Temperature Profiles in Hamiltonian Heat Conduction
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We study heat transport in the context of Hamiltonian andteel stochastic models with nearest-neighbor
coupling, and derive a universal law for the temperaturdilpsoof a large class of such models. This law con-
tains a parametax, and is linear only wheiwr = 1. The value ofx depends on energy-exchange mechanisms,
including the range of motion of tracer particles and theies of flight.
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In nonequilibrium physics, the Fourier law is an example ofwith nearest-neighbainteraction (including those considered
a simple phenomenological principle whose molecular origi in (A)). We show that as the number of constituent cells goes
is very hard to explain. Idealizing homogeneous thin rodk anto infinity, the stationary temperature profile is given by
wires with uniform cross-section as 1-D objects, this lawssa
that heat flux is proportional to temperature gradient times T(x) = (TLO’ +(T§ _TL")x) Ya Q)
heat conductivity. Ever since Fourier’s pioneering work [1
physicists have tried to derive this law from first principle whereT. andTg are the temperatures imposed at the left and
The current state of the art is summarized in the excellentight endsx is the coordinate along the system (normalized to
reviews [2—4], which all point to the need for a deeper thex € [0,1]), anda is a constant. The form of this law does not
oretical understanding beyond the many existing models andepend on details of the system (precise conditions ar@give
simulations. In this Letter, we report on new results fotaier ~ later). The value otr in (1), however, depends on the nature
types of Hamiltonian systems and their stochastic readimat  of the coupling.[18]

To study the Fourier law in a Hamiltonian context, the most [N the case of locked-in tracerisg,, tracers confined to the
common setting is that of a chain of identical units comrise r€gions between neighboring ESD, the valueraiepends on
of disks, plates, penduli, and the like, coupled with shamge  their ime of flight In particular.a = 3 if the energy is purely
forces between them. At its two ends, the chain is coupled t§in€tic. In the case of a single tracer moving freely alorg th
mechanisms simulating heat baths maintained at two differe ¢hain,a = 1 independent of its time of flight. We show the
temperatures. Because the components of the chain are iderf€Sults above for stochastic realizations of the model&)n (
cal, one may expect heat conductivity to be constant aloag thand explaln yvhy one should expect these results to carry over
chain, so that by Fourier’s law, the temperature profileris | 0 their Hamiltonian counterparts.
ear. This seems to be the predominant thinking behind much Our primary concernin this Letter is the temperature profile

of the recent work on Fourier's Law, although nonlinear pro-(TP). The existence of local thermal equilibrium (LTE), whi
files are known to occur in other contexts [5]. is important for the definition of temperature, will be prdve

In this Letter we point out some simple and natural mechalhn [8] |nFthe |nf|n||tte voltj%efllmlttlf]or one(;JfIthe mo%eli]t-redte
nisms that lead to various profiles — both linear and nontinea ere. (For resu S on or other models, see[_ g ]').
Before embarking on specifics, we note again that in our

— in concrete Hamiltonian models, and derive a universal law T -
for the profiles of these and other systems. models, we distinguish betweenmmunicating agen(€A),

which in our case are tracer particles, and ESD, which in our
Summary of results case are turning disks with fixed centers (we emphasize that
(A) We consider Hamiltonian models consisting of a chainthe ESD arotinfinite reservoirs). In a real-world conductor,
of energy storing deviceESD) that are fixed in place and the difference between CA and ESD is often blurred, but for a
coupled to each other. For such a setup, we show that thgood theoretical understanding it is useful to keep therasep
temperature profile can be linear or nonlinear depending opate. These concepts are distilled from the following biéalut
the nature of the coupling. More specifically, we assume thagodel:
energy exchange in the system is mediatetragers, which The MLL Model [6, 7]: We describe this model in some
move from ESD to ESD redistributing energy according todetail, as it contains the basic ingredients of the model&)n
the rules introduced in [6, 7]. We find thtite profile is lin-  The MLL Model is purely Hamiltonian, and very careful sim-
ear if energy transfer is carried out by a single tracer that y|ations show that the Fourier law holds. The system caisist
moves freely along the chain, whereas heat conductivity igf an arrangement dfl disks of radius 1 placed as in Fig.1,
temperature-dependent (and hence the profile is nonliriéar) and a little point particle of mass 1 (the tracer) which wan-
the tracers are confined to specific regions. ders around the playgrour (the physical space occupied
(B) Our second result is aniversal lawthat holds for very by the system minus the disks), bouncing off the disks [19].
general coupled chains of Hamiltonian or stochastic systemWhile Fig.1 suggests a Lorentz gas [12], there is a crucfal di



as in the MLL Model. However, the configurations of disks
N N> N and tracers in these two models are chosen to give rise to two
e @ @ conceptually very different modes of transport.
Q Model | (Wandering tracer): A single tracer wanders
\

along a chain of boxes separated by walls with a tiny hole that
- @ ~— @ == @ == allows the tracer to pass between adjacent boxes. Deeginsid

each box is a turning disk surrounded by many fixed disks.
The turning disk serves as ESD, while the fixed disksamea
FIG. 1: A typical arrangement of disks in the MLL Model. Thensi  fije| orentz scatterers, which serve to randomize the angles of
ulations in 7] were done with 2 rows and periodic boundargdio ., e nca in collisions between the tracer and the turnisigd
tions in the vertical direction, and zig-zag reflecting wailf temper- . .
atureT, , resp.TR, at the two ends. The tracer particle is not shown. I_eadlng to the exchange of a random portioe.(the tangen-
tial component) of the energy of the tracer. The smallness of
the holes in the separating walls keeps the tracer in each box
ference here: Each disk is “nailed down” in its center, atbun for @ long period. This together with the chaotic action af th

which it turns freely. The state of the system is described by-Orentz scatterers ensures that the tracer is equallyylitcel
x= (..., N, q,v) wherea is the angular velocity of disk  €Xit the box from either side [20].

i, g€ Qis the position of the tracer, amds its velocity. When ~ Stochastic realizationWe model this system on a 1-D lat-
the tracer collides with a disk, the rule of interaction iattbf ~ tice with N sites. There is a random variabfe represent-
“sticky reflection”: Suppose the angular velocity of thekdis ing the energy at sitg i = 1,...,N, with values in[0, ).

being hit isw, andv, andy; are the normal, resp. tangential, The heat baths at the ends are modeled by stochastic vari-

componentof relative to the impact point. Then the values of ablesé, and &g which take values ir0, ) with a distribu-
v andw after the collision are given by the energy and angulation To exp(—&./T.), resp.Trexp(—&r/Tr) (the Boltzmann

momentum conserving law constankg being set to 1). We identif§, with the variable
&o, andér with &y.1. There are two more random variables,
Vo— v V= v ﬁ(v _w) n, to be thought of as the energy of the tracer, anahich
n neon Tige ! ’ gives the location of the tracer at any given time. We assume

that when the tracer is at sitgit interacts withé;. At a sitei,
i ¢ {0,N+1}, the action is as follows: There is a clock which
rings with ratef, for examplef =n~%2or (n +&) /2, rep-
Here,e € R™ is proportional to the moment of inertia of the resenting the time it takes for the tracer to make its wayrdou
disk divided by the mass of the tracer and the square of theéhe ith box. When the clock rings, the following mixing of
radius of the disk. [7] treats mostly the case 1, wherevy = energies takes place [21]: Choose a random variphigth
wandw' = v, i.e, the two quantities are simply exchanged. uniform distribution in[0, 1]. Then,
Of particular interest to us is the casex 1, which from the
tracer’s point of view resembles the classical Lorentz gas. n'=pé&+n), &=0Q-p(&+n). (3)
Remark.The MLL Model, as well as the Hamiltonian mod-
els we will describe later, have the following importantjpro If i = 0, thenn is replaced by a value chosen from the ex-
erty: Since there is only a hard-core potential, the timdlevo ponential distribution for the temperatufe. The rule at the
tion of the system isescaledby v/A when the energy of the right end { = N + 1) is similar. After these operations, the
particle and the disks are rescaled by In this respect, the tracer jumps with probabilit% toi—21ori+1—exceptwhen
model in [7] is very different from models such as the ding-it is at the ends, in which case it stands still with probapili
a-ling and ding-dong models [13—-15]. Most importantly, the% or moves into position 1 (resfN) from the boundaryWe
energies of the tracer and the disks alone determine the tim@rove in [8] that for all such models, the TP is linear and the
of-flight of the tracer: It does not depend on the history {as i distributions of the; satisfy LTE.
would in many models considered so far [13-15]). Model Il (Locked-in tracers): In this model there is a
We still need to say what happens when the tracer hits onehannel one-disk wide, with reflecting boundaries, and with
of the ends. In [7], many variants are considered, but for outurning disks located at fixed distances apart. These disks t
purpose, the following process is assumed: When the tracdreely, but they block the channel completely, separating i
hits one of the ends, it exits the system, and a new tracer igito individual cells. Inside each cell is a single tracehjein
injected intoQ to take its place. The new tracer ent€sat  moves back and forth, transferring energy between the turn-
the point of exit of the old one. Its direction is arbitrargkits  ing disks that border the cell [22]. Here one can assume the
speed is given by the Maxwell distribution for the temperatu tracer hits the two turning disks alternately, or, to furttan-
of the end in question. domize the situation, one can add a number of fixed disks in
Introducing the models studied in this Letter: We now  each cell as illustrated in Fig. 2. After hitting one turnfigk,
introduce two classes of models that have the same basjt setthe tracer then “gets lost” in this array of Lorentz scattere
of tracers and turning disks (and the same rules of intenacti to emerge at some random moment to hit the turning disk at
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FIG. 2: A sketch of Model Il, when it is made more chaotic. Beén 0 05 1 X

the rotating disks, there are disks serving as Lorentzesestt. The

tracers are not shown. The horizontal walls are reflecting. FIG. 3: The mean values ¢ andn, as a function ok = i/N, with

T. =1, Tr = 10,N = 100, averaged over-20° exchanges of energy
according to Model Il. Superposed is the theoretical cufiemp(1).

. . . . ) Note that the temperature profilenst linear and that its curvature
either side with equal probability. In both cases, the tofte-  is more pronounced at the cold end. Heres 3. We have obtained
flight of the tracer between hitting turning disks dependyg on the same profile for many variants of Model I1.

on the speed of the tracer (and not on the state of the disks).

Stochastic realizatiaiWe haveN sites on a 1-D lattice as in
the previous stochastic model, wihrepresenting the energy (1) E; is determined byg; ; andE;_1; (111) energy-scale in-
of the turning disk at site In this model, however, there is one variance, meaning i1 are multiplied byA, thenE; is also
independent variablg; for each pair(i,i+ 1), i =0,...,N, multiplied by A; (iv) asN — o, the TP tends to a smooth
representing the energies of the tracers. Each site isgedip function. Itis not hard to show that (1)—(1v) imply that theit
with an (independent) clock which rings at an exponenti& ra stationary density satisfies a second order differentizhggn
proportional tonifl/z_ When this clock rings, an exchange of (namely 6), the solution of which with boundary conditidis
energy involving); takes place. As in the Hamiltonian model, andTr is (1).

one may assumg; exchanges energy alternately w§hand
&1 1, or, ni chooses with probabilitg its left or right partner

(i.e., & oré& 1), and performs the usual mixing: For example,

if & has been chosen, then

ni=p&+n), &=@Q-p(&+n). 4)

We demonstrate how to derive this law — and compute the
constanix at the same time — for Model Il

Computing the temperature profile in Model 1l. Con-
sider 3 successive sites. For illustration we assume (f eac
tracer visits alternately the left and right disks and (gt
mixing of energies at each collision is exactly half-andi:zha
The stationarity condition means that the speed of thettiace

When the clock at site O ringgo is replaced by a value chosen gqyilibrated as well. Let the mean energy of the left tracer b

from the exponential distribution of temperat(ieas before.
The rule at the right end & N + 1) is similar. Numerical
simulations show clearly profiles deviating strongly fran |
earity. They are in perfect agreement with the value ef %’

predicted by theorysee Fig.3 and the sketch of argument be-

low).

The qualitative shape of the nonlinear profile can be unde

stood easily by considering 3 successive sites, &ay, &,
and &, 1. Sinceéj_1 < &1, niy1 rattles faster tham; (the

rate being given by)~1/2). Thusé&; equilibrates more often,

and hence better, with_ ; than withé&;_1, which explains the
concavity of the TP.

We next present some details of the theoretical argumen

for the results above [8]:
Reduction from Hamiltonian to stochastic models As

dynamical systems, the Hamiltonian models above are ver

chaotic. Withe in the MLL Model taken to be« 1, the dy-

namics are close to those in billiards of Sinai type and Ltzren
gases. This chaotic behavior is used to induce a strong “mem-

ory loss” for the tracer particles. Fast correlation decEgj [

r-

n-— as it heads toward siieandn_ _ as it goes away from
it. By the rule of mixing, we have)_ _, = (n- — +Ei_1),
N-.— = (N-— +E), leading ton- . = (261 + E)/3,
n-= (Ei,1+2Ei)/3.

We assume the speed of the traceEYswhenE is its en-
ergy. The value ofy for Model Il as described above (and
many other models without potential) ys= % (since the en-
ergy is purely kinetic) while for potential interactionettime
is given by an integral of the forrfidg (E —V(q)) /2, which
for largeE andV(q) ~ |q|™ behaves likeo’(E~1/2t1/m) so

1 L1 Fixing y, the average time for a round-trip

of the tracer between sites- 1 andiist- = n_" +n_"_|

$hd the rate at which sitegets information from the left is

the inverse of this quantity. An entirely analogous reasgni
applies on the 4" side. From the stationarity condition, we
et

Y E+n-)/2+ 1 E+nyo)/2 _

E' =
' (SRR

(5)

ensures that the tracer “forgets” from which side it enters a ) ) o
site. This justifies our assumption in the stochastic mduit Perform a perturbative analysis at the point i/N where
the fraction of energy exchanged is independent from ome st\ i Very large. Then, to second orderdn=1/N, Eix1 =
t0 the next. T(x) £ €T'(X) + 2€2T"(x) , and (5) leads to

Range of validity of (1). We consider a coupled chain of
lengthN in a steady state, and IEf be the mean temperature
at sitei. We assume (i) translation invariance of the model,

T T )+ y(T'(%)°

4T (x)

t=T(X)+¢ +0(e%) .
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SinceE; must be equal t@ (x), we find Conclusion. (1) We have pinpointed some simple and very
5 natural mechanisms responsible for both linear and naaline
T )T (X) = —y(T'(x)", (6)  profilesin homogeneous conductors modelled by Hamiltonian

. ) ) N systems. (2) We have derived an exact formula — a universal
the solution of which with boundary conditiofig0) = T and  |aw — for the energy profiles of very general Hamiltonian and
T(1) = Tris Eq.(1) witha = 1+y. Thus for Model Ily=3  stochastic chains with nearest-neighbor interactions.eih
anda = 3. One also checks that the energy flux is givennonlinear, this law predicts how deviation from linearity i
by T'(x)v/T(x) (which is constant along the profile, bubt  creases with the quotiefik/T.. (3) Finally, the underlying
proportional to the temperature difference). causes for nonlinearity that we have identified clearly go be

Generalization.Note that whery = 0, i.e., when the rate  yond the models studied here. They suggest that the presence
at which information is exchanged is independent of energypf some (weak) nonlinear effect may be a more common phe-
thena = 1, which indeed gives a linear TP. Note also that ournomenon than recognized when very disparate temperatures
derivation is quite general: EY is replaced by 1F(E), the  are imposed at the two ends of a 1-D system.
profile is given byT” (X)F (T (x)) = (T/(x))ZF/(T(x)).

Remark. Many authors have done careful simulations of , . S
models that are close to Model Il, and have observed Iinear_Acknquedgments. W? have proﬁt_ed from illuminating
TPs. It should be noted that the profiles predicted by (1) ar%ISCUSSIOnS with C. Mejia-Monasterio, D. Ruelle, L. Rey-

: ; llet, O. Lanford, Y. Avron and many others. JPE wishes
very close to linear whemr /T, is not far from 1. Our theor eliet, ! ) o
y /T y - to thank the Courant Institute and IHES for their kind hos-

redicts that deviations from linearity become more promi- . " . ) .
predi viatl I i promi pitality. This research was partially supported by the Fond

nent with the increase di/T,. . ! .
Linear profile and LTE for Model I. The reasoning above National Suisse and NSF Grant #0100538.
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