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Abstract
This paper reviews some basic mathematical results on Lyapunov exponents,
one of the most fundamental concepts in dynamical systems. The first few
sections contain some very general results in nonuniform hyperbolic theory. We
consider ( f , μ), where f is an arbitrary dynamical system and μ is an arbitrary
invariant measure, and discuss relations between Lyapunov exponents and
several dynamical quantities of interest, including entropy, fractal dimension
and rates of escape. The second half of this review focuses on observable
chaos, characterized by positive Lyapunov exponents on positive Lebesgue
measure sets. Much attention is given to SRB measures, a very special kind of
invariant measures that offer a way to understand observable chaos in dissipative
systems. Paradoxical as it may seem, given a concrete system, it is generally
impossible to determine with mathematical certainty if it has observable chaos
unless strong geometric conditions are satisfied; case studies will be discussed.
The final section is on noisy or stochastically perturbed systems, for which we
present a dynamical picture simpler than that for purely deterministic systems.
In this short review, we have elected to limit ourselves to finite-dimensional
systems and to discrete time. The phase space, which is assumed to be R

d

or a Riemannian manifold, is denoted by M throughout. The Lebesgue or the
Riemannian measure on M is denoted by m, and the dynamics are generated
by iterating a self-map of M, written f : M �. For flows, the reviewed results
are applicable to time-t maps and Poincaré return maps to cross-sections.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to
applications’.

PACS number: 05.45.−a

1. Nonuniformly hyperbolic systems

We begin with a quick review of the setting of nonuniform hyperbolic theory, mostly to fix
notation but we will also take the opportunity to bring up some issues.
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Given a differentiable map f : M �, a point x ∈ M and a tangent vector v at x, we define

λ(x, v) = lim
n→∞

1

n
log |D f n

x (v)| if this limit exists; (1)

and if it does not, then the limit is replaced by lim inf or lim sup, and we write λ(x, v) and
λ(x, v), respectively. Thus, λ(x, v) > 0 means that |D f n

x (v)| grows exponentially, and that is
interpreted to mean exponential divergence of nearby orbits. Such an interpretation is valid
for as long as the orbits in question remain very close to one another; once they move apart,
λ(x, v) offers no information.

While limits of the type in (1) need not exist at every x, they do exist almost everywhere
under stationarity assumptions: the multiplicative ergodic theorem [O] tells us that given an
f -invariant Borel probability measure μ, the following hold at μ-a.e. x: there are numbers

λ1(x) > λ2(x) > . . . > λr(x)(x)

with multiplicities m1(x), . . . , mr(x)(x), respectively, such that

(i) for every tangent vector v at x, λ(x, v) = λi(x) for some i,
(ii)

∑
i mi(x) = dim(M) and

(iii)
∑

i λi(x)mi(x) = limn→∞ 1
n log | det(D f n

x )|.
If f is a diffeomorphism, i.e. if it is invertible, then there is a decomposition of the tangent

space TxM into

TxM = E1(x) ⊕ . . . ⊕ Er(x)(x),

where dim Ei(x) = mi(x) and λ(x, v) = λi(x) for v ∈ Ei(x). The numbers {λi, mi} are called
the Lyapunov exponents of the system ( f , μ). If ( f , μ) is ergodic, then λi and mi are constant
μ-a.e.

Given a differentiable map f and an f -invariant Borel probability measure μ, many general
facts about the system ( f , μ) have been proved. The most basic of these facts translates the
infinitesimal information given by Lyapunov exponents to local information along orbits for
the nonlinear map f . In the conservative case, i.e. where μ is equivalent to m, the results in
the next paragraph were first proved by Pesin [Pe]; in the generality discussed here, they are
due to Ruelle [R2].

Let us assume for definiteness that f is a C2 (or C1+α, α > 0) diffeomorphism of M. Then,
at μ-a.e. x for which

Eu(x) := ⊕i:λi(x)>0 Ei(x) and Es(x) := ⊕i:λi(x)<0 Ei(x)

are nontrivial, there is a local stable disc W s
loc(x) and a local unstable disc W u

loc(x) tangent
to Es(x) and Eu(x), respectively. These discs are defined μ-a.e. and are invariant, meaning
f (W s

loc(x)) ⊂ W s
loc( f x) and f −1(W u

loc(x)) ⊂ W u
loc( f −1x). The sizes and directions of W u

loc(x)

and W s
loc(x) vary measurably with x; so outside a small positive μ-measure set, they vary

continuously, the two families of discs forming a kind of local coordinate system for f . The
global unstable manifold at x, denoted W u(x), is defined as

W u(x) :=
{

y ∈ M : lim inf
n→∞

1

n
log d( f −nx, f −ny) < 0

}

and is equal to ∪n�0 f n(W u
loc( f −nx)). Global stable manifolds are defined similarly.

A number of other results have been proved for ( f , μ) under the assumption that some
or all of λi are nonzero; some of them are reviewed in the next sections. I think it is fair to
say that this theory, often referred to as nonuniform hyperbolic theory, has worked out quite
well; the class of dynamical systems to which it applies is considerably broader than Axiom A
systems [Sm] or the systems studied by Anosov [An].
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One of the caveats when trying to apply nonuniform hyperbolic theory to concrete systems
is that the properties of ( f , μ) depend not only on f but also on μ. In general, systems that
are more complicated than, say, gradient flows admit many ergodic measures. Since distinct
ergodic measures are mutually singular, they can offer quite different statistical descriptions
of the same map. Which invariant measures, then, are more ‘representative’? The answer will
depend on one’s goals. Sometimes there are natural choices, such as the Liouville measure for
Hamiltonian systems. At other times, identifying a suitable μ can be a problem in itself. We
will return to this question in section 4 with specific issues in mind.

2. Lyapunov exponents and entropy

2.1. Entropy as a measure of dynamical complexity

Following Kolmogorov and Sinai, the entropy of a measure-preserving transformation T of a
probability space (X,B, μ) is defined as follows. Let α = {A1, A2, . . . , Ak} be a measurable
partition of X . For n < m, write αm

n = T −nα∨· · ·∨T −mα, where α∨β = {A ∩ B, A ∈ α, B ∈ β}
is the join of the two partitions. Letting

H(α) = −
∑

i

pi log pi, where pi = μ(Ai),

we define the entropy of T to be

hμ(T ) = sup
α

h(T ;α), where h(T ;α) = lim
n→∞

1

n
H

(
αn−1

0

)
.

Here, H(α) has the interpretation of the expected information gain or the amount of uncertainty
removed, upon learning the α-address of a randomly chosen point. Let α(x) denote the element
of α containing x. Then, αn−1

0 (x) = {y ∈ X : α(T ix) = α(T iy) for 0 � i < n}, i.e. each element
of αn−1

0 represents a distinguishable n-itinerary. Thus, h(T ;α) is the per-iterate information
gain upon learning an n-itinerary as n → ∞. A good mathematical text for entropy is [Wa].

The Shannon–McMillan–Breiman theorem offers another interpretation. It states that,
under the conditions above and assuming additionally that (T, μ) is ergodic,

lim
n→∞ −1

n
log μαn−1

0 (x) = h(T, α) a.s.

In other words, if h = h(T, α), then the following holds. Given any ε > 0, there exists N
such that for all n � N, there is a set Xn ⊂ X with μ(Xn) > 1 − ε such that Xn consists of
∼ en(h±ε) elements of αn−1

0 each having measure ∼ e−n(h±ε). Viewing the elements of αn−1
0 in

Xn as representing ‘typical’ n-itineraries, the SMB theorem states that a system has entropy h
if the number of ‘typical’ n-itineraries grows like ∼ enh. This gives an intuitive meaning for
entropy.

Unlike Lyapunov exponents, which measure local instability in terms of geometric
distances between orbits, entropy is a purely probabilistic way to quantify dynamical
complexity. The fact that there is little a priori reason to expect these two sets of dynamical
invariants to be related is a testimony to the depth of the following results.

2.2. Relation between entropy and Lyapunov exponents

The results below hold for arbitrary C2 diffeomorphisms f : M � and arbitrary f -invariant
Borel probability measures which we assume to be compactly supported. These results are
very general; no other conditions are needed except for what is explicitly stated. As before, let
λ1 > . . . > λr denote the distinct Lyapunov exponents of ( f , μ), and let Ei be the subspaces
corresponding to λi. Also, let a+ := max{a, 0}.

3
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Figure 1. Relation between entropy and Lyapunov exponents.

Theorem 1. Let ( f , μ) be as above. Then

(i) [R3] In general,

hμ( f ) �
∫ ∑

i

λ+
i dim(Ei) dμ.

(ii) [Pe] If μ is equivalent to m (=Lebesgue measure), then

hμ( f ) =
∫ ∑

i

λ+
i dim(Ei) dμ.

(iii) [LY1] When λ1 > 0, the equality in (ii) holds if and only if μ is an SRB measure.

We will return to the meaning of SRB measures later. Here is the formal definition: an
f -invariant Borel probability measure μ is called an SRB measure if (a) λ1 > 0 μ-a.e. (so that
unstable manifolds are defined μ-a.e.) and (b) the conditional probabilities of μ on unstable
manifolds are ‘smooth’. For a measure on M, ‘smooth’ means having a density with respect to
m. SRB measures need not be smooth themselves, but (b) says their conditional measures on
unstable manifolds are smooth with respect to the Riemannian measure on these manifolds.

The results in theorem 1 have the following interpretation: (i) states that all uncertainty
in the prediction of future events comes from positive Lyapunov exponents, though not all
expansion will necessarily result in uncertainty, i.e. there can be ‘wasted expansion’. (ii) states
that there is no wasted expansion in conservative systems, that is to say, in conservative systems,
all expansion goes into the creation of entropy. (iii) is a clarification of (ii); it explains that
with regard to the prediction of future events, it is only what happens in the unstable direction
that counts; what happens in stable directions is irrelevant. Note that (iii) also implies that
invariant measures that are equivalent to Lebesgue measures are SRB measures when they
have positive Lyapunov exponents.

These ideas are illustrated in the two examples in figure 1. Without a doubt, these examples
are overly simplistic, but I think they capture what is going on. In each example, the map
stretches and contracts each of the shaded regions linearly and maps them onto the regions
on the right with the same shading. For the map on top, ( f , μ), where μ is the Lebesgue
measure, is isomorphic to the

(
1
2 , 1

2

)
-Bernoulli shift, and hμ(T ) = λ1 = log 2, illustrating

item (ii) in theorem 1. The second map also admits an invariant measure μ with the property
that ( f , μ) is isomorphic to the

(
1
2 , 1

2

)
-Bernoulli shift. Here, μ is singular with respect to m,

4
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(b) (a) (c)

Figure 2. Entropy, Lyapunov exponents and fractal dimension.

and λ1 > log 2 = hμ(T ), showing that the inequality in (i) can be strict. For this map, the
expansion is stronger than needed, in the sense that the parts that ‘spill over’ the sides of the
box do not contribute to entropy; this is what we meant by ‘wasted expansion’. Re-examining
the two maps, we see that whether or not λ1 = log 2 has to do only with what happens in the
expanding direction: the equality holds if and only if μ is smooth in the horizontal direction;
this is the gist of item (iii) in theorem 1.

For further elucidation of the results in theorem 1, see section 3.1, where refinements of
these results are explained in a bit more detail.

3. Between entropy and sum of positive exponents

Interpretations of the gap in the entropy inequality in theorem 1(i) are discussed in this section.
In section 3.1, it is connected in a precise way to the fractal dimension of the invariant measure,
and in section 3.2, it is connected to rates of escape from neighborhoods of (non-attracting)
invariant sets.

3.1. Fractal dimension

The setting and notation are as in section 2.2. For simplicity, we assume here that ( f , μ) is
ergodic, so its Lyapunov exponents are given by a finite set of numbers λ1 > . . . > λr with
multiplicities mi = dim(Ei).

To understand the relation between the entropy and the sum of positive Lyapunov
exponents, it is simplest to first consider a situation where in the regions of interest the
map is a uniform dilation. Figure 2 depicts three mappings of this type. In each case, a finite
number of smaller circular discs Bi lie within a larger disc B. Each Bi is mapped affinely onto
B, and we assume f −1(B) = ∪iBi. The set of interest is � = ∩n�0 f −nB. Here, the entropy h
is equal to log k, where k is the number of pre-images, i.e. the number of Bi, and the Lyapunov
exponent λ, which has multiplicity 2, is the logarithm of the dilation factor. Comparing (a)
and (b) in figure 2 , it is clear that with h being fixed, the fractal dimension of � decreases as
λ increases, and comparing (b) and (c), we see that with λ being fixed, the fractal dimension
goes up with entropy. Indeed, the computation here is exact, and it gives dim(�) = h/λ.

With some technical work, the idea of this example can be turned into a mathematical
result, which we state as theorem 2′ (it is a special case of theorem 2). The setting is as above,
except that we allow f to be noninvertible.

Theorem 2′. If λi ≡ λ > 0 for all i, then hμ( f ) = λ · dim(μ).

Here, dim(μ), the dimension of μ, is defined as follows. It is equal to the number α (if
such a number exists) with the property that for μ-a.e. x, μB(x, ε) ∼ εα as ε → 0, where

5
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B(x, ε) is the ball of radius ε centered at x. For example, if μ is the d-dimensional Lebesgue
measure, then α = d. To see why the result in theorem 2′ is true, consider

B(x, ε; n) = {y ∈ M : d( f kx, f ky) < ε ∀ 0 � k < n}.
Then, for a μ-typical point x, for small enough ε and large enough n, by the definition of
Lyapunov exponents, we have

B(x, ε; n) ∼ B(x, εe−λn). (2)

We claim that a variant of the Shannon–McMillan–Breiman theorem gives

μB(x, ε; n) ∼ e−nh, (3)

where h = hμ( f ). This is because if the elements of a partition α are essentially ε-balls, then,
for most x, αn−1

0 (x) is comparable to B(x, ε, n). Comparing (2) and (3) and letting δ = e−nλ,
we obtain, as n → ∞,

μB(x, δ) ∼ δ
h
λ ,

which implies dim(μ) = h
λ

. This is the idea of the proof.
The situation in general is somewhat more complicated. The result can be summarized as

follows.

Theorem 2. [LY2] Let ( f , μ) be as in the beginning of this subsection. Then, corresponding to
each positive Lyapunov exponent λi, there is a number δi ∈ [0, mi] such that if μ|W u denotes
the conditional measures of μ on W u-leaves, then

dim(μ|W u) =
∑

i:λi>0

δi and hμ( f ) =
∑

i

λ+
i δi.

The numbers δi can be interpreted as the ‘partial dimensions’ of μ in the directions
of Ei; the first equality above states that they add up to the dimension of the conditional
measures on W u. These quantities can be defined precisely by (i) looking at hierarchies of
unstable manifolds W 1 ⊂ W 2 ⊂ · · · ⊂ W u, where W k corresponds to the largest k positive
Lyapunov exponents and (ii) introducing a notion of entropy that measures randomness along
W k-manifolds while ignoring randomness in transverse directions. We will not go into further
details, except to point out that the formula h = ∑

i λ
+
i δi in theorem 2 is a refinement of the

results in theorem 1: since δi � mi, it implies theorem 1(i), and if μ is smooth or is an SRB
measure, then δi = mi, which gives the entropy equality in theorem 1.

3.2. Escape rates

The setting here consists of a triple ( f , M; H), where f : M � is as usual and H ⊂ M is an
open set, to be thought of as a ‘hole’ through which mass is allowed to escape. We follow
the trajectories in M until they enter H; once a point enters H, it leaves the system forever,
i.e. we stop considering it. Small holes are often used to model small (unintended) leaks in
physical systems. Questions of escape from neighborhoods of non-attracting invariant sets
can also be treated in this framework. Let � be such a set, and view H = M \ Ū, where
U is a neighborhood of �. Although they do not capture asymptotic dynamics as t → ∞,
non-attracting invariant sets can significantly influence the dynamical picture depending on
how long orbits are ‘stuck’ near them, i.e. depending on the rate of escape from U .

Given ( f , M; H) and an initial distribution m on M \ H, the escape rate is defined to be
−ρ(m), where

ρ(m) = lim
n→∞

1

n
log m

( ∩n
i=0 f −i(M \ H)

)

6
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when the limit exists. We are primarily interested in the case where m has a density with
respect to m or is an SRB measure. Let 	 = ∪i∈Z f −i(M \H) be the largest invariant set which
does not meet the hole, and let I(	) denote the set of invariant Borel probability measures on
	. As we will see, quantities of the form

Pμ := hμ( f ) −
∫

λ+dμ,

where μ ∈ I(	) and λ+ = ∑
i λimi, are of relevance. The following is a prototypical result.

Theorem 3. [Y3] Let ( f , M; H) be such that (i) 	 is compact with d(	, ∂H) > 0, and (ii)
f |	 is uniformly hyperbolic. Then, ρ(m) is well defined and satisfies

ρ(m) = sup{Pν : ν ∈ I(	)};
in fact, ρ(m) = Pμ for some μ ∈ I(	).

We say f |	 is uniformly hyperbolic if there is a continuous splitting of the tangent space
at every x ∈ 	 into Eu ⊕ Es, such that for some κ > 1, |D fx(v)| � κ|v| for all v ∈ Eu, and
|D fx(v)| � κ−1|v| for all v ∈ Es. Under the above conditions, theorem 3 states that there is
a variational principle and the escape rate is given by the maximum difference between the
entropy and the sum of positive Lyapunov exponents counted with multiplicity. This suggests
yet another interpretation of the gap in the entropy inequality in theorem 1(i): expansion pushes
mass away from 	, while the need to produce entropy keeps it from leaving—and the balance
of the two gives the net escape rate. The escape rate from a neighborhood of a saddle fixed
point, e.g., is given by the log of the unstable eigenvalue; here, 	 is the fixed point, and entropy
on 	 is zero.

The ideas in the last paragraph are not universally valid (as mass can stay around without
producing entropy), but they have been generalized to a large class of dynamical systems that
exhibit a ‘sufficient amount of hyperbolicity’. We refer the reader to [DWY] for details and
for related references, and we mention here only one example of a map in this class, namely
the 2D periodic Lorentz gas with small convex holes on the table. For this system, it has been
proved that for large classes of initial distributions related to m, the escape rate is well defined
and is given by the conclusions of theorem 3 with the definition of I(	) slightly modified.

4. Observable chaos

In this section and the next, we adopt a viewpoint that equates observable events with positive
Lebesgue measure sets and give importance to dynamical phenomena that are observable.

4.1. Positive exponents on positive Lebesgue measure sets

It is one thing for a dynamical system to have orbits that behave in chaotic ways, with
λ(x, v) > 0 for some points x, another for this chaotic behavior is to be observable. In finite-
dimensional dynamics, one often equates positive Lebesgue measure sets with observable
events. Adopting such a view, let us say f : M � has observable chaos if λmax > 0 on at least
a positive Lebesgue measure set, where

λmax(x) := lim inf
n→∞

1

n
log

∥∥D f n
x

∥∥,

i.e. λmax is the largest Lyapunov exponent at x when that is defined. As we refer to this condition
many times, let us abbreviate it as ‘positive LE’ so that in the rest of this review ‘positive LE’
has a precise meaning, namely λmax > 0 on a positive m-measure set.

7
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Having a horseshoe implies the existence of orbits that behave chaotically. It does not
imply positive LE, however, for the horseshoe itself occupies a zero Lebesgue measure set, and
its presence does not preclude the possibility that orbits starting from m-a.e. x ∈ M may tend
eventually to a stable equilibrium (or a ‘sink’). This, in fact, happens often, and systems with
both ‘horseshoes and sinks’ are sometimes said to have transient chaos: orbits that start near a
horseshoe may appear chaotic for a short time as they follow orbits within the horseshoe, but
in time, almost all orbits tend to a stable equilibrium. By contrast, positive LE implies that the
instability persists for all future times and occurs on a large enough set to be observable. It is
a much stronger form of chaos than the presence of horseshoes alone.

For Hamiltonian (or volume preserving) systems, the meaning of positive LE is relatively
straightforward: a system has positive LE if and only if with respect to the Liouville (or
Lebesgue) measure, there is a positive Lyapunov exponent on at least a positive measure set.
This is not to suggest that positive LE is easy to check in concrete situations, but at least we
are clear on how it comes about.

For a dissipative system, the situation is more subtle: suppose orbits starting from an
open set U tend toward an attractor �, which we assume is more complicated than a fixed
point. Is it possible for such a system to have positive LE? The answer turns out to be yes, but
the mechanism has to be different from that in the last paragraph, for the system here is not
likely to have an invariant probability measure with a density. This is because (i) all invariant
probability measures that live on U must in fact be supported on �, because the dynamics on
U \ � are transient, and (ii) if there is volume contraction—and there often is for an attractor
to attract—then m(�) = 0.

The only known mechanism for a dissipative system with an attractor to have positive LE
is via the idea of SRB measures, which we discuss next.

4.2. SRB measures

In the 1970s, there was a breakthrough in the ergodic theory of hyperbolic systems. The setting
is that of a C2 diffeomorphism f with a uniformly hyperbolic attractor � (see section 3.2 for
the definition of uniform hyperbolicity). We assume that � is not a periodic sink, but permit it
to be all of M (to include the case of Anosov diffeomorphisms). It was shown that supported
on � is a unique f -invariant Borel probability measure μ characterized by any one of the
following four equivalent conditions:

(i) the conditional measures of μ on unstable manifolds are smooth,

(ii) m-a.e. x ∈ B(�), the basin of attraction of �, is generic with respect to μ (see definitions
below),

(iii) hμ( f ) = ∫
log | det(D f |Eu )|dμ,

(iv) μ is the zero-noise limit of large classes of small random perturbations of f .

The measure μ above is called the SRB measure. The importance of this class of invariant
measures was first recognized by Sinai and Ruelle, who constructed these measures for Anosov
systems and Axiom A attractors, respectively, in [Si2, R1]; see also [BR, B]. These papers
contain the ideas in (i)–(iii), though we have formulated some of them a little differently.
(iv) was first proved by Kifer [Ki1]; see also [Y2].

We elaborate on the meaning of these four conditions: (i) is a geometric characterization
of the measure; since in most cases there can be no invariant measures with densities as
explained above, (i) is as close to having a density as μ can come. The equivalence of (i) and
(iii) for uniformly hyperbolic attractors is what motivated the last two results in theorem 1.

8
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With regard to (ii), we say x ∈ M is generic with respect to μ if for every continuous observable
ϕ : M → R,

1

n

n−1∑
i=0

ϕ( f ix) →
∫

ϕ dμ as n → ∞, (4)

i.e. starting from x, time averages converge to the space average. It is important to understand
the distinction between (ii) and the Birkhoff ergodic theorem. The ergodic theorem states that if
μ is ergodic, then time averages converge to the space average for μ-a.e. initial condition, while
(ii) asserts this convergence for m-a.e. point in the open set B(�) := {y ∈ M : d( f ny,�) →
0 as n → ∞}, even when μ is singular. The authors of [ER] termed an invariant measure
with a positive m-measure set of generic points physically relevant. The motivation for (iv) is
that the world is inherently noisy, and if με is the stationary measure for noise level ε, then
limε→0 με is in some sense the invariant measure that best describes what one observes.

We explain next how (i) implies (ii): pick a W u
loc-leaf W with the property that

W ′ := {x ∈ W : x is generic with respect to μ} has full mW -measure; here, mW is the induced
Riemannian measure on W , and condition (i) states that almost all unstable manifolds have
this property. Observe that if x ∈ W ′, then all y ∈ W s

loc(x) are generic since d( f ix, f iy) → 0
and the test functions are continuous. Thus, all y ∈ V ′ = ∪z∈W ′W s

loc(z) are generic. By the
absolute continuity of the W s-foliation (see, e.g., [An]), V ′ is a full Lebesgue measure subset
of the open set V = ∪z∈WW s

loc(z). This proves (ii), as sets of the type V cover a neighborhood
of �.

Positive LE also follows from similar reasoning. Here, in fact, λmax(y) > 0 for every
y ∈ B(�). This is because y ∈ W s(x) for some x ∈ �, and λmax(x) > 0 because � is
a uniformly hyperbolic attractor. The positivity of λmax(y) follows from the fact that any
two points x and y with the property that d( f ix, f iy) → 0 exponentially fast have the same
Lyapunov exponents.

Some of the ideas for uniformly hyperbolic attractors were generalized in the 1980s by
Ledrappier, Young and others. First, SRB measures were constructed for piecewise uniformly
hyperbolic attractors and shown to have some of the properties above [Y1]. Then, (i) and
(iii) above were shown to be equivalent for all diffeomorphisms and all invariant measures
[LS, L, LY1], legitimizing the idea that the concept of SRB measures as defined in section 2.2
makes sense for general dynamical systems. Another important step forward is the extension of
the result on the absolute continuity of stable foliations to the nonuniform hyperbolic setting
[PuSh]. This implies, by an argument similar to that for ‘(i)⇒(ii)’ above, that whenever a
system admits an ergodic SRB measure μ with no zero Lyapunov exponents, the set of points
y that lie in W s(x) for some μ-typical x has positive m-measure. That is to say, μ is physically
relevant. The same reasoning gives positive LE and hence observable chaos.

A missing ingredient in this expanded theory is that questions related to the existence of
SRB measures were unsettled—and these questions have remained open to this day. Indeed
not all attractors admit SRB measures; it is not enough to be hyperbolic on large parts of the
phase space (see [HY] for an example that is not hyperbolic at only one point). In the next
section, we will explain why in general it is very hard to analytically determine if a given
system has positive LE.

5. Proving positive LE

5.1. Systems with and without invariant cones

Uniform hyperbolicity is generally established through the identification of invariant cones.
More precisely, to show that an invariant set � is uniformly hyperbolic, it suffices to identify
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(a) a continuous family of unstable cones {Cu(x), x ∈ �}, one in the tangent space at each
point in �, with the properties that (i) D fx(Cu(x)) ⊂ Cu( f x) and (ii) for some κ > 1,
|D f (v)| � κ|v| for v ∈ Cu, and (b) a family of stable cones {Cs} satisfying (i) and (ii) above
with f replaced by f −1. Uniform hyperbolicity is equivalent to the existence of these cone
families, and this ‘invariant cones condition’ is generally not hard to check because it is robust
under perturbations.

There are several variants of this cones condition. We mention two that have been
especially fruitful. One is the generalization from uniform hyperbolic to (uniform) partially
hyperbolic systems defined by the existence of a continuous splitting of the tangent space into
Eu ⊕ Ec ⊕ Es (i.e. three invariant cones) where the action of D f |Ec is between those on Eu

and Es, i.e. vectors in Ec can be expanded or contracted but not as strongly as those in Eu or
Es (see, e.g., [PeSi, ShPu]). In another generalization, condition (ii) in the last paragraph is
dropped and replaced by a condition requiring that for a.e. x, Cu(x) be mapped under D f n

x for
some n > 0 strictly into the interior of Cu( f nx). This idea was proposed in [Wo1] and applied
successfully to prove positive LE in large classes of billiards and bouncing ball systems; see,
e.g., [Wo2].

A good fraction of the analytical work in hyperbolic theory in the last 20–30 years has
been based on the assumption of invariant cones, due in part to the relative tractability of
such systems and in part to motivation from systems like billiards and hard balls. A case in
point is [LiW], which extends Sinai’s proof of ergodicity [Si1] to general piecewise smooth
Hamiltonian systems with invariant cones. Away from these important and natural examples,
however, this is a rather special condition: most dynamical systems in the world do not have
invariant cones.

The rest of this section is about systems without invariant cones. We will discuss some of
the challenges that one faces when attempting to establish the positivity of Lyapunov exponents
in such systems.

Geometric expansion or stretching in phase space is a pre-condition for positive LE: when
|D fx(v)| � |v| everywhere, there can be no positive exponents to speak of. The presence of
such expansion, however, does not imply positive LE, for expansion is necessarily accompanied
by contraction, either in different directions at the same points or elsewhere in the phase
space—unless there is a net volume increase (which is not possible for volume-preserving
systems or near attractors). This means that unless expanding and contracting directions are
well separated and consistently aligned, i.e. unless there are invariant cones, the sequence
|D f n

x (v)|, n = 1, 2, . . ., for a typical vector will sometimes go up and sometimes go down,
and whether λ(x, v) eventually ends up positive or negative is the result of a delicate balance.
It is a trajectory-dependent cancellation problem that is very hard to control, and determining
whether or not a system has positive LE involves understanding this problem for positive
measure sets of initial conditions.

Here is another way to understand how this cancellation problem comes about. Suppose
we observe that there are disjoint stretches of time [ni, ni + si], i = 1, 2, . . . , on which an
orbit behaves hyperbolically, say |D f si

f ni xvi| � ecsi |vi| for some c > 0. This still does not imply
λ(x, v) > 0 for any v, no matter how long these finite-time intervals are, for the vectors
vi, which are expanded in the ith interval, may get contracted in subsequent times. On a
more formal level, one can attribute this to the submultiplicativity of matrix norms: given two
matrices A and B, we have only ‖AB‖ � ‖A‖‖B‖, not equality, and ‖AB‖ can be significantly
smaller than ‖A‖‖B‖ for the reasons just explained.

We mentioned earlier that positive LE follows once we know of the existence of an SRB
measure with no zero exponents. Not surprisingly, proving the existence of SRB measures
involves similar difficulties: it requires not only that there be directions of sustained expansion,
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but that these directions had to be suitably aligned, so that at the end of the construction they
are tangent to unstable manifolds. Still, to my knowledge, all known cases of positive LE
without invariant cones have been obtained through the construction of SRB measures; the
two tend to go hand-in-hand.

5.2. Three case studies

We now provide evidence to support our contention that the cancellation problems discussed
in section 5.1 are real, meaning they really do occur. Three case studies are presented. These
studies show complicated dynamical landscapes as parameters are varied, in contrast to the
case of uniformly hyperbolic attractors, which are structurally stable (hence the picture does
not change). We believe that complicated dynamical landscapes are the typical state of affairs.
Indeed, what we see below is likely the tip of the iceberg, for the systems in all three studies
are low dimensional and systems with many degrees of freedom are capable of exhibiting far
greater complexity.

The logistic family. This 1-parameter family provides the simplest examples of genuinely
nonuniformly hyperbolic maps. It is given by

fa : [−1, 1] �, where fa(x) = 1 − ax2, a ∈ [0, 2].

For a near 2, | f ′
a| > 1 on a large part of [−1, 1], but decreases to 0 at x = 0. For these

parameters, the sequence of derivatives |( f n)′(x)|, n = 1, 2, . . ., for a typical x simulates to
some degree the rises and falls of |D f n

x (v)| in section 5.1: away from 0, the derivative increases,
and the closer to 0 the orbit comes, the larger the drop. Whether or not fa has positive LE
depends on the balance of these rises and falls, and as the following results show, the situation
is far from simple. It has been proved that (a) for an open and dense set of parameters a, the
orbit of Leb-a.e. x tends to a sink [GS, Ly1], while (b) for a positive Lebesgue measure set
of a, fa has an invariant density and positive LE [J]. See also [Ly2]. The maps in (a) and (b)
have diametrically opposite properties, yet their parameter sets are highly entangled. Try to
imagine how the positive measure set of parameters in (b) is nestled in the complement of
the open and dense set of parameters in (a), and one will begin to get an appreciation of the
delicateness of the situation.

Hénon maps and, more generally, rank-1 attractors. The next simplest examples are given
by the Hénon family

Ta,b : R
2 → R

2, with Ta,b(x, y) = (1 − ax2 + y, bx).

For b � 1 and a ≈ 2, Benedicks and Carleson [BC] were able to successfully control the
cancellation problem for a positive measure set of parameters. Building on that, Benedicks
and Young constructed SRB measures and proved positive LE for the same parameters [BY].

Not long thereafter, Wang and Young extended this body of ideas, including the existence
of SRB measures and positive LE, to a much larger class of attractors called rank-1 attractors.
These attractors can live in phase spaces of any dimension, but have exactly one unstable
direction [WY1, WY3]. Being (in the sense of having only one unstable direction) the least
chaotic of strange attractors, rank-1 attractors tend to emerge after a system loses its stability.
A number of natural examples are of this type, among them are strange attractors arising from
periodically kicked oscillators and systems undergoing supercritical Hopf bifurcations; see
[WY2, LWY].
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For rank-1 attractors (including the Hénon attractors), SRB measures and positive LE are
proved only for positive measure sets of parameters. Periodic sinks, which are known to occur
near tangencies of stable and unstable manifolds [N], are found in open regions of parameter
space between parameters with positive LE.

A readily accessible example with a rich and varied dynamical landscape is the periodically
kicked linear shear flow (reviewed in [LiY]). This equation has three parameters, representing
the strengths of the shear, damping and kick size. Depending on parameter choice, the time-T
map (T = kick period) can be in one of the following regimes: (i) quasi-periodic dynamics
on a closed invariant curve, (ii) periodic sinks on invariant curve, (iii) gradient-like dynamics,
(iv) horseshoes and sinks, or (v) rank-1 strange attractors with SRB measures. Regimes (i) and
(ii) compete in certain parameter regions; the transition from (i) or (ii) to (iv) via (iii) is messy,
and (iv) and (v) compete with wildly entangled parameter sets.

Standard maps. This family of area-preserving maps of the two-dimensional torus T
2 is

defined by

fk(x, y) = (x + y + k sin(2πx), y + k sin(2πx)),

where k > 0 is a parameter. For k large, fk has strong expansion and contraction, their directions
separated by clearly defined invariant cones on most of the phase space—except for narrow
strips (corresponding to the critical points of the sine function) on which the expanded vectors
‘turn around’ violating the cone preservation. The areas of these ‘critical regions’ tend to zero
as k → ∞. Despite the strong hyperbolic properties that are clearly visible, the question of
whether or not any fk, for k however large, has positive LE has remained unresolved, at least
mathematically. The closest to positive LE that has been proved is that the set of points with
positive Lyapunov exponents has Hausdorff dimension 2 [Go], a condition much weaker than
positive LE. It is also known that for a residual set1 of parameters k, fk has many elliptic islands
[D, Go]. Although elliptic islands and positive LE are not mutually exclusive, the presence of
islands is testimony to the fact that the cancellations discussed in section 5.1 do occur.

Conclusion from case studies. These studies confirm that for systems without invariant
cones, parameter space is partitioned into sets representing competing dynamical regimes,
and these parameter sets can be wildly entangled. Given a parameter value, then, it is hard to
determine exactly to which set it belongs. Suppose one wishes to determine if a given concrete
system has a sink or positive LE. If a sink is observed within a finite number of iterates, then
there are ways to confirm its presence (using, e.g., the contraction mapping theorem). But
if that conclusion is not reached after a finite number of iterates, no matter how large, one
still cannot conclude with certainty that the system has positive LE, because to do so would
require knowledge of an infinite number of iterates at infinite precision; equivalently, it takes
an infinite amount of information to conclude definitively that a given parameter value lies in
a positive measure set (with empty interior). This, of course, is a purely theoretical issue; in
practice, one does the best that one can.

6. Random dynamical systems

Most realistic systems are governed by laws that are neither purely deterministic nor purely
stochastic but a combination of the two. In this section, we revisit some of the properties
treated earlier and discuss them in the setting of noisy dynamical systems.

1 A residual set is the intersection of a countable number of open and dense sets.
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6.1. Setting and definitions

We consider in this section compositions of i.i.d. sequences of random maps. One motivation
for this setup is that noise terms are routinely added to differential equations to model
uncontrolled fluctuations or forces not accounted for, and it is known that solutions of stochastic
differential equations, such as

dxt = a(xt ) dt +
n∑

i=i

bi(t) ◦ dW i
t ,

where W i
t is white noise, have representations as stochastic flows of diffeomorphisms, i.e.

for each ω corresponding to a realization of Brownian path, there is a 1-parameter family
of diffeomorphisms x �→ ϕt (x;ω) satisfying ϕs+t (x;ω) = ϕt (ϕs(x;ω); σs(ω)), where σs is
time-shift along the path. See, e.g., [Ku]. Thus, systems modeled by SDEs can be seen as
i.i.d. sequences of random maps, which appear also in other situations including algorithms
involving random choices. These objects have been studied a fair amount; see, e.g., [Ki2, Ar].

The setting for the rest of this section is as follows. We consider compositions of the type

· · · ◦ fn ◦ · · · ◦ f2 ◦ f1 , n = 1, 2, . . . ,

where f1, f2, . . . are chosen independently with respect to a probability ν on the space
of diffeomorphisms of a compact manifold M. This defines a Markov chain on M with
transition probabilities P(x, A) = ν{ f , f (x) ∈ A}. Let μ be a stationary measure on M, i.e.
μ(A) = ∫

P(x, A)dμ(x). We will refer to this process as X = X (M, ν;μ). Given X , it is
known that Lyapunov exponents are defined μ-a.e. for νZ

+
-almost every sequence of maps,

and these numbers are nonrandom. Let us denote them as before by λ1 > λ2 > . . . > λr with
multiplicities mi. Likewise, the pathwise entropy h is defined for almost every sequence and
is nonrandom.

To state our results, we need to introduce the idea of sample measures. Viewing the process
X as having started from time −∞, one obtains a family of sample measures {μf} defined for
νZ-a.e. f = ( fi)

∞
i=−∞ by conditioning μ on the past. That is to say, μf describes what one sees

at time 0 given that the history of the system, i.e. ( fi)i<0, is known. Put differently, μ and μf

are related by

μ =
∫

μf dνZ(f) and μf = lim
n→∞( f−1 ◦ f−2 ◦ · · · ◦ f−n)∗μ.

Sample measures are pathwise invariant, in the sense that ( f0)∗(μf ) = μσ f , where σ is the
shift map, i.e. if f = ( fi) and σ f = (gi), then gi = fi+1. See, e.g., [LY3] for a more systematic
discussion.

6.2. Entropy formula and random attractors

It is reasonable to expect that with the averaging effects of random noise, events that occur as
a result of ‘coincidences’ in purely deterministic systems will disappear, and the dynamical
picture is nicer. Note for a start that genuinely random noise will produce a density for μ

independently of the underlying dynamics: if P(x, ·) has densities for all x, then μ has a
density, and this is not a necessary condition.

Theorem 4. The following hold for X = X (M, ν;μ) assuming that the process is ergodic (in
addition to the usual integrability conditions for derivatives).

(1) [LeJ] If λ1 < 0, then μf is supported on a finite set of points for νZ-a.e. f.
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t = 50 t = 500 t = 1900

Figure 3. Snapshots of sample measures for two coupled phase oscillators driven by a white-noise
stimulus. The phase space is the 2-torus, and parameters are chosen so that the system is unreliable.
The curves seen are the unstable manifolds of random strange attractors (on which SRB measures
are supported). The attractors evolve perpetually with time, retaining certain basic characteristics
throughout.

(2) [LY2] If μ has a density, and λ1 > 0, then

h =
∑

i

λ+
i mi,

and for νZ-a.e. f, μf is a random SRB measure, i.e. it has smooth conditional densities on
unstable manifolds.

The two results in theorem 4 state that except where λ1 = 0 (in which case the theorem
offers no information), there is a simple dichotomy in the dynamical picture: either almost all
solutions coalesce into at most a finite number of trajectories, which then evolve together in
what is called a random sink, or the system has a random strange attractor, i.e. an attracting
set which has all the attributes of the attractors with SRB measures discussed earlier except
that they evolve with time. The simple characterizations of μf , together with the fact that
Lyapunov exponents vary continuously under mild conditions, contrast with the situation for
single maps, for which the picture in parameter space can be very complicated as we have
discussed.

One application of these ideas is to the reliability of dynamical systems. A stimulus is
presented, and the system’s initial response will depend on its internal state at the stimulus
onset. The question is whether or not this dependence on initial state persists. If it does, then
the system is inherently unreliable, in that its response to a given stimulus may vary from trial
to trial. In situations where the stimulus has the form of a noise (modeling fluctuating input),
this question can be viewed in the framework of stochastic flows, and reliability is equivalent
to trajectories with different initial conditions coalescing into a single trajectory for a frozen
Brownian noise, i.e. it has to do with the sign of λ1. Reliability questions have repercussions in
many biological and engineered systems. See, e.g., [LSbY] for a case study. Sample measures
for an unreliable system are shown in figure 3.

6.3. Dimension formulae

We begin by recalling the Kaplan–Yorke conjecture, put forth in [FKYY]. In the setting of a
diffeomorphism of a manifold M having an attractor with an SRB measure μ, the authors of
[FKYY] conjectured that, pathological cases excepted, the dimension of the attractor is given
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by a quantity that they called Lyapunov dimension. In the notation of this paper, this quantity
is defined as follows. Let K be the largest integer such that

∑K
i=1 λimi > 0. Then,

LyapDim =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dim(M), if
K∑

i=1

mi = dim(M),

K∑
i=1

mi − 1

λK+1

K∑
i=1

λimi, otherwise.

We will discuss this conjecture in the context of random dynamical systems. Let X =
X (M, ν;μ) be the same as in section 6.1. Assuming X is ergodic, we let LyapDim(X )
denote the quantity above where the λi’s are those of X .

LyapDim(X ) will be related to other notions of dimension. In section 3.2, we defined
dim(μ), the dimension of a measure μ, and for a system ( f , μ), we introduced the idea of
partial dimensions δi in the directions of the invariant subspaces Ei corresponding to λi. We
used only δi corresponding to λi > 0 in theorem 2, but δi can be defined also for λi < 0 by
considering f −1. Moreover, these ideas can all be extended to X = X (M, ν;μ). Specifically,
dim(μf ) is well defined for a.e. f and is nonrandom, as are δi ∈ [0, mi] corresponding to
λi �= 0, referring to partial dimensions of μf .

For the next result to hold, we consider X = X (M, ν;μ), and in addition to requiring
that μ have a density, we need to assume a technical condition that corresponds to diffusion
for the backward derivative process associated with X . Roughly speaking, this means that not
only do the images of a point have to be random, the directions of tangent vectors have to be
random as well2. We refer the reader to [LY4], as precise formulations are technical; suffice it
to say here that this condition is satisfied by large classes of SDEs.

Theorem 5. [LY4] Suppose X = X (M, ν;μ) satisfies the conditions above and assume
additionally that λi �= 0 for all i. Then,

dim(μf ) =
∑

i

δi = LyapDim(X ). (5)

The second equality above is equivalent to the following: if we write δi = σimi so that
σi ∈ [0, 1], then there is a critical index ic with the property that

σi = 1 for i < ic and σi = 0 for i > ic. (6)

The first equality in (5) was first proved for SRB measures with no zero Lyapunov
exponents in the purely deterministic setting [LY2], and it is valid in the random case for
the same reason; see theorem 3. For individual maps, i.e. for arbitrary ( f , μ), δi can assume
various configurations subject to constraints; for example, one might consider measures that
are products. The configuration of σi in (6), on the other hand, is very special. It suggests that
when randomly perturbed or ‘shaken’, mass has a tendency to align with the more expanding
directions, or at least it fills up the more expanding directions before getting to the less
expanding ones.

This concludes our review. It is fair to say, in light of theorems 4 and 5, that the
dynamical pictures for randomly perturbed systems are simpler and nicer than those for
purely deterministic ones, as we have suggested at the beginning of section 6.2.
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