep methods: Adams-Bashforth Methods, and Adams-Moulton Methods.

14

4.4.1 Adams-Bashforth

Recall that we have been considering numerical methods as derived from the integral equation
formulation (2). We can rewrite the relevant integral of (2) equivalently as∫ tn+1

tn

f (t, ϕ(t)) dt =

∫ tn+1

tn

ϕ′(t) dt

Now, instead let us approach approximating the integral by approximating ϕ′(t) by a polynomial
Pk(t) of degree k. The primary idea underlying Adams Methods is to define the polynomial Pk(t)
by the time-value pairs (ti, ϕ (ti)) for i = n, n− 1, ..., n− k (in total k + 1 many points).

Consider for example the case of k = 1. We want to approximate ϕ′(t) with a polynomial
P1(t) = At+B which satisfies

P1 (tn) = ϕ′ (tn) = f (tn, ϕ (tn))

P1 (tn−1) = ϕ′ (tn−1) = f (tn−1, ϕ (tn−1))

These two conditions uniquely define the constants A and B. Evaluating the integral, you have∫ tn+1

tn

ϕ′(t) dt ≈
∫ tn+1

tn

P1(t) dt =
A

2

(
t2n+1 − t2n

)
+B (tn+1 − tn)

Then, after replacing ϕ (tn) with its approximation yn, we arrive at the 2nd order Adams Bashforth
method

yn+1 = yn +
3

2
hf (tn, yn)−

1

2
hf (tn−1, yn−1) (16)

If we instead let k = 0, necessarily you recover the Euler method (3). More accurate Adams
formulas can be obtained by using higher-degree polynomials with more data points from previous
steps, but notice that in multistep methods you will need to calculate the first y1, y2, ..., yk with
some other method. Usually, one will use a onestep method of comparable accuracy to get the
starting values.

4.4.2 Adams-Moulton

Adams-Moulton methods are similarly constructed to Adams-Bashforth methods: the integral is
approximated by approximating ϕ′(t) by a polynomial Pk(t) of degree k. However, this time the
polynomial Pk(t) is defined by the time-value pairs (ti, ϕ (ti)) for i = n+1, n, n − 1, ..., n − k + 1,
once again in total k + 1 many points except now utilizing the tn+1 timepoint. This means that
Adams-Moulton methods are implicit. Unsurprisingly, the first-order Adams-Moulton method is
just Backward Euler (4), and the second-order Adams-Moulton method is just the Trapezoidal
Method (12).

15

	Introduction
	First-order differential equations
	Existence and Uniqueness of the IVP
	The need for numerical methods

	Basic numerical methods for solving the IVP
	Euler / Tangent Line Method
	Backward Euler

	Convergence and Error
	Global and local truncation error
	Local truncation error of the Euler method
	Orders of convergence
	Global truncation error of Euler
	Richardson Extrapolation

	More methods for solving IVPs
	Trapezoidal Method
	Heun's Method
	Runge-Kutta Methods
	Multistep Methods – Adams-Bashforth and Adams-Moulton
	Adams-Bashforth
	Adams-Moulton

