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Abstract. We develop a general technique for proving the existence of chaotic

attractors for three dimensional vector fields with two time scales. Our results connect

two important areas of dynamical systems: the theory of chaotic attractors for discrete

two-dimensional Henon-like maps and geometric singular perturbation theory. Two

dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one

dimensional maps. Wang and Young formulated hypotheses that suffice to prove

the existence of chaotic attractors in these families. Three dimensional singularly

perturbed vector fields have return maps that also are two dimensional diffeomorphisms

limiting on one dimensional maps. We describe a generic mechanism that produces

folds in these return maps and demonstrate that the Wang–Young hypotheses are

satisfied. Our analysis requires a careful study of the convergence of the return maps

to their singular limits in the Ck topology for k ≥ 3. The theoretical results are

illustrated with a numerical study of a variant of the forced van der Pol oscillator.
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1. Introduction

The discovery of chaotic attractors for low dimensional dynamical systems was a major

achievement of dynamical systems theory during the twentieth century. There are many

numerical simulations and observations that suggest concrete systems of differential

equations have chaotic attractors, but there are few analytical results establishing

their existence.‡ The mathematical theory is most tractable for uniformly hyperbolic

attractors, but typical numerical examples arising from applications are not uniformly

hyperbolic. This paper addresses the problem of locating chaotic attractors in specific

families of differential equations by connecting two substantial theories that have been

developed recently: (1) the study of Henon-like families of planar diffeomorphisms and

‡ The Lorenz system [16] is a notable exception in which theory and simulation have been connected

with verified computation in the study of differential equation attractors.
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(2) geometric singular perturbation theory. We show how Henon-like families arise in a

generic way within the context of periodically forced relaxation oscillations. Relaxation

oscillations were introduced and studied by van der Pol [21] in the 1920’s and continue

to be used as models for diverse phenomena. Thus this work gives a mathematical

analysis of how chaotic attractors arise in the context of a familiar class of models for

physical systems.

The study of Henon-like families of planar diffeomorphisms with strong contraction

is framed in terms of perturbations from one dimensional mappings with folds. While

still complicated, one dimensional theory is considerably better understood than two

dimensional theory. Wang and Young [23, 24, 25, 26] have formulated a set of geometric

hypotheses that suffice to prove the existence of chaotic attractors with Henon-like

characteristics in families of strongly dissipative maps. Their hypotheses relate largely

to properties of the limiting one dimensional family.

The collapse of two dimensional diffeomorphisms to one dimensional mappings is

a phenomenon that occurs naturally in the context of slow-fast systems of differential

equations. These singular perturbation problems are systems of differential equations

of the form

εẋ = f(x, z)

ż = g(x, z)
(1)

where ε ≥ 0 is a small parameter determining the ratio of time scales. In this paper,

x ∈ IR and z ∈ S1 × IR; f and g are C∞ functions. The singular limit ε = 0 gives a

system of differential algebraic equations in which motion is constrained to the critical

manifold f = 0. However, to represent fully the behavior of system (1) in the singular

limit, we must allow “jumps” of trajectories from one sheet of the critical manifold

to another that follow the direction of trajectories when ε > 0. In the examples we

study, jumps parallel to the x-axis occur at folds, where the tangent plane to the critical

manifold includes this direction. As we will show, the geometric picture above gives rise

to a singular limit that reproduces the setting studied in the theory of Henon-like maps,

in that return maps for the flow are two dimensional diffeomorphisms for ε > 0 that

converge to one-dimensional maps for ε = 0. Moreover, the limit maps can have critical

points, a central feature of the theory of Henon-like maps.

This paper is organized as follows: In Sections 2 and 3, we identify some properties

of the system in (1) that lead potentially to Henon-like attractors. In Section 4, the

precise conditions in Wang and Young [23, 24, 25, 26] are reviewed. In Section 5, we

verify these conditions for a specific family of forced relaxation oscillations. Part of this

verification is numerical and is non-rigorous.
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2. A Class of Forced Relaxation Oscillators

This section introduces the class of dynamical systems that we study. They are slow-fast

systems of the form

εẋ = f(x, y, θ)

ẏ = g(x, y, θ)

θ̇ = ω

(2)

where (x, y, θ) ∈ IR × IR × S1, f and g are C∞ functions, ω > 0 is the slow driving

frequency, and ε ≪ 1 is the singular perturbation parameter. A few geometric

assumptions will be imposed on this family; they are described below.

Our first assumption is that the critical manifold S, defined by f = 0, is a “cubic”

shaped surface with a pair of folds (see Figure 1):

Assumption 1 The critical manifold S = S−
a ∪ L− ∪ Sr ∪ L+ ∪ S+

a where S+
a ∪ S−

a :=

{(x, y, θ) ∈ S : fx(x, y, θ) < 0} are attracting upper and lower branches, Sr :=

{(x, y, θ) ∈ S : fx(x, y, θ) > 0} is a repelling branch, and L+ ∪ L− := {(x, y, θ) ∈
S : fx(x, y, θ) = 0} are fold-curves (circles). Furthermore, we assume fxx(x, y, θ) 6= 0

on L±, and fy(x, y, θ) 6= 0 on all of S. The latter implies that the cubic-shaped manifold

S is the graph of a function y = ϕ(x, θ), θ ∈ S1 and x ∈ IR.

L−

Sr

L+

P (L−)

N−

P (L+)

N+

S−
a

S+
a

θ

x

y

Figure 1. The critical manifold S and fold-curves L±.

We use the representation y = ϕ(x, θ) to define a projection of the system (2) onto

S. Differentiating y = ϕ(x, θ) with respect to time and using the implicit function

theorem gives the relationship fxẋ = −(fyg + fθω). This equation for ẋ is singular on

the folds, so we rescale the system to obtain the reduced flow on the critical manifold:

ẋ = (fyg + fθω)

θ̇ = −ωfx

(3)
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This system has the same phase portrait as the singular limit of (2), but the orientation

of trajectories is reversed on Sr.

Our second assumption is that all trajectories flow into the folds for the slow flow:

Assumption 2 All points p ∈ L± of the fold-curves L± are jump points, i.e. the normal

switching condition [15]

(fy g + fθ ω)|p∈L± 6= 0 (4)

is satisfied and the reduced flow near the fold-curves L± is directed toward the fold-curves

L±.

In the singular limit of system of (2), trajectories arrive at the folds from both

Sa and Sr and the existence of trajectories breaks down. When ε > 0 is small, the

trajectories of (2) execute fast “jumps” when they reach the vicinity of the fold-curves.

We would like to capture this behavior and extend the definition of the slow flow from

the critical manifold to all of IR× IR× S1 in a way that embodies the limiting behavior

of trajectories for (2). On the complement of S, the limiting direction of (2) is parallel

to the x-axis. We define the map P : IR × IR × S1 − S → Sa by projection along the

x-axis. For many points z ∈ IR × IR × S1 − S, the line parallel to the x-axis through z

meets Sa in exactly one point, so there is no ambiguity in how P (z) is defined. Where

the line above meets Sa twice, P is defined so that the segment joining z and P (z) does

not intersect Sr. Thus z and P (z) lie on the same side of Sr on a line parallel to the

x-axis. Note that L± is not regarded as part of Sa, and P (L±) ⊂ S∓
a (see Figure 1).

Heuristically, the fast trajectory segments that connect points to their images under P

are instantaneous on the slow time scale. More formally, we use Benoit’s concept of

candidates [4, 20] to define trajectories of the reduced system.

Definition 1 A trajectory of the reduced system consists of a continuous curve γ of the

form γ0 ∪ α1 ∪ β1 ∪ α2 ∪ β2 ∪ · · · where

• γ0 is a segment (perhaps trivial) of a line parallel to the x-axis that does not intersect

Sr and terminates on Sa.

• αi is a trajectory of the slow flow on the critical manifold terminating at a fold-curve

L±.

• βi is a segment of a line parallel to the x-axis connecting a point on L± to a point

of the critical manifold S∓
a .

It is readily seen that there is a unique trajectory of the reduced system from any point

in IR × IR × S1 − S. Points off the critical manifold S move to S along γ0. Points

on S follow the slow flow until they reach the fold-curves. When they do, they jump

along a segment βi to the opposite sheet of Sa. While each point is the initial point of

a unique trajectory, the trajectories depend discontinuously on initial conditions lying

in Sr, reflecting the fact that trajectories of (2) separate on the fast time scale. The

termination points of the curves βi will play an important role in our analysis.

The third assumption we make about the slow flow is that all of the trajectories

with initial conditions in neighborhoods of P (L±) ⊂ S∓
a reach the fold-curves.
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Assumption 3 There exist neighborhoods N± ⊂ S±
a of P (L∓) with the property that

all trajectories of the slow flow with initial conditions in N± ⊂ S±
a reach the fold-curve

L± (in finite time). The associated maps P (L∓) ⊂ N± 7→ L± are well defined and are

surjective.

Note that Assumption 3 implies that there are no equilibrium points of the slow

flow on S±
a between N± and the fold-curves and that Assumption 2 implies that there

are no equilibrium points on the fold-curves.§ Figure 1 depicts a reduced system that

satisfies Assumptions 1-3.

To analyze how the dynamics of (2) approach those of the reduced system as ε→ 0,

we introduce Poincaré return maps for the two systems. We want cross-sections that

remain uniformly transverse to the reduced system as ε → 0. Since the vector field

points in opposite directions along the x-axis on the two sides of the critical manifold,

we pick cross-sections that do not intersect S. Specifically, we choose two cross sections

Σ± orthogonal to the x-axis, so that when ε is sufficiently small, all trajectories which

leave from L+ intersect Σ+ before reaching S−
a and all trajectories which leave from

L− intersect Σ− before reaching S+
a . We assume further that these cross-sections have

distances that are O(1) from the critical manifold S (see Figure 2). For ε > 0, we

define the maps H+
ε : Σ+ → Σ− and H−

ε : Σ− → Σ+ as the transition maps following

trajectories of the ε-flow, that is to say, H±
ε (z) is the first point of intersection of

the trajectory of the ε-flow with initial condition z with the cross-section Σ∓. The

corresponding singular limit mapsH±
0 are defined on Σ± by jumping to the slow manifold

S, i.e. applying the map P , then following trajectories of the reduced system, and so on.

The Poincaré return map from the cross-section Σ− to itself is given by Πε = H−
ε ◦H+

ε ,

ε ≥ 0. We will omit the subscript ε in H±
ε and Πε in statements that apply to all ε ≥ 0.

Theorem 1 [15, 20] Consider system (2) satisfying Assumptions 1-3. Then the

Poincaré map Π : Σ− → Σ− induced by the flow of system (2) on a suitable transverse

section Σ− to the fast vector field is well defined for sufficiently small ε. The map is

given by

Π

(

y

θ

)

=

(

R(y, θ, ε)

G(y, θ, ε)

)

, (5)

where G(y, θ, ε) = G0(y, θ) + O(ε2/3). There is a constant c > 0 so that |R(y, θ, ε)| <
exp(−c/ε) and the function G0(y, θ) describes the return map induced by the reduced

flow (3).

If Assumptions 1-3 are satisfied, the projections of the fold-curves P (L±) can be

represented as graphs x = ψ±
1 (θ), θ ∈ S1, for system (3). The reduced flow is transversal

§ Isolated points on the fold-curves which violate the normal switching condition (4) are called folded

singularities. The folded singularities are equilibrium points of the slow flow (3). Canard trajectories

that follow portions of the unstable critical manifold Sr emanate from generic folded saddles and folded

nodes.
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θ
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Figure 2. Poincaré section Σ− of the map Π : Σ− → Σ− and auxiliary sections Σ+

and Σ1

to the projection-curves P (L±) if the (transversality) condition

l∗(p) :=

(

1

ψ′
1

)

·
(

fy g + ω fθ

−ω

)
∣

∣

∣

∣

∣

p∈P (L±)

6= 0 (6)

is satisfied.

Systems for which the transversality condition (6) holds at all points of P (L±)

were studied by Szmolyan and Wechselberger in [20]. They showed that the the

derivative ‖(∂/∂θ)G0(y, θ)‖ has a positive lower bound (independent of ε) and that

the Poincaré map of these systems possesses an invariant slow manifold with associated

stable foliation:

Proposition 2.1 Consider system (2) satisfying Assumptions 1-3. Further assume

that (6) holds at all points of P (L±). Then system (2) possesses a unique invariant

torus. The associated Poincaré map (5) possesses a unique invariant slow manifold

with associated stable foliation.

It follows from Proposition 2.1 that the dynamics of system (2) can be analyzed

by studying the circle diffeomorphism θ 7→ G0(0, θ). The dynamics of these driven

relaxation oscillators is determined by the properties of these circle diffeomorphisms; in

particular their attractors are periodic orbits or two dimensional quasi-periodic invariant

tori. The forced van der Pol oscillator [6] with forcing amplitude a < 1 is a prominent

example which possesses an invariant torus.

The dynamics of systems for which the transversality condition (6) fails at some

points of P (L±) are more complicated. Assumption 3 allows trajectories of the reduced

flow to intersect P (L±) more than once and to have tangencies with these curves, as

long as they reach L∓ in finite time. In this case, as ε → 0, the Poincaré map (5)

converges to a circle map that may not be a diffeomorphism. This is precisely the type

of behavior we analyze in this paper.
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Assumption 4 There exist isolated critical points p∗i ∈ P (L±), i ≥ 1, which violate the

transversality condition (6), i.e.

l∗(p∗i ) = 0 . (7)

Furthermore these critical points p∗i are non-degenerate, i.e.

l∗′(p∗i ) :=
d

dθ
l∗(p∗i ) 6= 0 . (8)

The reduced flow is tangent to P (L±) at the critical points p∗i . The non-degeneracy

condition (8) guarantees that the circle map G0 has turning points at trajectories that

pass through p∗i . Trajectories close to these turning points intersect P (L±) more than

once. This produces folds in the Poincaré map Π0; see Figures 3 and 5. For small ε > 0,

the strong contraction of the flow near S±
a pulls the sheets of these folds “exponentially

close” to each other. The folding of the Poincaré map Πε precludes the existence of an

invariant manifold with associated stable foliation, as the orientation of strong stable

manifolds is reversed on the two sheets on the opposite sides of a fold. Therefore system

(2) under Assumptions 1-4 does not possess an invariant torus.

The folding behavior of the Poincaré map Πε is typical for Henon-like maps. That is

why if Πε is sufficiently stretching in the θ-direction, one may expect to find horseshoes

and strange attractors.

3. Convergence to Singular Limit

To apply the theory of Wang and Young [23, 24, 25] to the systems described in Section

2, we need to prove the convergence of Πε to Π0 in the C3 topology on the space of two

dimensional maps. Since the asymptotic form of Π in Theorem 1 is singular in ε, this

convergence is not apparent. We have been unsuccessful in locating a suitable reference

for the convergence properties we require, even for the hyperbolic portion of the flow

along the critical manifold.

Recall that Πε = H+
ε ◦ H−

ε where H−
ε : Σ− → Σ+ and H+

ε : Σ+ → Σ−. For

concreteness, we consider H−; the arguments for H+ are identical. This section is

devoted to proving the following theorem.

Theorem 2 For any integer k > 0, the maps H±
ε converge to their rank one singular

limits H±
0 in the Ck topology as ε→ 0.

We first choose normalizing coordinates (u, v, θ) = (û(x, y, θ), v̂(y, θ), θ) near the

fold-curve of system (2) so that L+ becomes the curve u = v = 0 and the critical

manifold near L+ is given by v = u2 [1]. After a time rescaling, system (2) has the

representation

εu′ = v − u2

v′ = f̂(u, v, θ, ε)

θ′ = ĝ(u, v, θ, ε)

(9)
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0 1
1

2

2.1

θ

x

Figure 3. A trajectory of the slow flow for the example studied in Section 5. The slow

flow on S+
a is projected onto the (θ, x) plane; θ is a periodic variable with period 1.

The fold curve L+ (see Figure 1) corresponds to the circle x = 1; P (L−) corresponds

to x = 2. To understand the geometry of the map Π0, we look at the Poincaré map Ĥ

from x = 2 to x = 1 following the slow flow: Ĥ has two critical points located where

the slow vector field is tangent to x = 2; they are marked by blue dots on the figure.

The trajectory with initial condition at the left hand dot is plotted until it reaches

x = 1. All points of intersection of this trajectory with x = 2 have the same image

under Ĥ ; see Figure 5.

By virtue of the normal switching condition, we may assume f̂(0, 0, θ, 0) < 0 in this

neighborhood. We will work in these coordinates for the rest of the proof.

To study the convergence properties of H−
ε , we decompose the map into four

segments by introducing three additional cross-sections near L+:

- Σ1 is defined by v = δ for a small number δ > 0 independent of ε (see Figure 2);

- Σ2 and Σ3 are ε-dependent cross-sections just before and after the jump at L+;

they are defined by v = c2ε
2/3, c2 > 0, and u = −c3ε1/3, c3 > 0, respectively.

The Poincaré map from Σ− to Σ1 is denoted by H−,1; the one from Σ1 to Σ2 is denoted

by H1,2, and so on. We analyze each phase of the motion separately, using normalizing

systems of coordinates adapted to the different phases.

To prove the Ck convergence of H−
ε , one can prove the Ck convergence of each

of the 4 maps to be composed. Alternately, one can prove (i) H−
ε → H−

0 in the C0
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topology, and (ii) {H−
ε , ε > 0} is uniformly bounded in the Ck+1 norm. This is sufficient

because any Ck+1 bounded set is compact in Ck, and from (i), every limit point of every

subsequence of H−
ε in the Ck metric must in fact be H−

0 . We will elaborate, but C0

convergence is in fact relatively simple; it follows largely from Gronwall’s inequality.

Much of the work to follow is about Ck convergence or boundedness for k ≥ 1.

I. The normally hyperbolic phase H−,1 : Σ− → Σ1

Proposition 3.1 For any integer k ≥ 0, H−,1
ε → H−,1

0 in the Ck topology as ε→ 0.

Our starting point is the existence theorem for invariant slow manifolds of a slow-

fast system and their stable and unstable manifolds, frequently referred to as “Fenichel

theory” [14]. In the current context, this theory states the following.

Theorem 3 Assume that system (2) satisfies Assumption 1. Let r be a positive integer

and S̄0 ⊂ Sa be a closed domain in the stable part of its critical manifold. Then there

is a Cr family of manifolds Sε defined for ε ≥ 0 sufficiently small so that Sε is an

overflowing invariant manifold.

Here, Sε is a manifold with boundary and overflowing means that trajectories that

enter or leave Sε do so through its boundary. The set S̄0 relevant for the proof of

Proposition 3.1 is the region in Sa from Σ1 to N+ (see Figure 2).

Using this theorem, we make an ε-dependent Ck coordinate change to (w, v, θ, ε) =

(ŵ(u, v, θ, ε), v, θ, ε) so that in the relevant region the subspace w = 0 is an invariant

slow manifold for all small ε ≥ 0. This can be done by taking ŵ(u, v, θ, ε) = u−γ(v, θ, ε)
where the graph of (v, θ) 7→ γ(v, θ, ε) is Sε. Clearly, Σ1 is not affected by this change of

coordinates. Using a bump function, it is easy to arrange it so that Σ− is also unchanged.

It suffices to prove the Ck convergence of H−,1
ε in these coordinates. The assertion in

the proposition then follows since the slow manifolds of the ε-flow converge in Ck to Sa

by Theorem 3.

Since the flow is normally hyperbolic along the portion of S+
a in question, we

conclude that εẇ = wh(w, z, θ, ε) with h < 0. We may thus rescale time by −h to

obtain a system of the form

εw′ = −w
v′ = f̄(w, v, θ, ε)

θ′ = ḡ(w, v, θ, ε)

(10)

without affecting the map H−,1
ε . Equation (10) yields

w(t) = w(0) exp(−t/ε)

and a system of two equations not involving the w-coordinate (except for the appearance

of w(0) in the argument of f̄ and ḡ):

v′ = f̄(w(0) exp(−t/ε), v, θ, ε)
θ′ = ḡ(w(0) exp(−t/ε), v, θ, ε)

(11)
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These equations make sense for ε > 0. We let w(t, ε), v(t, ε) and θ(t, ε) denote their

solutions. For ε = 0, solutions for t > 0 are defined for initial condition z ∈ Σ− as

follows: w(t, 0) = 0 for all t > 0, and v(t, 0) and θ(t, 0) are defined using the reduced

flow on Sa with P (z) as initial condition. We claim that on any time interval bounded

away from 0, w(t, ε), v(t, ε) and θ(t, ε) converge uniformly in Ck to w(t, 0), v(t, 0) and

θ(t, 0) respectively as ε → 0. (This convergence is not uniform on time intervals of the

form (0, t0) because of the jump in w(·, 0) at t = 0.)

Let t1 > 0 (to be thought of as roughly equal to the transition time from Σ− to Σ1)

be fixed. A formal argument for the C0 convergence of the time-t1-map of (10) goes as

follows. Let z = (v, θ) ∈ Σ−, and let ζε(t) and ηε(t) denote the solutions of (10) and

(11) with initial condition z. We will show that for any given α > 0, |ζε(t1)−ζ0(t1)| < α

for ε sufficiently small (independent of z). By Gronwall’s inequality, there exist β > 0

and ε(β) > 0 such that for all t0 ∈ (0, t1) and ε < ε(β), if |ζε(t0) − ζ0(t0)| < β,

then |ζε(t1) − ζ0(t1)| < α. Next we choose t0 > 0 small enough that for all small ε,

|ηε(t0) − η0(t0)| < β/2. Here we have used the bounded C0 norms of f̄ and ḡ in the

relevant region of phase space to limit the total movement of ηε in the time interval

[0, t0]. Finally, shrink ε if necessary so that |ζε(t0) − ζ0(t0)| < β.

To prove the Ck convergence of these time-t-maps, we differentiate (10) and (11)

with respect to z to obtain a hierarchy of variational equations. These are again

nonautonomous vector fields in which the time dependence is through terms of the

form exp(−t/ε). Solutions of the variational equations give the derivatives of the flow

map of the system (10) and (11). Therefore, the same estimates that we have used for

the convergence of time-t-maps establish that the derivatives of these maps converge as

ε→ 0.

To complete the proof of Proposition 3.1, it remains only to observe that the

functions Tε, where Tε(z) is the time it takes for the ε-flow to reach Σ1 starting at

z ∈ Σ−, converge in Ck to T0 as ε → 0. This is a direct consequence of the argument

above.

Remark. One might expect that difference between H−,1
ε and H−,1

0 would be

exponentially small, but this is not true, even if the only ε dependence of the system

(10) appears through the terms exp(−t/ε) . This is evident from simple examples such

as

εw′ = −w
z′ = 1

θ′ = w

(12)

The solutions of system (12) are given by

(w(t), z(t), θ(t)) = (w(0) exp(−t/ε), z(0)+t, θ(0)+εw(0)(1−exp(−t/ε))(13)

Thus the Poincaré map Hε for the section from w = 1 to z = 1 is given by

Hε(z, θ) = (exp(−(1 − z)/ε), θ + ε(1 − exp(−(1 − z)/ε)) while H0(z, θ) = (0, θ). The

difference between these two maps is O(ε) but not o(ε). This is due to the fact that the
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change in θ during the initial fast convergence to the slow manifold is O(ε). Classical

results of Vasil’eva [22] give asymptotic expansions in ε for the solutions of system (10).

We record the following in anticipation of the blow-up analysis to follow. Returning

to (u, v, θ)-coordinates, let u = R(v, θ, ε) and θ = G(v, θ, ε) be the two components

of the map H−,1. Let Sε be the slow manifolds in Theorem 3, and note that

S0 ∩ Σ1 = {u =
√
δ}.

Lemma 1 (i) |R−
√
δ| = O(ε);

(ii) |∂R
∂v
| = O(ε), |∂R

∂θ
| = O(ε).

Proof: It follows from Theorem 3 that Sε ∩Σ1 is the graph of u =
√
δ+ εγ̄(θ, ε) where

γ̄ is uniformly bounded in Ck as a function of θ. Let R̂(v, θ, ε) denote the w-component

of H−,1 in (w, v, θ)-coordinates. Then

R(v, θ, ε) = R̂(v, θ, ε) +
√
δ + εγ̄(G(v, θ, ε), ε). (14)

We have shown that R̂ and its derivatives are O(exp(−c/ε)). (i) follows immediately,

and (ii) follows from the fact that |∂γ̃
∂θ
|, |∂G

∂v
|, and |∂G

∂θ
| are all O(1). ⊔⊓

II. Blow-up at fold curve and H2,3 : Σ2 → Σ3

We first deal with this crucial part, and adjust the rest of the analysis around it.

To get past the fold-curve L+, we use the blow-up in [20], which is carried out in new

coordinates

E = ε1/3, EU = u, E2V = v and E2T = t.

In these coordinates, Σ2 : V = c2 and Σ3 : U = −c3 are independent of ε, and the

transformed system is given by

dU

dT
= V − U2

dV

dT
= f̂(EU,E2V, θ, E3)

dθ

dT
= E2ĝ(EU,E2V, θ, E3)

(15)

Note that system (15) is a Riccati equation in (U, V )-space when E = 0. (See Figure

4.) This is a regularly perturbed system as E → 0. Hence the Poincaré maps from Σ2

to Σ3 are smooth and vary smoothly with E.

Transitions between (u, v, θ, ε) and (U, V, θ, E)-coordinates are made via the blow-

up map Φ1
ε : Σ1 → Σ1 given by Φ1

ε(u, θ) = (ε−
1

3u, θ) = (U, θ) and the blow-down map

Φ+
ε : Σ+ → Σ+ given by Φ+(V, θ) = (E2V, θ) = (v, θ). That is to say, we view H− as

H− = Φ+ ◦ H̃3,+ ◦ H̃2,3 ◦ H̃1,2 ◦ Φ1 ◦H−,1 (16)

where the˜in H̃ means the map in question is to be seen in (U, V, θ)-coordinates. Clearly,

Φ+ does no harm in terms of Ck boundedness or convergence. As for Φ1, ∂U/∂u = ε−
1

3 ,

but observe that when differentiating Φ1 ◦ H−,1, ∂U/∂u is followed without exception
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Σ2 : V = c2 Σ1 : V = δE−2

Σ3 : U = −c3

Σ+ : U = −dE−1

Sa

U

V

Figure 4. Sections in the rescaled system (15) in (U, V ) phase space, which shows

solutions of the Riccati equation (given by E = 0 in (15)). The special solution (green

curve) of the Riccati equation represents the extension of the manifold Sa past the

fold-curve

by either ∂R
∂v

or ∂R
∂θ

where R is the u-component of H−,1. By Lemma 1, both of these

terms are O(ε).

To summarize, we have proved, in the notation of (16), the Ck convergence of

Φ1 ◦H−,1 and H̃2,3 for every integer k > 0.

III. Before the jump, i.e. H̃1,2 : Σ1 → Σ2

This region is a transition between the two phases of dynamics studied in parts I

and II. In (u, v, θ)-coordinates, the minimum angle between the fast direction and the

slow manifold goes to 0 as ε → 0, making it impossible to deduce uniform estimates

from standard normal hyperbolic theory. In (U, V, θ)-coordinates, this lack of uniformity

is exchanged for unbounded domains and unbounded times: Σ1 is given by V = δE−2,

and the time T0 it takes to go from Σ1 to Σ2 is O(E−2).

Proposition 3.2 The first k derivatives of H̃1,2 are uniformly bounded for all E > 0.

For simplicity we normalize the speed in the V -direction by rewriting (15) as

dU

dT
= (V − U2)X ,

dV

dT
= −1 ,

dθ

dT
= E2Y (17)

where X = −f̂ and Y = −f̂/ĝ. The map H̃1,2 is then given by the time-T0-map where

T0 = δE−2 − c2. Note that X is positive and bounded away from 0. The next lemma

describes the region in which all the action takes place.
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Lemma 2 There exists C > 0 such that the following holds for all E > 0: between Σ1

and Σ2, the U-coordinates of all trajectories starting from Σ− satisfy
√
V < U <

√
V+C.

Proof: By Lemma 1(i), all trajectories meet Σ1 in {|U−
√
V | < O(E2)}. That U >

√
V

is because {V = U2} bends downward while dU/dT > 0 if U <
√
V . Finally we claim

that
√
V < U <

√
V + C is a trapping region for C > 0 large enough, because at

U =
√
V + C,

(V − U2)X = −C(U +
√
V )X < − 1

2
√
V
.

⊔⊓
Let (ξ, η) denote the (U, θ)-coordinates of a point in Σ1, and let U(t) = U(ξ, η, t)

and θ(t) = θ(ξ, η, t) denote the solution of (17) with U(ξ, η, 0) = ξ and θ(ξ, η, 0) = η.

Differentiating (17) and letting

h1 = − 2UX + E(V − U2)XU ,

h2 = (V − U2)Xθ,

we obtain the first variational equations

(i)
dUξ

dT
= h1Uξ + h2θξ, Uξ(0) = 1

(ii)
dθξ

dT
= E3YUUξ + E2Yθθξ, θξ(0) = 0

(iii)
dUη

dT
= h1Uη + h2θη, Uξ(0) = 0

(iv)
dθη

dT
= E3YUUη + E2Yθθη, θη(0) = 1.

We claim that on the time interval of interest, |Uξ|, |Uη|, |θξ|, |θη| = O(1) (in fact,

|θξ| = O(E)). In the relevant region of phase space, |V − U2| ≤ const·U (Lemma 2), so

h1 is dominated by the term −2UX. To estimate |Uη| and |θη|, for example, suppose

|θη(s)| = O(1) for all s < t. Then |Uη(t)| = O(1) because if |Uη(s)| is large enough, then

the first term on the right side of (iii) will dominate the second. On the other hand,

(iv) says that if |Uη(s)| = O(1) for all s < t, then |θη(t)| can change at a maximum rate

of O(E2).

Higher order variational equations are obtained by differentiating (i)–(iv). Let α

denote a j-tuple of ξ and η, 1 < j ≤ k, and let ∂αU and ∂αθ denote the corresponding

partials of U and θ. Proposition 3.2 asserts that ∂αU and ∂αθ are uniformly bounded

for all E > 0. Observe that for any α, ∂αU and ∂αθ satisfy equations having the same

form as (i)–(iv) with additional terms in (known) functions of t:

d(∂αU)

dT
= h1∂

αU + h2∂
αθ + { · · · } , ∂αU(0) = 0

d(∂αθ)

dT
= E3YU∂

αU + E2Yθ∂
αθ + { · · · } , ∂αθ(0) = 0.

Here the expressions inside the brackets are sums of terms that are products of (i)

partials of X and Y and (ii) partials of U, θ, h1 and h2 of order < |α|. Partials of
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the kind in (i) are bounded by definition. Those in (ii) are shown inductively to

be bounded, except for partials of h2, which contain terms of size ≤ const·U (e.g.

∂h2/∂η = −2UUηXθ + (V − U2)XθUEUη + (V − U2)Xθθθη.) As explained earlier,

for equations of the form above, as long as all terms are ≤ const·U , the right side is

dominated by h1∂
αU once ∂αU becomes sufficiently large.

IV. After the jump, i.e. H̃3,+ : Σ3 → Σ+

We make a final coordinate transformation by setting W = U/(1 − U) to obtain

W ′ = (1 +W )2V −W 2

V ′ = f̂(EW/(1 +W ), E2V, θ, E3)

θ′ = E2ĝ(EW/(1 +W ), E2V, θ, E3)

(18)

The section Σ3 : U=−c3 is now given byW = −c3/(1+c3) < 0 with −1 < −c3/(1+c3) <

0, and the section Σ+ : U = −dE−1 is given by W = −d/(d − E) which gives in the

limit E → 0 the section W = −1. System (18) varies smoothly with E in the region

between the cross-sections Σ3 and Σ+. It is also apparent that W ′ < 0 throughout this

region (equivalent to V < U2 in (15)). Therefore, the flow from Σ3 to Σ+ requires finite

time, so smooth dependence on initial conditions for solutions to systems of ordinary

differential equations implies that H̃3,+ converges in the Ck topology as E → 0. These

maps are unaffected as we transform back to (U, V, θ)-coordinates.

To recapitulate, we have proved Ck convergence (for arbitrary k) in I,II and IV, and

Ck boundedness in III. The C0 convergence of H−
ε from Σ1 to Σ2 is trivial in (u, v, θ)-

coordinates. The proof of Theorem 2 is therefore complete.

4. Henon-like Maps

The existence of chaotic attractors in mappings that are not uniformly hyperbolic

has been investigated intensively for over twenty years, beginning with numerical

investigations of Flaherty and Hoppensteadt [7], the pioneering work of Hénon [12], and

the work of Jakobson [13] on quadratic maps of the interval. Henon [12] illustrated the

existence of chaotic attractors in a two dimensional diffeomorphism of the plane defined

by quadratic functions. Benedicks and Carleson [2] developed powerful techniques for

analyzing Henon maps close to the singular limit (in which the map reduces to a map of

the interval). Benedicks and Young [3] constructed SRB measures on these attractors.

The results of [2] were extended by Mora and Viana [18], and further extended and

refined by Wang and Young [23, 24, 25, 26]. One of the contributions of Wang and Young

was to replace the formula of the Hénon maps by a list of concrete, geometric properties

that are sufficient to prove the existence of chaotic attractors with SRB measures and

positive Lyapunov exponents. This section reviews these geometric conditions and their

implications. In the next section, we will discuss these conditions in the context of

return maps for a family of forced relaxation oscillations.
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Let M = S1×I where I ⊂ IR is a closed interval. Coordinates in M are denoted by

(θ, y). We consider a family of maps Ha,ε : M → M parametrized by a ∈ [a0, a1] ⊂ IR

and ε ∈ (0, ε0] ⊂ IR. Conditions (C0) and (C1) below give the overall setup, describing

Ha,ε as small perturbations of rank one maps.

(C0) Regularity Conditions

• For each ε > 0, the function (θ, y, a) → Ha,ε(θ, y) is C3.

• Each Ha,ε is an embedding of M into itself.

(C1) The singular limit There exist rank one maps Ha,0 : M → M such that as

functions of (θ, y, a), Ha,ε(θ, y) converge in the C3 norm to Ha,0(θ, y) as ε → 0. The

image sets of M under Ha,0, i.e. Ha,0(M), are assumed to be diffeomorphic to S1.

Via small changes of coordinates, we may assume Ha,0(M) is independent of a. We

denote this set by γ and regard Ha,0 restricted to γ as a map of S1 to itself, denoted

by ha. The rest of the conditions involve only the singular limit maps Ha,0 and ha.

Expansion on the attractor is derived from the corresponding properties of ha, which

we formulate as (C2).

(C2) Expansion in 1D maps There exists a∗ ∈ [a0, a1] so that ha∗ = h has the

following properties. There are c > 1, N ∈ Z
+, and a neighborhood I of the critical set

C (the set where h′ = 0) in γ such that

• if ξ, h(ξ), · · · , hn−1(ξ) 6∈ I and hn(ξ) ∈ I, then (hn)′(ξ) ≥ cn.

• if ξ, h(ξ), · · · , hn−1(ξ) 6∈ I and n ≥ N , then (hn)′(ξ) ≥ cn.

• if ξ ∈ I is not a critical point, there is n = n(ξ) such that h(ξ), · · · , hn−1(ξ) 6∈ I and

(hn)′(ξ) ≥ cn.

• min(|h′′|) > 0 on I

• if ξ is a critical point, then hn(ξ) 6∈ I for all n > 0.

The next two conditions ensure the absence of “coincidences” that may obstruct

the analysis. The first relies upon the concept of smooth continuations. Since we assume

that the critical points of ha∗ are non-degenerate, they vary smoothly with a near a∗.

Also, points p whose ha∗ trajectories avoid the set I have unique continuations as curves

of points with a constant symbolic itinerary in γ \ I.

(C3) Parameter transversality For each critical point ξ of ha∗ , let p = ha∗(ξ), and

let ξa and pa denote the continuations of ξ and p. Then

d

da
ha(ξa) 6=

d

da
pa at a = a∗

(C4) Nondegeneracy at “turns” At each critical point ξ of ha∗ ,

∂

∂y
Ha∗,0(ξ, 0) 6= 0
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Finally, we include a condition used to deduce additional mixing properties.

(C5) Mixing

• The constant c in (C2) is larger than 2

• Let J1, · · · , Jr be intervals of monotonicity of ha∗ and let P = (pi,j) be the 0-1

matrix with pi,j = 1 if and only if Jj ⊂ ha∗(Ji). Then P is power positive; i.e.,

there is an n such that all entries of P n are positive.

Wang and Young proved that families Ha,ε : M → M satisfying (C0)–(C5) have

chaotic attractors with strong stochastic properties. This is expressed through the idea

of SRB measures. We review the definition and implications of this important idea:

For H = Ha,ε, an H-invariant Borel probability measure µ is called an SRB measure

if (i) µ-a.e. H has at least one positive Lyapunov exponent; (ii) the conditional measures

of µ on unstable manifolds have densities with respect to the Riemannian volume on

these manifolds.

Taking the view that positive Lebesgue measure sets correspond to observable

events, one regards an invariant measure as physically relevant if its properties are

reflected on a positive Lebesgue measure set. In dissipative systems, attractors typically

have Lebesgue measure zero, and a priori there may not be any physically relevant

invariant measures. This is why SRB measures are important: A result from general

(nonuniform) hyperbolic theory says that if µ is an ergodic SRB measure with no zero

Lyapunov exponents, then the set of points whose orbits have asymptotic distributions

given by µ, i.e. the set of points z with the property that for every continuous function

ϕ on M ,

1

n

n−1
∑

i=0

ϕ(H i(z)) →
∫

ϕdµ as n→ ∞,

has positive Lebesgue measure.

The result above is obtained by showing that the set of points z which lie on stable

manifolds of µ-typical points has positive Lebesgue measure. Since orbits starting from

such points have positive Lyapunov exponents, it follows that in the presence of an SRB

measure of the kind above, positive Lyapunov exponents are observed on a positive

Lebesgue set. This is an important characteristic of chaotic attractors.

SRB measures were discovered for Axiom A attractors by Sinai, Ruelle and Bowen.

Not all attractors (outside of the Axiom A category) have SRB measures, however. For

more information, see the review article [27].

We formulate next a version of the results of Wang and Young suitable for slow-fast

systems.

Theorem 4 [23, 24] Assume the family Ha,ε satisfies (C0)–(C4). Then for each

sufficiently small ε > 0, there is a positive measure set of parameters a for which Ha,ε

has an SRB measure µa,ε. As a consequence, there is a positive Lebesgue measures set

Aa,ε ⊂M with the property that for every z ∈ Aa,ε,
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(i) the orbit with initial condition z has a positive Lyapunov exponent;

(ii) the asymptotic distribution of the orbit with initial condition z is given by µa,ε.

If in addition (C5) is satisfied, then with respect to µa,ε, Ha,ε is mixing; in fact, it has

exponential decay of correlations for all Hölder continuous test functions.

Proof: References for these assertions are as follows:

The existence of an SRB measure µ is Theorem 1.3(1) in [23] – except that the

“Misiurewicz condition” in Sect. 1.1 of [23] is replaced by (C2) in the Theorem above.

That the results in [23] continue to hold with (C2) in lieu of the “Misiurewicz condition”

is proved in Lemma A.4 in the Appendix of [24]. The reason for this replacement

is to improve applicability: Negative Schwarzian, which is part of the “Misiurewicz

condition”, is often not valid or hard to check in applications.

We may assume µ is ergodic (by taking one of its ergodic components if it is not). It

has no zero Lyapunov exponents because by definition, one of the Lyapunov exponents

is positive, and by virtue of the fact that the Ha,ε can be approximated by rank-one

maps (see (C1)), the other is negative. Properties (i) and (ii) follow from the general

theory of SRB measures as explained earlier.

If µ is mixing, then the assertion on correlation decay is given by Theorem 1.4 in

[23]. That (C5) implies the existence of a mixing SRB measure is proved in Lemma A.5

in the Appendix of [24].‖

Remark 1 We explain the roles of the two parameters a and ε. The latter is a measure

of how close the map is to its singular limit; see (C1). The reason for introducing a is

that in general, to determine if a given system has an SRB measure requires knowledge

of the system to infinite precision. One way to formulate checkable conditions is to

introduce a notion of probability, expressed here in the form of a parameter, on the

space of dynamical systems. The situation is similar to that of the quadratic family in

one dimension: For the family fa(x) = 1−ax2, x ∈ [−1, 1], a ∈ [0, 2], it has been shown

that there is an open and dense set of parameters for which the map has a stable periodic

orbit [8, 17], while for a positive measure set of parameters, the map has an invariant

density with a positive Lyapunov exponent [13]. This phenomenon is expected to carry

over to our setting for ε small, i.e. in the complement of the parameters a identified in

Theorem 4, it is expected that there are many parameters with stable periodic orbits.

Remark 2 We point out an essential difference between slow-fast systems and systems

with a single time scale in the application of Wang-Young theory. In systems with a

single time scale, there is usually some form of comparability of determinants, a version

of which is condition (**) in [23]. This condition is relaxed in [24] to the existence of

K > 0 independent of (a, ε) such that

det(DHa,ε(z))

det(DHa,ε(z′))
≤ K for all z, z′ ∈M. (19)

‖ In [24], a determinant condition that is not part of (C0)–(C5) is assumed. This condition is needed

for some of the other results in [24]; it is not relevant for the results cited here. See Remark 2.
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These conditions, which are used to control more detailed dynamical behavior in the

basin away from the attractor, cannot be expected to hold for forced oscillations; see

Section 5. Thus some of the results in [23] (namely Theorems 1.2(2) and 1.3(2),(3))

cannot be applied directly to the systems treated in this paper. The properties in

Theorem 4 do not require this type of condition.

The two dimensional version of Wang-Young theory summarized in this section is

adequate for present purposes. We mention for future reference that this body of results

has been extended to rank-one attractors in n-dimensional phase spaces where n is an

arbitrary integer ≥ 2. This will be published in [26], with another preprint to follow.

5. Verification of (C0)–(C5) in Forced Oscillations

We now explain how the (general) results on chaotic attractors reviewed in Section 4

may be applied to slow-fast systems in general and forced oscillations in particular. In

this context, the maps Ha,ε are Poincaré maps Πa,ε : Σ− → Σ− (see Section 2) for a

family of systems parameterized by a. As we will see, a subset of (C0)–(C5) is enjoyed

by all slow-fast systems satisfying the assumptions in Section 2, while the validity of

remaining conditions depends on specific characteristics of the system in question. We

will first identify this non-system specific part of (C0)–(C5), then demonstrate how to

verify the remaining conditions numerically for an example.

I. Which parts of (C0)–(C5) hold for general slow-fast systems?

We consider a 1-parameter family of slow-fast systems with the following properties:

(i) For each parameter a, the system is given by equation (2) in Section 2; (ii) the

coefficients and their derivatives depend smoothly on a; and (iii) Assumptions 1–

4 in Section 2 hold. Continuing to use the notation from earlier and choosing Σ−

independently of a, we let Πa,ε : Σ− → Σ− denote the Poincaré map from the cross-

section Σ− to itself. This is the family Ha,ε for which we now seek to verify (C0)–(C5).

The two items in (C0) are corollaries of standard theorems for existence, uniqueness

and smooth dependence of solutions to the initial value problem for systems of

differential equations.

With respect to (C1): For fixed a, the convergence of Ha,ε(θ, y) as functions of

(y, θ) to a rank one singular limit as ε → 0 was proved in Section 3. Convergence of

derivatives involving a is treated similarly. Here γ is the image of the projection (along

lines parallel to the x-axis) of L− onto Σ−. It is clearly diffeomorphic to S1. Observe

that critical points of h are exactly those points ξ ∈ γ with the property that the slow

flow on S+
a is tangent to P (L−) at P (ξ). By Assumption 4, these critical points are

nondegenerate as required in (C2).

The other properties of (C2), which assert the existence of a singular limit map ha∗

with expansion, do not necessarily hold for all families satisfying the conditions above.

This comment applies also to (C3).
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(C4), on the other hand, is a consequence of the properties assumed. Let γ be as

above, and let ξ ∈ γ be a critical point of h. Consider a line segment ω through ξ parallel

to the y-axis, i.e. ω is perpendicular to γ. We claim H−
0 maps γ diffeomorphically onto

a segment in Σ+. To see this, recall that there are three parts to H−
0 : the jump P from

Σ− to S+
a , the slow flow along S+

a to L+, and finally the jump P from L+ to Σ+. First,

P (ω) is transverse to the slow flow on the critical manifold because ξ ∈ γ being a critical

point, P (γ) is tangent to the flow at P (ξ). It follows that the map along trajectories to

L+ is a diffeomorphism on P (ω). Finally, P maps L+ diffeomorphically to Σ+.

(C5) is stronger than (C2); it is also dependent upon the family in question.

We finish by explaining why (19) fails for forced oscillations in general. This is

because the volume element along an orbit that spends time t along the slow manifold

is contracted by ∼ exp(−ct/ε). Since different orbits spend different amounts of time

near the slow manifold, the ratios in volume contraction between returns to Σ−, i.e.

det(DH), is in general unbounded as ε→ 0.

II. An example with expansion

Consider the family of vector fields

εẋ = y + x− x3

3

ẏ = −x+ a(x2 − 1) sin(2πθ)

θ̇ = ω

(20)

with ε ≥ 0 small. The system (20) is a forced relaxation oscillation, a modification

of the forced van der Pol equation [6] in which the forcing amplitude depends upon

x. The numerical calculations in this part of the paper are not rigorous; we have not

tried to establish error bounds for them. More rigorous numerical work is clearly within

the realm of feasibility (see discussion at the end). Our main interest, however, is to

demonstrate how to verify numerically the Wang-Young conditions in the context of

relaxation oscillations. Since these systems appear extensively as models of physical

systems, a procedure for detecting strange attractors can be useful.

First, we show that (20) meets the assumptions in Section 2. As a singularly

perturbed vector field, the system (20) has two slow variables (y, θ) and one fast

variable x. The critical manifold is the smooth surface y = x3/3 − x and the fold-

curves are x = ±1, y = ∓2/3. On the fold-curves, the normal switching condition

is satisfied because ẏ 6= 0. Since θ̇ never vanishes, there are no equilibrium points

at all. Assumptions (1-3) are satisfied. In particular, all trajectories near the stable

sheets of the critical manifold flow to the fold-curves and make regular jumps to the

opposite sheet of the critical manifold. Note that the system is symmetric with respect

to σ : (x, y, θ) → (−x,−y, θ + 0.5).

In the singular limit ε = 0, the (rescaled) slow vector field is

x′ = −x+ a(x2 − 1) sin(2πθ)

θ′ = (x2 − 1)ω
(21)
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The images of the fold-curves by the jumps P are the curves x = ∓2, y = ∓2/3, and the

slow vector field is tangent to these curves at points where x′ = ±2 + 3a sin(2πθ) = 0.

This equation has a pair of solutions on each fold-curve when a > 2/3. The

nondegeneracy of these tangencies is also easily checked, verifying Assumption 4.

We introduce cross-sections Σ+ and Σ− to system (20) defined by x = 1, y > 0

and x = −1, y < 0, respectively. Note that σ interchanges Σ+ and Σ− and that these

cross-sections are almost orthogonal to the vector field. The “half” return map H is

defined by flowing from Σ+ to Σ− and then applying σ. Fixed points of H correspond

to symmetric periodic orbits of (20), and H ◦H is the return map of Σ+. Therefore, it

suffices to establish the required conditions for the rank one maps obtained from H by

letting ε→ 0.

To begin with, we treat both ω and a as parameters, and look for (ω, a) such that

hω,a has the property that its two critical values are fixed points. Figure 5 displays the

graph of the singular limit h : γ → γ for

(ω, a) = (11.5090088860044, 41.8581499911231)

computed with the Dormand-Prince variable step Runge-Kutta algorithm described in

Hairer-Wanner [11] at a mesh of 10000 points on the circle x = 1, y = 2/3. The map

h has two critical points located at the values of arcsin(2/(3 ∗ a))/(2 ∗ π), with both

critical values being at a fixed point p located near 0.7531. The increasing segment of

the image of h wraps around the circle six times, while the decreasing segment of the

image of h wraps around the circle five times.

To give additional evidence for the existence of parameter values with the

properties above, we use finite difference calculations to estimate the derivatives of

(p, h(c1), h(c2)) with respect to the parameters ω and a. The results are approximately

(0.0022, 0.7833,−1.0517) for ω and (−0.0449, 3.1287, 3.1279)) for a. These results

demonstrate that the map (ω, a) → (h(c1), h(c2)) is nonsingular and gives strong

evidence for the existence of parameter values for which h(c1) = h(c2) = p.

From here on ω is fixed and a is the special parameter a∗ in (C2). Numerical

calculations in the last paragraph show clearly also the derivatives of (h(c1), h(c2)) with

respect to a are much larger than those of p; this is (C3). It remains to study expansion

properties of h corresponding to this special parameter:

Figure 6 displays the graph of h′. Two pairs of horizontal lines bound the region

where |h′| < 1 and the region where |h′| < 2. We see that outside of relatively small

neighborhoods U1 = (0.0043, 0.0142) and U2 = (0.4860, 0.4958) of the critical points c1
and c2, h is expanding by a factor of at least 2. (C2) and (C5) require that we produce

a number λ > 2 such that for every x ∈ (U1 ∪ U2), x 6= c1, c2, there exists n = n(x) > 1

such that hi(x) 6∈ (U1 ∪ U2) for all 0 < i < n and |(hn)′(x)| > λn.

To obtain the desired expansion, we introduce two smaller intervals V1 =

(0.0079, 0.0105) and V2 = (0.4893, 0.4921) inside U1 and U2. The derivatives on Vi and

Ui \Vi will be estimated separately. Here are some relevant estimates: Outside of V1 and

V2, |h′| > 0.5. Inside V1, −440 < |h′′| < −420 while in V2, 400 < |h′′| < 410. The images
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of V1 and V2 are contained in the interval J = [p− 0.0005, p+ 0.0005] ≈ [0.7526, 0.7536]

inside which 56 < |h′| < 100, while the images of U1 and U2 are contained in the interval

[0.747, 0.760] inside which |h′| > 15. (The derivative h′(p) > 69.) Finally, the image of

J is contained in the interval [0.71, 0.81] inside which |h′| > 7.4.

We assert that these estimates are adequate to prove that there is a λ > 2 with

the required properties. First consider x ∈ Vj , j = 1 or 2, and let k ≥ 1 be such that

hi(x) ∈ J for all 0 < i ≤ k and hk+1(x) 6∈ J . This implies 220 · 100k(x − c)2 > 0.0005.

Since

|x− c| >
√

0.0005

220 · 100k
,

|(hk+1)′(x)| > 400 · 56k|x− c| > 400

√

0.0005

220

(

56√
100

)k

> 0.6 (5.6)k.

If k > 1, then |(hk+1)′(x)| > 0.6 · (5.6)k > 2k+1. For k = 1, we use the derivative

estimate on h(J) to get |(h3)′(x)| > 0.6 · 5.6 · 7.4 > 23. Finally, for x ∈ Uj \ Vj,

|(h2)′(x)| > 0.5 · 15 > 22. We conclude that λ can be chosen > 2, and (C2) and (C5)

are satisfied.

This completes the numerical verification of (C2), (C3) and (C5). Our analysis

illustrates that specific models of relaxation oscillations fall within the class of systems

described by the general theory developed here, but it does not constitute a proof that

the system (20) is in this class. Rigorous error bounds for the calculations are feasible in

principle. We describe what needs to be done. All of the calculations involve the singular

half return map h, obtained by integration of the two dimensional reduced vector field

(20) from initial conditions on x = 2 to the cross-section x = 1. Convergence of Runge-

Kutta numerical integration implies that the computed approximation to the map h will

converge to h as the precision of the computer arithmetic increases and time steps of the

integration decrease. Variational equations can be used to compute the derivatives of h

to the same order of accuracy (in step size) as h itself. We believe that interval arithmetic

methods applied to the system (20) can be used to prove that it satisfies (C2), (C3) and

(C5). Two types of calculations are required: to prove that there are parameter values

for which h maps its pair of critical points to fixed points and rigorous verification of

the estimates on derivatives that we have given. Our theory of how Henon-like maps

can be used to prove the existence of chaotic attractors in singularly perturbed vector

fields is independent of the implementation of these calculations. Therefore, we have

chosen to leave this matter for future work directed at developing methods for achieving

rigorous error estimates for numerical integration. Methods of Guckenheimer and Malo

[9, 10] based on transversality are a step in this direction.
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Math. 112 541–576
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