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Abstract

We consider zero-noise limits of random perturbations of dynamical systems and
examine, in terms of the continuity of entropy and Lyapunov exponents, circumstances
under which these limits are SRB measures. The ideas of this general discussion are then
applied to specific classes of attractors. We prove, for example, that partially hyperbolic
attractors with one-dimensional center subbundles always admit SRB measures.

In this paper we attempt to address the following question:

To a deterministic dynamical system we add small random perturbations and consider
the one-parameter family of Markov chains parametrized by ε where ε > 0 is the noise
level. What can be said about their limiting distributions as ε tends to zero?

More precisely, consider a dynamical system generated by a map f : M → M , and let µε
denote the probability measure on M that is invariant under the Markov chain correspond-
ing to noise level ε. As ε → 0, the weak limits of µε, which we call zero-noise limits, are
special invariant measures of f . The importance of this class of invariant measures is clear:
assuming that the real world is perpetually slightly noisy, they represent idealizations of
what we see. These ideas go back to Kolmogorov; see [S2].

Atomic measures concentrated at attractive fixed points or periodic orbits of f are
obvious examples of zero-noise limits. We are primarily interested in the “chaotic” case,
where the zero-noise limit has a positive Lyapunov exponent. There are reasons to believe
that under fairly general conditions, SRB measures may be natural candidates for zero-noise
limits. One of these reasons will be explained below. Indeed, in some situations, this is a
viable way of proving the existence of SRB measures.

Among invariant measures preserved by diffeomorphisms, SRB measures are charac-
terized by the fact that they have a positive Lyapunov exponent and satisfy the entropy
equality

hµ = λ+
µ (1)

where hµ denotes the metric entropy of f with respect to the measure µ and λ+
µ denotes

the integral of the sum of the positive Lyapunov exponents counted with multiplicity ([P],
[LS], [L], [LY1]).

Turning to the noisy situation, a large class of random perturbations can be represented
by random maps. In this setting, a similar equality, namely

hµε = λ+
µε
, (2)
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holds for every invariant measure µε of the Markov chain provided that the transition
probabilities have densities with respect to Lebesgue measure [LY2].

Comparing (1) and (2), we see that if (2) can be passed to the limit ε = 0, then any limit
point of µε having a positive Lyapunov exponent is an SRB measure. This last supposition,
however, is not always valid, for both entropy and Lyapunov exponents are known to have
discontinuities.

The purpose of this paper is to bring to the foreground some facts regarding the lim-
iting behavior of entropy and Lyapunov exponents as ε → 0, and to identify some simple
situations in which the passage of (2) to this limit is guaranteed. A consequence of this line
of reasoning is the existence of SRB measures for certain classes of maps, an example of
which is the following:

Theorem C. Partially hyperbolic systems with one-dimensional center subbundles have
SRB measures.

The method used in the proof of Theorem C, namely by adding noise to a dynamical
system and obtaining an SRB measure as a zero-noise limit, is likely to be viable in other
situations.

The main results of this paper (Theorems A, B, and C) are stated in Section 2 after a
review of some definitions and facts. Section 3 contains a general discussion of the basic
issues regarding the continuity of entropy and Lyapunov exponents. The aim of this dis-
cussion is to pinpoint exactly what needs to be controlled. The proofs of Theorems A, B
and C are carried out in Sections 4 and 5.

Throughout this paper, M is a compact Riemannian manifold with normalized volume
m, and f : M →M is a differentiable map.

1 Background Information

This section contains a brief review of the definitions and elementary facts used in the
formulation of our main results.

1.1 SRB measures

We assume here that f is a C2 diffeomorphism.

Definition 1. An f -invariant Borel probability measure µ on M is called a Sinai-Ruelle-
Bowen measure or SRB measure if f has a positive Lyapunov exponent µ-a.e. and the
conditional measures of µ on unstable manifolds are absolutely continuous with respect to
the Riemannian measures on these leaves.

This terminology was first introduced in [ER]. For more detail, see [Y2] and the refer-
ences therein. Very briefly, the idea is as follows: For dissipative, chaotic dynamical systems,
such as those with attractors, SRB measures are as close to volume as invariant measures
can be in that they have densities in unstable directions.
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An important property of ergodic SRB measures with no zero Lyapunov exponents is
that they are physical; i.e., there is a positive Lebesgue measure set V ⊂ M such that for
all continuous functions ϕ on M , 1

n

∑n−1
i=0 ϕ(f i(x)) →

∫

ϕdµ as n→ ∞ for every x ∈ V .
Let µ be an f -invariant Borel probability measure. We let hµ denote the metric en-

tropy of f with respect to µ, and let λ1(x) > · · · > λr(x)(x) denote the distinct Lyapunov
exponents of f at x, the multiplicity of λi being mi. By Oseledec’s theorem, we know that
Lyapunov exponents are defined µ-a.e. We write a+ = max{a, 0}, and let

λ+
µ :=

∫ r(x)
∑

i=1

λ+
i (x)mi(x) dµ.

Theorem 1. (i) [P], [LS] Let µ be an SRB measure. Then

hµ = λ+
µ .

(ii) [L], [LY1] Conversely, if the formula in (i) holds and hµ > 0, then µ is an
SRB measure.

Remark. Let µ =
∫

µedπ be the ergodic decomposition of µ. If the entropy formula in (i)
holds for µ, then it holds also for π-a.e. µe. (See e.g. [LY1].)

Part (ii) of Theorem 1 together with the remark above is our main tool for identifying
certain invariant measures as SRB measures.

1.2 Random perturbations

Let M be the set of Borel probability measures on M endowed with the weak topology. We
consider a family of transition probabilities X = {p(·|x)} on M ; i.e., associated with each
x ∈ M is a probability p(·|x) ∈ M. By a hopefully benign abuse of language, we will refer
to X as a Markov chain even though no initial distribution is specified. We say µ ∈ M is
an invariant or stationary measure for X if for every continuous function ϕ on M ,

∫

ϕd(Lµ) :=

∫ ∫

ϕ(y) dp(y|x) dµ(x) =

∫

ϕdµ.

Here L : M → M is the transfer operator associated with X , and stationary measures are
precisely the fixed points of L. We consider only Markov chains for which L is continuous.
This together with the compactness ofM ensures that X has at least one stationary measure.
A stationary measure µ is ergodic if the only fixed points of L∗ : L1(µ) → L1(µ) are the
constant functions.

We are primarily interested in Markov chains which are perturbations of dynamical
systems. Let δx denote the Dirac measure at x.

Definition 2. A small random perturbation of f : M → M is a one-parameter family of
Markov chains X ε, ε > 0, given by transition probabilities {pε(·|x) : x ∈ M} which satisfy
pε(·|x) → δf(x) uniformly in x as ε→ 0. We also allow ε to be a discrete parameter, i.e., a
sequence of numbers converging to 0.
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Definition 3. We say µ ∈ M is a zero-noise limit of a small random perturbation X ε of
f if, in the weak topology of M, µ is a limit point of µε as ε → 0 where µε are stationary
measures of X ε.

The compactness of M ensures that every X ε has a zero-noise limit. This limit, in
general, need not be unique. The following is a related notion:

Definition 4. An f -invariant measure µ is said to be stochastically stable with respect to
small random perturbations from a class of Markov chains F if for every small random
perturbation X ε of f in F and every collection of stationary measures µε, µε → µ weakly
as ε→ 0.

Stochastic stability has been studied by many authors; see e.g. [K3]. In the present
paper, we do not begin with an invariant measure µ of f and ask if it is stable. Instead, we
begin with a small random perturbation of f and use it to identify some invariant measures,
namely the zero-noise limits of the perturbation.

Let “µ << ν” be the notation for “µ is absolutely continuous with respect to ν”. The
following is an elementary exercise.

Lemma 1. (1) If p(·|x) << m for every x, then every stationary measure is << m.
(2) Zero-noise limits are f -invariant measures.

1.3 Random maps

We now turn to Markov chains on M defined by compositions of i.i.d. random diffeomor-
phisms. Let Ω = Diffr(M), 1 ≤ r ≤ ∞, denote the space of Cr diffeomorphisms of M with
the Cr topology. Given a Borel probability measure ν on Ω, we define a collection X of
transition probabilities on M by

p(A|x) = ν({g : g(x) ∈ A}).

The associated transfer operator is given by Lµ =
∫

Ω g∗µdν(g) where g∗µ = µ ◦ g−1.
Markov chains of this type have representations as skew products. More precisely, let

θ : ΩN → ΩN be the shift operator and define a map F+ : ΩN ×M → ΩN ×M by

F+(ω, x) = (θω, ω1(x))

where ω = (ω1, ω2, . . .) is an element of ΩN.

Lemma 2. Let X , ν, and F+ be as above, and let µ be a probability on M . Then µ is
stationary/ergodic for X if and only if νN × µ is invariant/ergodic for F+.

This representation makes it possible to define Lyapunov exponents and entropy for
random maps. For each ω = (ω1, ω2, . . .), it is a great convenience to write

ωn := ωn ◦ . . . ◦ ω1.

That is, we identify the probability space with the space of maps and free ourselves of the
usual, somewhat cumbersome notation fnω = fn ◦ . . . ◦ f1, where fi = fi(ω).
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Provided that
∫

log+ ‖Dω1(x)‖ d(µ× νN) < ∞,

where log+ a = max{log a, 0}, Oseledec’s theorem ([O]) guarantees that for (µ × νN)-a.e.
(x, ω), there exist numbers r(x) ∈ N, λ1(x) > . . . > λr(x) ≥ −∞, and a filtration TxM =
V1(x, ω) ⊃ . . . Vr(x, ω) ⊃ Vr+1 = {0}, such that the limit

λ(x, v, ω) := lim
n→∞

1

n
log ||Dωn(x) · v||

exists and is equal to λi(x) for all v ∈ Vi(x, ω) \ Vi+1(x, ω). The numbers λi(x) together
with their multiplicities mi(x) := dimVi(x, ω) − dimVi+1(x, ω) (which depend only on x)
are called the Lyapunov exponents of the random system. If (F+, µ× νN) is ergodic, then
r, λi and mi are constant µ-a.e. The quantity that will appear in our theorems is

λ+
µ :=

∫ r(x)
∑

i=1

λ+
i (x)mi(x) dµ.

Finally, we define a “pathwise” notion of entropy for random maps. Let α = {A1, . . . , An}
be a finite partition of M . As usual, Hµ(α) = −

∑

µ(Ai) log µ(Ai),

Hµ(ω,α, n) = Hµ

(

n−1
∨

i=0

(ωi)−1α

)

, Hµ(α, n) =

∫

Hµ(ω,α, n) dνN(ω),

and

hµ(α) := lim
n→∞

1

n
Hµ(α, n) .

This limit exists and is equal to the infimum over n. A random version of the Shannon-
McMillan-Breiman Theorem implies that for νN-a.e. ω, 1

n
Hµ(ω,α, n) in fact converges to

hµ(α) as n→ ∞. The entropy of the random map process is defined to be

hµ = sup
α

hµ(α).

For more detail, see [K2] and [LQ].

1.4 Local entropy

The following notion was introduced for a single map by Bowen [Bo]. We give the version
for random maps. Let ω = (ω1, ω2, . . .) be a sequence of maps of a space X to itself. For
ρ > 0 and x ∈ X, let

B+(x, ω, ρ) = {y ∈ X : d(ωj(x), ωj(y)) < ρ, j = 0, 1, 2, . . .}.

For δ > 0 and a subset K ⊂ X define r(δ, n,K) to be the minimal cardinality of a (δ, n)-
spanning set of K. (A set E is a (δ, n)-spanning set of K if for every y ∈ K there is an
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x ∈ E such that d(ωk(x), ωk(y)) ≤ δ for all 0 ≤ k < n.) The ρ-local entropy of the sequence
ω is

hloc(ω, ρ) := sup
x∈X

lim
δ→0

lim sup
n→∞

1

n
log r(δ, n,B+(x, ω, ρ))

and for a random map process with law ν, we define

hν,loc(ρ) =

∫

hloc(ω, ρ) dν
N.

Lemma 3. Let µ be a stationary measure for a random map process on M with law ν.
Then for any finite Borel partition α of M with diam(α) ≤ ρ,

hµ ≤ hµ(α) + hν,loc(ρ).

This is the randomized version of Theorem 3.5 in [Bo]. We omit the proof, which is
carried out one sequence at a time and follows closely that for a single map. Note that this
proof uses the finite dimensionality of the phase space.

2 Statements of Results

Let Ω = Diffr(M) for some 1 ≤ r ≤ ∞. For r < ∞, the usual Cr-norm defines a metric on
Ω. For r = ∞, we use the metric d∞(f, g) =

∑∞
s=0

1
2s min(1, ‖f − g‖Cs).

Standing Hypotheses In the rest of this paper, X ε is assumed to be a Markov chain on
M which satisfies

(H1) pε(·|x) << m for every x,

(H2) X ε is defined by i.i.d. random maps with law νε, νε being a probability on Ω =
Diffr(M) for some r.

The following shorthand will be used: “(X ε, µε) → (f, µ0)” means that X ε is a small
random perturbation of f satisfying (H1) and (H2), µε is a stationary measure of X ε (it
may or may not be unique), and µε → µ0 weakly as ε → 0. The support of νε is denoted
by supp(νε). By Lemma 1, if (X ε, µε) → (f, µ0), then µε << m for every ε > 0 and µ0 is
f -invariant.

We remark that given f , it is easy to construct small random perturbations with prop-
erties (H1) and (H2). To demonstrate, let f be Cr and define X ε by random maps of the
form gt = ϕktk ◦ . . . ◦ϕ

1
t1
◦f , where ϕit is the time-t-map of the flow generated by a Cr vector

field Xi, and t = (t1, . . . , tk) is chosen at random from [−ε, ε]k with uniform distribution.
(H1) is satisfied if X1, · · · ,Xk span the tangent space at each point, and (H2) is satisfied
whenever N is a Cr neighborhood of f and ε is small enough. We choose a stationary µε
for each X ε and, if limε→0 µε exists, then we call the limit µ0 and write (X ε, µε) → (f, µ0).
If limε→0 µε does not exist, then we pass to a convergent subsequence µεn → µ0 and write
(Xεn , µεn) → (f, µ0). Either way, µ0 is a zero-noise limit of stationary measures µε << m.
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2.1 A result for C∞ maps

For this result Ω = Diff∞(M).

Theorem A. Let f ∈ Ω, and consider X ε with the property that for all ε > 0, supp(νε) ⊂ N
where N ⊂ Ω is bounded. If (X ε, µε) → (f, µ0), then

lim sup
ε→0

hµε ≤ hµ0 .

Thus,
if lim sup

ε→0
λ+
µε

≥ λ+
µ0
, then hµ0 = λ+

µ0
, (3)

and it follows that almost every ergodic component of µ0 with a positive Lyapunov exponent
is an SRB measure.

Remarks. (1) Theorem A is in fact valid for random perturbations that are not necessarily
supported on a bounded subset of Ω, provided there is suitable control of the tail part of
the distribution. We leave this generalization to the reader. (See [KY].)

(2) We will see in Section 3.1 that the condition in equation (3) above is equivalent to
the continuity of the sum of positive Lyapunov exponents as ε → 0. When this continuity
holds, Theorem A says that zero-noise limits have only two kinds of ergodic components:
SRB measures and measures with no expansion.

(3) This continuity assumption, however, is not always fulfilled, as is evident in the
“figure-eight attractor” depicted below. This attractor supports a unique invariant prob-
ability measure, which perforce is the zero-noise limit of any perturbation. Being a Dirac
measure at the saddle fixed point, it is clearly not of the type described above.

Fig. 1 The figure-eight attractor

2.2 Attractors with dominated splittings

A compact f -invariant set Λ ⊂ M is called an attractor if there is an open set U with
Λ ⊂ U ⊂ M such that for every x ∈ U , d(fnx,Λ) → 0 as n → ∞. We assume that either
Λ = U = M or f(U) ⊂ U , so that if a perturbation is sufficiently localized, i.e., if the
support of p(·|x) is contained in U for all x ∈ U , then X ε|U is a well-defined Markov chain.
We observe that under the conditions above, all zero-noise limits of X ε|U are supported on
Λ.
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Definition 5. A compact f -invariant set Λ ⊂ M is said to have a dominated splitting if
there exists a Df -invariant continuous splitting of the tangent bundle TΛ = E ⊕ K and
constants 0 < τ < 1 and C ≥ 1 such that for all x ∈ Λ,

||Dfn(x)w||

||w||
≤ Cτn

||Dfn(x)v||

||v||

for all non-zero w ∈ K(x) and v ∈ E(x). A shorthand for this is “Df |E > Df |K”.

Let f and Λ be as above, and let µ be an f -invariant Borel probability measure supported
on Λ. We say (f, µ) has no mixed behavior with respect to the splitting E ⊕ K if at
µ-a.e. x, λ(x, u) ≥ 0 for all u ∈ E(x) and λ(x, v) ≤ 0 for all v ∈ K(x). The triple (f,Λ, µ)
with a dominated splitting and no mixed behavior can be thought of as an intermediate
class between Axiom A and fully nonuniformly hyperbolic systems.

Theorem B. Suppose f ∈ Ω = Diff∞(M) has an attractor Λ with TΛ = E ⊕ K and
Df |E > Df |K. Then there is a small neighborhood N1 of f in Diff1(M) for which the
following holds: Let X ε be such that for all ε > 0, supp(νε) ⊂ N ∩ N1 where N ⊂ Ω is
bounded. Let (X ε, µε) → (f, µ0), and assume µ0 has no mixed behavior. Then

hµ0 = λ+
µ0
.

We remark that the domination condition does not imply expanding behavior (consider
e.g. an attractive fixed point or invariant circle), so one cannot hope to deduce the existence
of an SRB measure from the conditions in Theorem B. If λ+

µ0
> 0, however, then it follows

from Theorem 1 that µ0 or some ergodic component of µ0 is an SRB measure. Results
along these lines can be stated without mention of random perturbations. For example:

Corollary 1. Let f ∈ Diff∞(M) be as in Theorem B, i.e., it has an attractor with a
dominated splitting TΛ = E ⊕K. Assume additionally that for every x ∈ Λ,

(i) lim infn→∞
1
n

log ||Dfnx (v)|| ≤ 0 for all v ∈ K(x),

lim supn→∞
1
n

log ||Dfnx (v)|| ≥ 0 for all v ∈ E(x);

(ii) lim supn→∞
1
n

log ||(Dfn|E)x|| > 0.

Then f has an SRB measure.

Corollary 1 is deduced from Theorem B by introducing a small random perturbation of
the type required. See [ABV] for a result in the same direction; the technical hypotheses in
[ABV] and ours differ reflecting the different methods of proof.

We mention next a variant of Theorem B and two of its corollaries.

Theorem B’. The conclusion of Theorem B holds if its hypotheses are modified in the
following way:

(a) Ω = Diff∞(M) is replaced by Ω = Diff2(M), and

(b) the additional condition infρ>0 lim supε→0 hε,loc(ρ) = 0 is imposed on X ε.
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Corollary 2. Let f be a C2 diffeomorphism with a (topologically transitive) Axiom A
attractor Λ. Then

(i) [S1], [R1], [BR] f has an SRB measure µ supported on Λ;
(ii) [K1], [Y1] µ is stochastically stable for all X ε satisfying (H1) and (H2) with

νε supported on a sufficiently small neighborhood N of f in Ω = Diff2(M).

Our second application is to the “almost Anosov maps” studied in [HY]. Let f be a C2

diffeomorhism of the 2-torus with the Anosov property except at a single point p fixed by
f , i.e. TT2 = Ecu ⊕ Es, Df |Es is uniformly contracting, and ‖Df |Ecu‖ > 1 everywhere
except at p where ‖Df(p)|Ecu‖ = 1.

Corollary 3. In the setting of [HY], the Dirac measure at p is stochastically stable for all
X ε satisfying (H1) and (H2) with N sufficiently small.

Theorem B’ is also used in the proof of Theorem C. The results in Corollary 2 are well
known, but our method of proof is new. The result in Corollary 3 is new.

2.3 Partially hyperbolic attractors with dim(Ec) = 1

We state here a result on the existence of SRB measures proved by introducing small
amounts of random noise and letting ε→ 0.

Definition 6. Let f be a diffeomorphism and Λ a compact f -invariant set. We say f is
partially hyperbolic on Λ if there is a splitting of TΛ into three (nontrivial) Df -invariant
subbundles Euu ⊕ Ec ⊕ Ess such that

(i) Df |Euu > Df |Ec > Df |Ess;
(ii) Df |Euu is uniformly expanding and Df |Ess is uniformly contracting.

Theorem C. Let f be a C2 diffeomorphism with a partially hyperbolic attractor Λ. If
dim(Ec) = 1, then f has an SRB measure.

Theorem C is applicable, for example, to open sets that are neighborhoods of (i) time-
one maps of Anosov flows and (ii) products of circle rotations with Axiom A attractors or
Anosov diffeomorphisms.

Remark. We stress that in the hypothesis of Theorem C, no restrictions are made on
the behavior of Df in the subbundle Ec. Of particular interest is the situation where
‖Df(x)|Ec‖ is > 1 for some x ∈ Λ and < 1 for other x, with no a priori information on
which behavior is more dominant. Indeed, it may be that neither is dominant, as we allow
for the possibility that λc = 0. This situation is not treated in previous works such as [PeS],
[BV] or [ABV].

Counterexample with dim(Ec) = 2. The statement of Theorem C is false when
dim(Ec) > 1. An example is f = g × h where g : R

2 → R
2 is the time-one-map of

the flow in Figure 1 and h : T
2 → T

2 is an Anosov diffeomorphism. Here the attractor
of interest is Λ = Λ1 × T

2 where Λ1 is the figure-eight attractor. If the expansion and
contraction of h are sufficiently strong, then Λ is partially hyperbolic with Ec parallel to
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the first factor R
2. Clearly, f has no SRB measures since all invariant probability measures

of f are supported on {p} × T
2 and have two positive Lyapunov exponents.

Some open questions. Theorem C suggests or makes more specific a number of questions
related to recent developments. In the discussion to follow, the map is assumed to have a
partially hyperbolic attractor. Not all of the ideas below are ours.

(1) What additional conditions imply the existence of SRB measures for partially hyperbolic
attractors when dim(Ec) > 1? Is the case dim(Ec) = 2 within reach?

(2) If an SRB measure exists – let us assume to begin with that it has no zero Lyapunov
exponents and perhaps even that dim(Ec) = 1 – under what conditions is it ergodic? Are
the ideas of Pugh and Shub (see e.g. [PuS]) on accessibility and stable ergodicity applicable
in this context (without volume-preservation)?

(3) Does a “typical” SRB measure in the setting of Theorem C have nonzero Lyapunov
exponents? Shub and Wilkinson [SW] and Ruelle [R4] proved recently that for certain
specific volume-preserving partially hyperbolic maps with dim(Ec) = 1, the zero Lyapunov
exponents can be perturbed away. Do these techniques lead to analogous results in the
framework considered here?

(4) Since the hypotheses of Theorem C are robust under (deterministic) perturbations, our
result gives open sets of attractors with SRB measures. Within connected components of
these open sets, it is apparently possible for the unstable dimension to vary. What is the
mechanism? Is the scenario in [RW] relevant?

(5) Finally, how do the ideas of differentiation of SRB measures (see e.g. [D] and [R3]) fare
for partially hyperbolic attractors in general, and in the context of Theorem C in particular?

3 The Main Issues

This section contains a general discussion of the main issues surrounding the continuity of
entropy and Lyapunov exponents as ε → 0 for small random perturbations X ε of f given
by random maps. We assume X ε satisfies (H1) and (H2), let µε be stationary measures
of X ε, and assume µε → µ0. For simplicity of notation, we will write hε instead of hµε and
λ+
ε instead λ+

µε
for ε ≥ 0.

3.1 Four basic relations

1. Relation between hε and λ+
ε for ε > 0. Together with part (ii) of Theorem 1, the following

general result for random dynamical systems lies at the heart of the line of approach in this
paper.

Theorem 2. [LY2] Let ν be a Borel probability measure on Ω = Diff2(M) with
∫

log+ ‖g‖C2 dν(g),

∫

log+ ‖g−1‖C2 dν(g) < ∞,

and let µ be a stationary measure for the process defined by i.i.d. maps with law ν. If
µ << m, then

hµ = λ+
µ .
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2. Relation between h0 and λ+
0 . The following result is known as Ruelle’s Inequality. It is

a general relation not having anything to do with zero-noise limits.

Theorem 3. [R2] Let g : M →M be a C1 map preserving a Borel probability measure µ.
Then

hµ ≤ λ+
µ .

3. Relation between λ+
ε and λ+

0 . As explained in Section 2.1, Theorem A together with
the figure-eight attractor show that λ+

0 > lim supε→0 λ+
ε can and does happen. Jumping

in the other direction, however, is impossible.

Proposition 1. With Ω = Diff1(M) and under the usual integrability conditions, we have

λ+
0 ≥ lim sup

ε→0
λ+
ε .

Proposition 1 will not be used in the proofs of Theorems A, B or C. It is included for
conceptual completeness. A proof is given in Section 3.2.

4. Relation between hε and h0. We explain how, in principle, hε may fail to be either upper
semi-continuous or lower semi-continuous as ε→ 0.

(a) Why we may have h0 > lim supε→0 hε: Suppose for a fixed partition α, hε(α) ≈ hε
for all ε ≥ 0. We fix N with 1

N
Hµ0(α,N) ≈ h0(α). If α is sufficiently nice, then for all

small enough ε > 0, 1
N
Hµε(α,N) ≈ 1

N
Hµ0(α,N). For fixed ε > 0, the subadditivity of

N 7→ 1
N
Hµε(α,N) may cause hε(α) to be smaller than 1

N
Hµε(α,N).

(b) Why we may have h0 < lim infε→0 hε: Even if for every (fixed) partition α, we have
hε(α) ≈ h0(α) for all ε sufficiently small, hε can still jump down as ε → 0 because the
diameters of the partitions αε needed to give hε(αε) ≈ hε may decrease with ε.

Question: Do these scenarios actually occur for reasonable random perturbations?

Proposition 2 gives a condition that prevents (b) from happening; see Sect. 1.4 for the
definition of hε,loc(ρ).

Proposition 2. Assume all νε are supported on a bounded set N ⊂ Diff1(M). If

inf
ρ>0

lim sup
ε→0

hε,loc(ρ) = 0 ,

then
h0 ≥ lim sup

ε→0
hε.

A proof is given in Sect. 3.3.
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3.2 Upper semi-continuity of λ+
ε at ε = 0

First we fix some notation. For x ∈M and 1 ≤ k ≤ dimM , we define

‖ ∧k Df(x)‖ = sup{|det(Df(x)|V )| : V ⊂ TxM,dimV = k},

and

λ(k)(x) = lim
n→∞

1

n
log ‖ ∧k Dfn(x)‖

if this limit exists. The following are immediate:
(i) λ(k)(x) is well defined µ0-a.e.;

(ii) λ+
0 =

∫

maxk{0, λ
(k)
0 }dµ0; and

(iii) facts analogous to (i) and (ii) hold for random maps.

Proof of Proposition 1: This result is a consequence of the subadditivity of n 7→
∫

log ‖ ∧k Dfn‖. The notation “a ≈ b” below means “a and b can be made arbitrarily
close”. The following are the main steps:

(1) First we choose N so that on a set of µ0-measure ≈ 1,

Φ
(k)
N (x) :=

1

N
log ‖ ∧k DfN (x)‖ ≈ λ(k)(x)

for k = 1, · · · ,dimM . Define

ΦN := max{0,Φ
(1)
N , · · · ,Φ

(dimM)
N }.

We observe that ΦN is a continuous function, and that λ+
0 ≈

∫

ΦNdµ0 assuming N is
sufficiently large.

(2) Given δ > 0, choose σ0 > 0 small enough that if ‖gi − f‖C1 < σ0, then for all x ∈M ,

1

N
log ‖ ∧k DgN (x)‖ ≤ Φ

(k)
N (x) + δ

where gN = gN ◦ · · · ◦ g1 and N is as above.

(3) Next choose ε > 0 small enough that

νNε {(ω1, . . . , ωN ) : ‖ωi − f‖ < σ0} ≈ 1.

By making this set sufficiently close to full measure, we can, in fact, ensure that for every
x and k,

∫

1

N
log ‖ ∧k DωN(x)‖ dνN

ε ≤ Φ
(k)
N (x) + 2δ.

(4) For ε as above, we now consider (X ε, µε). Decompose M into disjoint sets A0 ∪ · · · ∪

AdimM where A0 = {λ+
ε = 0} and Ak = {λ+

ε = λ
(k)
ε }, k ≥ 1. Since each Ak is invariant

under X ε, we have, for k ≥ 1,

1

jN

∫

Ak

log ‖ ∧k DωjN(x)‖ d(µε × νN

ε )

≤
1

jN

j−1
∑

i=0

∫

Ak

log ‖ ∧k D(ω(i+1)N ◦ · · · ◦ ωiN+1)(ω
iN (x))‖ d(µε × νN

ε )

=
1

N

∫

Ak

log ‖ ∧k DωN (x)‖ d(µε × νN

ε ).
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Letting j → ∞ and summing over k, we obtain

λ+
ε ≤

∫

M

ΦNdµε + 2δ.

This gives the desired result, for
∫

ΦNdµε →
∫

ΦNdµ0 as ε→ 0 as δ can be chosen arbitrarily
small. �

3.3 Upper semi-continuity of hε at ε = 0

Definition 7. A finite partition P is µ-regular if each P ∈ P has non-empty interior and
µ(∂P ) = 0. The mesh of P is ||P|| = max{diam(P ) : P ∈ P}.

Regular partitions with arbitrarily small mesh may be constructed for any finite measure
µ by choosing appropriate cubes in local charts.

Lemma 4. Suppose µε → µ0 and let β be a µ0-regular partition. Then the following hold
for any fixed n ∈ N and β:

(a) given δ > 0 there exist ε0, σ0 > 0 such that
∣

∣

∣

∣

1

n
Hµε(ω, β, n) −

1

n
Hµ0(f, β, n)

∣

∣

∣

∣

< δ

whenever ε < ε0 and ||ωi − f ||C0 < σ0 for all i ≤ n;
(b)

∣

∣

∣

∣

1

n
Hµε(β, n) −

1

n
Hµ0(f, β, n)

∣

∣

∣

∣

→ 0 as ε→ 0.

Proof: (a) is an easy exercise. To prove (b), we give ourselves an allowed error of 2δ and
choose ε0 and σ0 as in (a). Let Gn = {ωn : ‖ωi − f‖C0 < σ0 ∀i ≤ n}. Then the difference
in (a) integrated over Gn is < δ. We claim the integral over Gcn is also < δ for ε sufficiently
small. This is because the integrand is uniformly bounded, and (νε)n(Gcn) → 0 as ε→ 0. �

Proof of Proposition 2: Let β be a µ0-regular partition of M . For each n > 0, let

δn,β =
1

n
Hµ0(f, β, n) − hµ0(f, β).

Then δn,β > 0, and for fixed β, δn,β → 0 as n→ ∞. Next, we define

δ′ε,n,β =

∣

∣

∣

∣

1

n
Hµε(β, n) −

1

n
Hµ0(f, β, n)

∣

∣

∣

∣

.

The previous lemma states that for fixed β and n, δ′ε,n,β → 0 as ε→ 0.
Altogether we have

hµ0(f) ≥ hµ0(f, β)

=
1

n
Hµ0(f, β, n) − δn,β

≥
1

n
Hµε(β, n) − δ′ε,n,β − δn,β

≥ hε(β) − δ′ε,n,β − δn,β,

13



where the last inequality holds because hε(β) = infn
1
n
Hµε(β, n). We first let ε→ 0 with β

and n fixed, and then let n→ ∞ to find that

hµ0(f) ≥ lim sup
ε→0

hε(β). (4)

Now Lemma 3 (with µε in place of µ and β in place of α) implies

lim sup
ε→0

hε ≤ lim sup
ε→0

hε(β) + lim sup
ε→0

hνε,loc(||β||).

Substitution of (4) into this inequality yields

lim sup
ε→0

hε ≤ hµ0 + lim sup
ε→0

hνε,loc(||β||).

We write ρ = ||β|| and take the infimum over ρ > 0. The assumption in Proposition 2
is precisely that the term involving hε,loc := hνε,loc vanishes. �

4 Proving hµ0
= λ+

µ0

4.1 A recurring theme

Suppose (X ε, µε) → (f, µ0). The discussion in Section 3 suggests that to show µ0 or an
ergodic component of µ0 is an SRB measure, we seek to prove the following relation:

(∗) h0 ≥ lim sup
ε→0

hε = lim sup
ε→0

λ+
ε ≥ λ+

0 .

Once we have this, it follows from Ruelle’s Inequality (Theorem 3) that h0 = λ+
0 . If

this number is positive, the desired conclusion about µ0 follows by a direct application of
Theorem 1 and the remark following it.

For X ε satisfying (H1) and (H2), the equality in (∗) is always valid by Theorem 2.
Proving (∗), therefore, boils down to proving

(∗)(1) h0 ≥ lim supε→0 hε
and

(∗)(2) lim supε→0 λ
+
ε ≥ λ+

0 .

By Proposition 2, (∗)(1) is implied by

(∗)(1′) infρ>0 lim supε→0 hε,loc(ρ) = 0.

In Sects. 4.2 and 4.3, the scheme of proof summarized above is carried out in two
situations. That is to say, we will prove h0 = λ+

0 by either showing, or assuming, (∗)(1′)
and (∗)(2).
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4.2 Proof of Theorem A

Here (∗)(2) is part of the hypotheses, and (∗)(1′) follows immediately from

Proposition 3. Let N ⊂ Diff∞(M) be bounded. Then for every r ∈ Z
+, there exists

ρ0(r) > 0 such that for all ω = (ω1, ω2, · · ·) with ωi ∈ N and ρ < ρ0(r),

hloc(ω, ρ) ≤
m

r
logR1

where m = dim(M) and R1 = sup{‖Dg‖ : g ∈ N}.

To prove Theorem A, then, it remains only to justify Proposition 3.
The corresponding result for the iteration of a single map is known ([Y], [N], [Bu]).

The backbone of this result is a “renormalization theorem” of Yomdin which he used to
prove estimates on local growth rates of ℓ-dimensional volume under the iteration of a
map. Newhouse made the connection between volume growth and entropy growth. Then
Buzzi observed, insightfully, that a small adaptation of Yomdin’s renormalization theorem
can be used to give directly, in a very simple argument, a proof of the single-map case of
Proposition 3. Buzzi’s proof in fact does not make any distinction between random maps
and the single map case provided there is a uniform Cr bound for all the ωi (which we
have). For completeness, we include below a sketch of the ideas involved, and direct the
reader to the respective papers for details.

For the rest of this section m is the dimension of the manifoldM and not the Riemannian
measure on M ; the latter will not appear in this discussion.

Let Q = [−1, 1], and let B(a, r) ⊂ Rm be the ball of radius r centered at a. We take
the liberty to introduce the following language: A Cr map σ : Qℓ → Rm is said to be “Cr-
normalized” if ‖σ‖Cr ≤ 1. Given ϕ : Qℓ → Rm and a set S ⊂ Rm, we say the collection
{ψ1, · · · , ψk} of Cr maps ψi : Qℓ → Qℓ “resolves ϕ on S” if every ϕ ◦ ψi is Cr-normalized
and

S ∩ Image(ϕ) ⊂
k
⋃

i=1

Image(ϕ ◦ ψi).

A resolving collection is easily obtained by choosing a sufficiently large collection of, say,
affine contractions. Yomdin proved that a resolving collection can be chosen with cardinality
bounded by a quantity which depends only on r, ℓ,m, and ||ϕ||Cr .

Theorem 4 (“Renormalization” Theorem) [Y] Given a Cr-normalized map σ : Qℓ →
B(0, 2) and a Cr map ϕ : B(0, 2) → Rm, the number of Cr embeddings ψi : Qℓ → Qℓ needed

to resolve ϕ ◦ σ on B(0, 1) is ≤ C1 ‖ϕ‖
ℓ
r

Cr where C1 = C1(r, ℓ,m).

The proof of Proposition 3 requires only the ℓ = m case of Theorem 4. Also, since
Theorem 4 will be applied only to maps ϕ which are magnifications of ωi, i.e., ϕ = ω̂i :=
χ(ωi(x)) ◦ ωi ◦ χ

−1
x where χx : B(x, ρ) → B(0, 1) is the magnification y 7→ (y − x)/ρ, and ρ

can be chosen as small as we wish, we may assume that ‖Dsϕ‖ << 1 for s ≥ 2 (because
s-derivatives decrease by a factor of ρs−1 when a map is magnified). In particular, the

bound in Theorem 4 may be taken to be C1‖Dϕ‖
ℓ
r .
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Buzzi observed that the Cr embeddings ψi : Qℓ → Qℓ in Yomdin’s Theorem are con-
tracting, i.e., d(ψi(x), ψi(y)) ≤ d(x, y) for all x, y. This will be important in the argument
to follow.

Proof of Proposition 3 assuming Theorem 4 (following [Bu]): We assume for sim-
plicity that M = Rm. For fixed x0 ∈ Rm, we have ω̂i : B(0, 2) → Rm, i ≥ 1, where
ω̂i is the magnification of ωi as explained earlier. Write ω̂k = ω̂k ◦ · · · ◦ ω̂1 and let
B̂n = {x : ω̂i(x) ∈ B(0, 1) for i = 0, 1, · · · , n}. The task at hand is to count the num-
ber of points needed to (n, δ)-span this set for δ arbitrarily small.

To this end, we fix a degree of differentiability r <∞, choose ρ = ρ(r) > 0 so small that

||ĝ||Cr = ||Dg|| for all g ∈ N , and let κ = κ(r) = C1R
ℓ
r

1 , where R1 is as in the statement of
the proposition. For each n ≥ 1, we inductively define a resolving collection Ψn of ωn, with
card(Ψn) ≤ κn:

In the first step, we apply Theorem 4 with ϕ = ω̂1 and σ = σ0 : Qm →֒ B(0, 2) the
inclusion map, to obtain a collection Ψ1 = {ψi} which resolves ω̂1◦σ0 and has card(Ψ1) ≤ κ.
Henceforth we regard σ0 as the identity and repress it.

Suppose, then, that we have a collection Ψn which resolves ω̂n and has card(Ψn) ≤ κn.
For each ψ ∈ Ψn we apply Theorem 4 with ϕ = ω̂n+1 and σ = ω̂n ◦ψ to obtain a collection
Ψ̃ψ of at most κ maps which resolves ω̂n+1 ◦ ψ on B(0, 1). Our desired collection is

Ψn+1 = {ψ ◦ ψ̃|ψ ∈ Ψn, ψ̃ ∈ Ψ̃ψ}.

Now fix a partition Q of Qm into sets of diameter < δ, and let Z be a set of represen-
tatives, one point from each element of Q. We claim that

⋃

ψ∈Ψn

ψ(Z)

is (n, δ)-spanning for ω̂. It suffices to show that

d(ω̂k ◦ ψ(x), ω̂k ◦ ψ(y)) ≤ d(x, y), 1 ≤ k ≤ n,

for every ψ ∈ Ψn and x, y ∈ Qm. So let ψn ∈ Ψn; by construction, for 1 ≤ k ≤ n there is
ψk ∈ Ψk and a (composition of) contraction(s) ψ̃k,n : Qm → Qm such that ψn = ψk ◦ ψ̃k,n
(with ψ̃n,n = identity), so

d(ω̂k ◦ ψn(x), ω̂
k ◦ ψn(y)) = d(ω̂k ◦ ψk ◦ ψ̃k,n(x), ω̂

k ◦ ψk ◦ ψ̃k,n(y))

≤ d(ψ̃k,n(x), ψ̃k,n(y)) ≤ d(x, y),

where we have used that each ω̂k ◦ ψk, being normalized, is also contracting.
We have thus found an (n, δ)-spanning set with cardinality ≤ κncard(Q), hence

hloc(ω, ρ) ≤
m

r
logR1 + logC1.

To get rid of the C1-term, do the usual trick of proving the result above not for ω but for
the sequence ω(q) = (ωq, (θqω)q, (θ2qω)q, . . .) and verifying that

hloc(ω, ρ) ≤
1

q
hloc(ω

(q), ρ) ≤
m

r
logR1 +

1

q
logC1.

Taking q → ∞ yields hloc(ω, ρ) ≤
m
r

logR1 for all ω with ωi ∈ N and ρ < ρ(r). �
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4.3 Proofs of Theorem B and Related Results

Again we follow the scheme in Sect. 4.1. In Theorem B’, (∗)(1′) is assumed. In Theorem
B, (∗)(1′) follows from the C∞ assumptions on f and X ε and Proposition 3. To complete
the proofs of Theorems B and B’, then, it suffices to prove (∗)(2).

Proposition 4. Let f be a C1 diffeomorphism with an attractor on which there is a dom-
inated splitting. If supp(νε) is contained in a C1 neighborhood N1 of f that is sufficiently
small, then

lim sup
ε→0

λ+
ε ≥ λ+

0 .

For simplicity, we prove our results under the assumption that the domination Df |E >
Df |K occurs in one step, i.e. there exists τ < 1 such that for all x ∈ Λ and unit vectors
u ∈ K(x), v ∈ E(x),

‖Df(x)u‖ ≤ τ ‖Df(x)v‖. (5)

The general case follows easily by considering a power of f .

Cone families associated with dominated splittings

We set some notation and recall some relevant facts. Let f and Λ be as in Section 2.2. The
dominated splitting on Λ implies that for every r > 0, the family of cones

C+(x, r) := {v = (v1, v2) ∈ E(x) ⊕K(x) = TxM : |v2| ≤ r|v1|}

is Df -invariant for all x ∈ Λ, meaning Df(x)(C+(x, r)) ⊂ int C+(f(x), τr). For any fixed
r > 0 and τ̂ > τ , this invariant cones property is easily extended to a neighborhood U1 of
Λ. More precisely, we first continuously extend E⊕K to a neighborhood U2 of Λ, and point
out that this extension need not be invariant on U2 \ Λ. Given r > 0 and τ̂ > τ , we can
find U1 ⊂ U2 so that Df(x)(C+(x, r)) ⊂ int C+(f(x), τ̂ r) whenever x and f(x) are both in
U1. By reversing the roles of f and f−1, we have similarly a family of Df−1-invariant cones
C−(x) on U1. Moreover, for the same reasons as above, for all maps g sufficiently near f
in the C1-metric, the cone families above continue to be Dg- and Dg−1-invariant. Having
done all this, we write C±(x) = C±(x, r).

Now let j = dimE, and let Gr(V, j) denote the Grassmannian of j-dimensional sub-
spaces in the vector space V . We define

C+
E (x) := {E′ ∈ Gr(TxM, j) : v ∈ C+(x) ∀v ∈ E′}.

Then clearly, Df(x)(C+(x)) ⊂ int C+(f(x)) implies Df(x)(C+
E (x)) ⊂ C+

E (f(x)). More-
over, if we define the distance between E1 and E2 ∈ C+

E (x) to be d(E1, E2) = ‖L1 − L2‖
where L1, L2 : E(x) → K(x) are the linear maps with Ei =graph(Li), then (5) implies
d(Df(x)E1,Df(x)E2) < τ̂d(E1, E2). It follows that for x ∈ Λ and n > 0, if En ∈
C+
E (f−n(x)) are (arbitrary) trial planes, then Dfn(f−n(x))En converges exponentially fast

to E(x) as n→ ∞. By considering f−1, analogous results hold for the subbundle K.

Proof of Proposition 4: Shrinking U1 if necessary, we may assume f(Ū1) ⊂ U1. We
require that N1 be small enough that all g ∈ N1 satisfy g(Ū1) ⊂ U1 and leave invariant the
cone families {C+} and {C−}.
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Next we introduce the random subbundle (ω, x) 7→ K(ω, x) corresponding to K. (Note
that E(ω, x) does not make sense as its definition depends on the “past”.) For ω =
(ω1, ω2, · · ·) with ωi ∈ N1 and x ∈ U1, we choose for n > 0 trial planes Kn ∈ C−

K(ωn(x))
and define

K(ω, x) = lim
n→∞

(Dωn)−1(ωn(x))Kn.

For the same reasons as in the iteration of a single map, the convergence is exponential, and
the limit is well defined and independent of the choice of Kn. The exponential convergence
implies that K(ω, x) depends continuously on (ω, x).

Now let X ε be such that supp(νε) ⊂ N1, and define

λKε :=

∫

M

∫

ΩN

log |det(Dω1(x)|K(ω,x))| dν
N

ε dµε . (6)

Formula (6) makes sense for ε = 0 as well with ν0 = δf . We observe that λKε → λK0 as ε→ 0.
This is true by the continuity of (ω, x) 7→ log |det(Dω1(x)|K(ω,x))| and the convergence of

νN
ε × µε to νN

0 × µ0. A similar (and simpler) argument gives λTMε → λTM0 as ε→ 0 where

λTMε :=

∫

M

∫

ΩN

log |det(Dω1(x))| dν
N

ε dµε .

Clearly, by the ergodic theorem, λTMε is the integral of the sum of all the Lyapunov
exponents of (X ε, µε) ((f, µ0) in the case ε = 0) counted with multiplicity. By the same
token, λKε is the integral of the sum of the Lyapunov exponents for vectors in the random
subspace K. The “no mixed behavior” assumption on µ0 tells us that λK0 is the integral of
the sum of all the negative Lyapunov exponents. Thus

λ+
0 = λTM0 − λK0 = lim

ε→0

(

λTMε − λKε
)

≤ lim sup
ε→0

λ+
ε ,

the last inequality following from the fact that the sum of any subset of Lyapunov exponents
is no greater than the sum of the positive ones. �

Proof of Corollary 2: SRB measures are constructed by introducing a small random
perturbation and using Theorem B’. Observe that hloc(ω, ρ) = 0 for all ρ < ρ0(f) if all the
ωi are C1 sufficiently near f . In fact, the set B+(x, ω, ρ) (see Sect. 1.4) is contained in the
local stable manifold W s

2ρ(ω, x). This argument shows that every zero-noise limit is an SRB
measure. Stochastic stability follows from the uniqueness of SRB measure on topologically
transitive Axiom A attractors. �

Proof of Corollary 3: First suppose f is C∞. By Theorem B, every zero-noise limit
satisfies hµ0 = λ+

µ0
. This relation holds for δp, the Dirac measure at p; it suffices to show

that it is satisfied by no other invariant measure. Suppose, to derive a contradiction, that
it is satisfied by µ 6= δp. Then µ(M \ O) > 0 for some small neighborhood O of p. Now
|Df |Ecu| ≥ c > 1 outside of O, which implies that λ+

µ > 0. By Theorem 1(ii), µ or some
component of µ is an SRB measure, but it is proved in [HY] that f admits no (finite) SRB
measures.
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If f is only C2, Theorem B’ applies provided the local entropy assumption can be
verified. It is in fact true that for the map f in question, hε,loc(ρ) = 0 for all sufficiently
small ρ. Even though the sign of the larger Lyapunov exponent for the sequence ω is
unclear, one-dimensional W ss-curves are well defined on all of M , and B+(x, ω, ρ) is either
contained in W ss

2ρ (ω, x) or in a one-parameter family of W ss
2ρ (ω, ·)-curves. In the latter case,

local growth in complexity is at most linear. Since this is a simple case of Proposition 6
(with Euu = {0}), details will not duplicated here. �

5 Proof of Theorem C

5.1 The main ideas

The following notation is used throughout: Ecu := Euu ⊕ Ec, Ecs := Ec ⊕ Ess. Standard
uniform hyperbolic theory informs us that invariant manifolds tangent to Euu and Ess exist.
We call them W uu- and W ss-manifolds.

Theorem C asserts that partially hyperbolic attractors with dim(Ec) = 1 have SRB
measures. We begin by explaining why the usual Axiom A construction may not be adequate
here. In this standard construction, one pushes forward Lebesgue measure on a piece of
local unstable manifold. Since uniform expansion is needed, and we only have knowledge of
uniform expansion on W uu-leaves, this construction gives only an invariant measure µ with
absolutely continuous conditional measures on W uu-manifolds. If the Lyapunov exponent
of (f, µ) in the Ec-direction is ≤ 0 µ-a.e., then µ is an SRB measure by definition; otherwise
information in the Ec-direction is needed. This information is not available from either our
hypothesis or the above construction.

As announced in the introduction, we will obtain an SRB measure for f as (an ergodic
component of) a zero-noise limit. To this end, we choose a small perturbation X ε of f such
that supp(νε) ⊂ N where N ⊂ N1 ∩ N2: N2 here can be any bounded subset of Diff2(M);
N1 is a sufficiently small C1-neighborhood of f . For reasons to become clear in Sect. 5.2,
we require further that for each ε > 0, the density of pε(·|x) is strictly positive on the ε-disk
centered at f(x) for every x. Such perturbations are easily constructed (see the beginning
of Section 2).

The two main ingredients of our proof are:

Proposition 5. Every zero-noise limit µ0 of X ε has absolutely continuous conditional mea-
sures on W uu-leaves.

Proposition 6. For all small enough ρ > 0, hloc(ω, ρ) = 0 for all ω ∈ NN.

We note that Proposition 6 hinges on the fact that dim(Ec) = 1, although this is not
the only place where this assumption is used.

Proof of Theorem C assuming Propositions 5 and 6: Let µ0 be a zero-noise limit
of X ε where X ε is as above. From Proposition 5, it follows that if A := {x : λ(x, v) ≤
0 ∀v ∈ Ec(x)} has positive µ0-measure, then we are done, for µ = µ0|A normalized is an
SRB measure. We assume therefore that f has a positive Lyapunov exponent in the Ec

direction µ0-a.e. Letting E = Ecu and K = Ess, we now find ourselves in the setting of
Theorem B’, with (f, µ0) having no mixed behavior with respect to E ⊕ K and with the
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zero local entropy property (*)(1’) given by Proposition 6. Since µ0 has positive Lyapunov
exponents by definition, we conclude that it is an SRB measure. �

As to how small a neighborhood of f the set N1 has to be, for a start we need to be able
to choose an open set U1 with Λ ⊂ U1 ⊂M such that for all g ∈ N1, g(Ū1) ⊂ U1 and Dg and
Dg−1 leave invariant cone families that extend those on Λ. More precisely, Dg is required
to preserve cone families Cuu and Ccu, which are defined analogously to C+ in Section 4,
with E = Euu and K = Ecs for Cuu, and E = Ecu and K = Ess for Ccu. Similarly, Dg−1

is required to preserve Ccs and Css. Lemmas 6 and 7, which contain stable-manifolds type
estimates, may require that we shrink N1 and U1 further.

5.2 Conditional measures of µ0 on W uu

Suppose (X ε, µε) → (f, µ0). To prove that µ0 has absolutely continuous conditional mea-
sures on W uu, we show that µε, or, more accurately, the inverse limit of µε, has this
property for every ε > 0, and then let ε→ 0. The following is the two-sided version of the
construction in Section 1.3.

Let θ : ΩZ → ΩZ be the shift operator, and define F : ΩZ ×M → ΩZ ×M by

F (ω, x) = (θ(ω), ω1(x))

where ω = (· · · , ω−1, ω0, ω1, ω2 · · ·). Given ω, we let ω(+) = (ω1, ω2, · · ·) and ω(−) =
(· · · , ω−1, ω0) denote the future and past of ω respectively. For n > 0, we write ωn =
ωn ◦ · · · ◦ ω1 and ω−n = ω−1

−(n−1) ◦ · · · ◦ ω
−1
0 .

The constructions below are reminiscent of those in [Y1].

Proof of Proposition 5: Corresponding to each ω ∈ NZ, we write Mω := {ω}×M , and
let Λω ⊂Mω be given by

Λω :=
⋂

n≥0

(θ−nω)n(Ū1).

Then at each x ∈ Λω, Euu(ω, x) ⊂ TxM is well defined, with Euu(ω, x) varying continuously
with (ω, x). The same proofs as in the single map case give W uu

δ -disks (i.e. local W uu-
manifolds of radius δ) with uniform estimates at every ω ∈ NZ and x ∈ Λω. Global W uu-
manifolds are defined accordingly. We have on each Mω, therefore, a “random attractor”
laminated by “random W uu-manifolds”. Note that both Λω and its W uu-leaves depend
only on ω(−).

To make precise the idea of a measure on NZ ×M having absolutely continuous con-
ditional measures on W uu-leaves, we introduce the idea of a canonical neighborhood in
⋂

n≥0 F
n(NZ × M). Let Σ ⊂ M be an embedded disk having dimension dim(Ecs) and

uniformly transverse to the W uu-leaves on every Mω. For δ > 0, let

U = UΣ,δ := {(ω, y) ∈ NZ ×M : y ∈W uu
δ (ω, x) for some x ∈ Λω ∩ Σ} .

The set U , then, is partitioned measurably by W uu
δ -disks. Let µ be a measure on ΩZ ×M

with µ(U) > 0. We let (µ|U )uu denote the conditional measures of µ|U with respect to this
partition, and let muu denote the measure corresponding to the Riemannian volume on
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W uu-disks. The precise meaning of the statement “µ has absolutely continuous conditional
measures (accm) on W uu-leaves” is that for every canonical neighborhood U with µ(U) > 0,
(µ|U )uu is absolutely continuous with respect to muu on the W uu

δ -disk containing µ-a.e.
(ω, x). Let q be the densities of (µ|U )uu with respect to muu. We say q has uniform bounds
if there exists C depending only on f and on δ such that C−1 ≤ q ≤ C for every U as above.

The bulk of the work in proving Proposition 5 is contained in the following lemma. Let
πΩZ : ΩZ ×M → ΩZ and πM : ΩZ ×M →M be projection maps.

Lemma 5. Given ε > 0 and a stationary measure µε of X ε, there is an F -invariant Borel
probability measure σε on ΩZ ×M with the following properties:

(1) σε has accm on W uu-leaves with uniform density bounds;
(2) (πΩZ)∗(σε) = νZ

ε and (πM )∗(σε) = µε.

We first finish the proof of Proposition 5 assuming Lemma 5. Since (X ε, µε) → (f, µ0),
we have, passing to a subsequence if necessary, σε → σ0 for some σ0. Hence (πM )∗(σ0) = µ0,
and σ0 is supported on the fiber ω = (. . . , f, f, f, . . .). The uniform density bounds for the
conditional measures on W uu-leaves for σε are passed to σ0. This is equivalent to µ0 having
accm on the W uu-leaves of f . �

Proof of Lemma 5: By our impositions on pε(·|x), µε has at most a finite number of
ergodic components living on disjoint open sets. Since the argument below is carried out
for one ergodic component of µε at a time, we may as well assume µε is ergodic.

Fix a past ω̂(−) = (· · · , ω̂−1, ω̂0) with ω̂i ∈ N , and remembering that W uu
δ -disks on Mω

are determined entirely by ω(−), we let γ be a W uu
δ -disk on Mω where ω(−) = ω̂(−). We

choose γ, in fact, so that (πM )∗(γ) lies in the interior of the support of µε. Let mγ denote
the normalized Riemannian measure on γ. We push forward using F the measure

σε0 := (δω̂(−) × νN

ε ) ×mγ

where δω̂(−) is the Dirac measure on ΩZ\N concentrated at the sequence ω̂(−). More precisely,
we let

σεn =
1

n

n−1
∑

i=0

F i∗(σ
ε
o),

and let σε be a limit point of σεn as n→ ∞. It is easy to see that (πΩZ)∗(σε) = νZ
ε .

To see that σε has accm on W u-manifolds, we observe that this property is enjoyed by
Fn∗ (σεo) for all n > 0 (the proof is the same as that for a single map; it uses the bounded
distortion of Dωi along W uu-leaves, a property guaranteed by uniform expansion and the
presence of a uniform bound on C2 norms). These uniform density bounds are therefore
valid for each σεn and passed on to σε.

To show that (πM )∗(σε) = µε, we first prove that (πM )∗(σε) is an invariant measure
for X ε. To prove the invariance of (πM )∗(σε) is equivalent to showing that it projects onto
a product measure on ΩN × M (see Lemma 2 in Section 1.3), or, equivalently, that its
conditional measures on Mω are independent of ω(+). We claim that this is true by design:
for each n > 0, Fn∗ (σεo) lives on Mω-fibers with the property that ωi = ω̂i+n+1 for all i ≤ −n.
On each such Mω, the conditional measure of Fn∗ (σεo) is (ω0 ◦ ω−1 ◦ · · · ◦ ω−n)∗(mγ), which
evidently does not depend on ω(+).

21



It remains to show that (πM )∗(σε) = µε and not some other invariant measure of X ε.
This is true because (πM )∗(F

i
∗(σ

ε
0)) is the distribution of the ith step of X ε if the initial

distribution is normalized Lebesgue measure on (πM )∗(γ). �

5.3 Local entropy is zero when dim Ec = 1

It remains to show that if N is a sufficiently small neighborhood of f , then there exists ρ∗ > 0
such that hloc(ω, ρ

∗) = 0 for all ω ∈ NN. The idea of our proof is as follows: For ρ sufficiently
small, we show that B+(x, ω, ρ) is contained in an embedded disk through x having the
dimension of Ecs and roughly parallel to it. Moreover, since Ec is one-dimensional, the W ss-
leaves which foliate this submanifold are linearly ordered, and application of ωi preserves
this ordering. With f contracting on W ss-leaves, we show that the action resembles that
of an interval homeomorphism, and hence the growth in complexity is at most linear.

Proof of Proposition 6: First we fix some notation. Let U1 be as at the end of Sect.
5.1. For x ∈ U1, let Euuρ (x) denote the closed disk of radius ρ in Euu(x); Ecρ(x) and Essρ (x)
are defined similarly. Let Eρ(x) = Euuρ (x) × Ecρ(x) × Essρ (x), and let expx : TxM → M be
the exponential map at x. We fix ρ0 small enough for purposes of Lemmas 6 and 7 below.
For g ∈ N and x ∈ U1, let

g̃x := exp−1
gx ◦ g ◦ expx : Eρ0(x) → TgxM.

The arguments in this proof are entirely local. We will, for each pair (x, ω), work exclusively
in the charts {Eρ0(ω

jx)}j=0,1,2,··· via the chart maps (ω̃j)ωj−1x : Eρ0(ω
j−1x) → TωjxM .

With the metrics in these charts being uniformly equivalent to the Riemannian metric on
M , it suffices to prove our zero local entropy result for (ω̃j)x. For simplicity of notation,
then, we will henceforth identify Eρ0(ω

jx) with expωjx(Eρ0(ω
jx)) and drop the tildes.

We begin with the following technical lemma.

Lemma 6. There exist ρ1 and ρ∗ with 0 < ρ∗ < ρ1 < ρ0 for which the following hold for
all x ∈ U1 and ω ∈ NN. Let (x, ω) be fixed. Then for each j ∈ {0, 1, 2, · · ·}:

(a) (Local W cs-manifolds) There exists ϕj : Ecsρ1(ω
jx) → Euuρ1 (ωjx) with ϕj(0) = 0 and

||Dϕj || <
1
10 so that if Σj is the graph of ϕj , then

(i) B+(x, ω, ρ∗) ⊂ Σ0;

(ii) ωj(Σj−1) ∩Eρ1(ω
jx) ⊂ Σj.

(b) (Local W ss-manifolds) For all y ∈ B+(x, ω, ρ∗), there exists ψy : Essρ1(x) → Ecuρ1 (x)

with ||Dψy|| <
1
10 such that

(i) W ss
loc(y) ∩Eρ1(x) = graph(ψy) := W ss

ρ1
(y);

(ii) ωj(W ss
ρ1

(y)) ⊂ (Σj ∩Eρ1(ω
jx)) ∀j ≥ 0.

We omit the proof of this lemma, which follows from standard graph transform argu-
ments. Let

B̂(x, ω) =
⋃

y∈B+(x,ω,ρ∗)

W ss
ρ1

(y) .
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Notice that (i) B̂(x, ω) ⊃ B+(x, ω, ρ∗), so it suffices to bound the cardinality of (n, δ)-
spanning sets on B̂(x, ω); (ii) geometrically, B̂(x, ω) is the disjoint union of W ss

ρ1
-disks; and

(iii) ωj(B̂(x, ω)) ⊂ Σj for all j, so its future iterates are well controlled.
Let γ = Ecuρ1 (x)∩Σ0. Then γ is a curve that meets every W ss

ρ1
-disk in B̃(x, ω) in exactly

one point. Let γ̃ = γ ∩ B̃(x, ω), and fix arbitrary δ > 0. Let r(δ, n,K) denote the minimal
cardinality of an (n, δ)-spanning set in K (see Sect. 1.4). Then

r(δ, n, B̃(x, ω)) ≤ C(
ρ1

δ
)k r(δ, n, γ̃) where k = dimEss.

The problem is thus reduced to estimating r(δ, n, γ̃).
Our next lemma gives control of the geometry of ωj(γ̃) for all j ≥ 0. For y ∈ Eρ0 , let

y = (yuu, yc, yss) be the coordinates with respect to Euu ⊕ Ec ⊕ Ess.

Lemma 7. For y, z ∈ γ and n ∈ N, if ωjy, ωjz ∈ Eρ1(ω
jx) for all j ≤ n, then

(i) ||(ωny − ωnz)uu|| < 1
10 ||(ω

ny − ωnz)c||;
(ii) ||(ωny − ωnz)ss|| < 1

10 ||(ω
ny − ωnz)c||.

(i) follows from the fact that ωny, ωnz ∈ Σn, and ||Dϕn|| <
1
10 (see Lemma 6(a)). (ii) is

proved inductively using the fact that Df |Ec dominates Df |Ess.
From Lemma 7, we see that γ̃ is either a point (in which case we are done) or it is a

connected curve segment with the property that for all j ≥ 0, ωj(γ̃) has length ≤ 2ρ1. To
estimate r(δ, n, γ̃), we put 2ρ1

δ
points, evenly spaced, along the length of each ωj(γ̃), and let

Sn be the union of the pull-back to γ̃ of all the points on ωj(γ̃), j ≤ n. Then Sn is clearly
an (n, δ)-spanning set for γ̃, and its cardinality is 2ρ1

δ
n. �
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