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Abstract

Guided by a geometric understanding developed in earlier works of Wang and Young, we
carry out numerical studies of shear-induced chaos in several parallel but different situations.
The settings considered include periodic kicking of limit cycles, random kicks at Poisson times,
and continuous-time driving by white noise. The forcing of aquasi-periodic model describing
two coupled oscillators is also investigated. In all cases,positive Lyapunov exponents are
found in suitable parameter ranges when the forcing is suitably directed.

Introduction

This paper presents a series of numerical studies which investigate the use of shear in the pro-
duction of chaos. The phenomenon in question can be described roughly as follows: An external
force is applied to a system with tame, nonchaotic dynamics.If the forcing is strategically applied
to interact with the shearing in the underlying dynamics, itcan sometimes lead to the folding of
phase space, which can in turn lead to positive Lyapunov exponents for a large set of initial condi-
tions. This phenomenon, which we callshear-induced chaos, occurs in a wide variety of settings,
including periodically-forced oscillators. For a topic asgeneral as this, it is difficult to compile a
reasonable set of references. We have not attempted to do that, but mention that the first known
observation of a form of this phenomenon was by van der Pol andvan der Mark 80 years ago [33].
Other references related to our work will be mentioned as we go along.

The present work is motivated by a series of papers by Wang andYoung [34, 35, 36, 37].
In these papers, the authors devised a method for proving theexistence of strange attractors and
applied their techniques to some natural settings. Of particular relevance to us are [35, 36], in
which they identified a simple geometric mechanism that explains how under certain conditions
chaotic behavior comes about in periodically-kicked oscillators. This is an example of what we
call shear-induced chaos.
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†E-mail: lsy@cims.nyu.edu. L.-S. Y. is supported by a grant from the NSF.

1



The aim of the present paper is a numerical investigation of several situations parallel to but
different from those studied by Wang and Young. In each of thefirst 3 studies in this paper, the
unforced system has a limit cycle as in [35, 36], but the forcing is different. More precisely, because
of the perturbative nature of their analysis, the authors of[35, 36] considered only periodic kicks
with very long relaxation periods between kicks, so that chaos develops on a very slow time scale.
In Study 1 here, we consider periodic kicks with short-to-medium relaxation times; in Study 2,
we use random kicks that are applied at times given by a Poisson process, and in Study 3, the
system is driven by white noise. In Study 4, our final study, even the unforced system is different:
we consider the forcing (periodic and white-noise) of quasi-periodic systems defined by a pair of
coupled oscillators.

In each of the studies described above, we demonstrate numerically that shear-induced chaos
occurs under suitable conditions, namely when the shearingand the amplitude of the forcing are
large enough to overcome the effects of damping. The numerics in our paper are relatively straight-
forward: trends appear quickly and decisively due to the robustness of the phenomena in question.
To our knowledge the results are new both in terms of documenting the scope of the phenomena
and in terms of pointing out the relationship among the factors involved.

On the physical level, the mechanism responsible for the production of chaos in all the situa-
tions considered is a common underlying geometry similar tothat in [35] and [36]. This is what
led us to predict the outcomes in our 4 studies to begin with. Translating this geometric thinking
into formal mathematical analysis is a different matter. Wepoint out that the settings considered
here are quite disjoint from those in previous analytical studies. Closest to [35] and [36] is Study
1, but even there, the parameter ranges considered are far apart, and the rigorous analysis needed
to treat the parameter region considered here is entirely out of reach. Our findings in Study 4 –
which are consistent with the geometric ideas above – are very far from anything for which there
is hope of rigorous justification at the present time. Some ofour numerical results in the stochastic
case (Studies 2 and 3), on the other hand, point to potential theorems that may be more accessible.

We note that periodic kicks of the linear shear flow in Studies1–3 had been studied numerically
earlier; see [39]. It is the simplest system known to us that captures all the essential features of
typical oscillator models relevant to shear-induced chaos. Moreover, these features appear in the
system in a way that is easy to control, and the effects of varying each are easy to separate. This
facilitates the interpretation of our theoretical findingsin more general settings in spite of the fact
that numerical studies necessarily involve specific models.

Finally, we mention that our results on shear flows are potentially applicable to a setting not
discussed here, namely that of the advection and mixing of passive scalar tracers in (weakly com-
pressible) flows.

1 Rigorous Results and Geometric Mechanism

In this section, we review some rigorous results of Wang and Young (mainly [35, 36], also [34, 37]).
We will explain in some detail the geometric mechanism for producing chaos identified in the first
two of these papers, focusing on the case of limit cycles. Theresults reviewed in this section
will not be used in subsequent sections; the settings are different, and they simply do not apply.
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However, to understand thegeometrybehind our findings in Studies 1–4, we recommend starting
here, for the geometry of shear-induced chaos in the case of periodic kicks with long relaxation
times is the cleanest and most transparent of all.

1.1 Strange Attractors from Periodically-Kicked Limit Cycles

Consider a smooth flowΦt on a finite dimensional Riemannian manifoldM (which can beRd), and
let γ be ahyperbolic limit cycle, i.e. γ is a periodic orbit ofΦt with the property that if we linearize
the flow alongγ, all of the eigenvalues associated with directions transverse toγ have strictly
negative real parts. Thebasin of attractionof γ, B(γ), is the set{x ∈ M : Φt(x) → γ ast → ∞}.
It is well known that hyperbolic limit cycles are robust, meaning small perturbations of the flow
will not change its dynamical picture qualitatively.

A periodically-kicked oscillatoris a system in which “kicks” are applied at periodic time in-
tervals to a flowΦt with a hyperbolic limit cycle. For now let us think of a “kick”as a mapping
κ : M → M . If kicks are appliedT units of time apart, then the time evolution of the kicked
system can be captured by iterating its time-T mapFT = ΦT ◦ κ. If there is a neighborhoodU of
γ such thatκ(U) ⊂ B(γ), and the relaxation time is long enough that points inκ(U) return toU ,
i.e., FT (U) ⊂ U , thenΓ = ∩n≥0F

n
T (U) is an attractor for the periodically kicked systemFT . In a

sense,Γ = Γ(κ, T ) is what becomes of the limit cycleγ when the oscillator is periodically kicked.
Since hyperbolic limit cycles are robust,Γ is a slightly perturbed copy ofγ if the kicks are weak.
We call it an “invariant circle.” Stronger kicks may “break”the invariant circle, leading to a more
complicated invariant set. Of interest in this paper is whenΓ is a strange attractor,i.e., when the
dynamics inU exhibit sustained, observable chaos.

Two theorems are stated below. Theorem 1 is an abstract result, the purpose of which is to
emphasize the generality of the phenomenon. Theorem 2 discusses a concrete situation intended
to make transparent the relevance of certain quantities. Let Leb(·) denote the Lebesgue measure
of a set.

Theorem 1. [36] LetΦt be aC4 flow with a hyperbolic limit cycleγ. Then there is an open set of
kick mapsK with the following properties: For eachκ ∈ K, there is a set∆ = ∆(κ) ⊂ R

+ with
Leb(∆) > 0 such that for eachT ∈ ∆, Γ is a “strange attractor” ofFT .

The term “strange attractor” in the theorem has a well-defined mathematical meaning, which
we will discuss shortly. But first let us take note of the fact that this result applies to all systems
with hyperbolic limit cycles, independent of dimension or other specifics of the defining equations.
Second, we remark that the kicks in this theorem are very infrequent,i.e. T ≫ 1, and that beyond
a certainT0, the set∆ is roughly periodic with the same period as the cycleγ.

The term “strange attractor” in Theorem 1 is used as short-hand for an attractor with a package
of well defined dynamical properties. These properties wereestablished for a class of rank-one
attractors (see [34] for the 2-dimensional case; a preprintfor then-dimensional case will appear
shortly). In [34, 37], the authors identified a set of conditions that imply the existence of such
attractors, and the verification of these conditions in the context of Theorem 1 is carried out in [36]
(see also [13] and [25] for other applications of these ideas). We refer the reader to the cited papers
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for more details, and mention only the following three characteristics implied by the term “strange
attractor” in this section.

(1) There is a setV of full Lebesgue measure in the basin of attraction ofΓ such that orbits
starting from everyx ∈ V have (strictly) positive Lyapunov exponents.

(2) FT has an ergodic SRB measureµ, and for every continuous observableϕ,

1

n

n−1∑
i=0

ϕ(F i
T (x)) →

∫
ϕ dµ asn → ∞ for everyx ∈ V.

(3) The system(FT , µ) is mixing; in fact, it has exponential decay of correlationsfor Hölder
continuous observables.

An important remark before leaving Theorem 1: Notice that the existence of “strange attrac-
tors” is asserted forFT for only apositive measure setof T , not for all largeT . This is a reflection
of reality and not a weakness of the result: Let∆ be the set of parameters asserted to have strange
attractors in Theorem 1. It is not hard to show that there exist arbitrarily largeT in the complement
of ∆ for which FT has one or more sinks (or stable equilibria). For such parameters, almost ev-
ery orbit eventually tends to a sink, following possibly some chaotic behavior. This phenomenon,
known astransient chaos, is caused by the co-existence of horseshoes and sinks. Horseshoes are
known to be present for all largeT ; see [35, 36]. In contrast, properties (1)–(3) above represent a
much stronger form of chaos which is both sustained in time and observed for almost every initial
condition.

The next result has an obvious analog inn-dimensions (see [36]), but the 2-D version illustrates
the point.

Theorem 2. [36] Consider the system

θ̇ = 1 + σy
ẏ = −λy + A · H(θ) ·

∑∞

n=0
δ(t − nT )

(1)

where(θ, y) ∈ S1 × R are coordinates in the phase space,λ, σ, A > 0 are constants, andH :
S1 → R is a nonconstantsmooth function. If the quantity

σ

λ
· A ≡ shear

contraction rate
· kick “amplitude”

is sufficiently large (how large depends on the forcing function H), then there is a positive measure
set∆ ⊂ R

+ such that for allT ∈ ∆, FT has a strange attractor in the sense above.

Here, the term involvingH(θ) defines the kick, andγ = S1 × {0}. We explain intuitively the
significance of the quantityσ

λ
A. As noted earlier, to create a strange attractor, it is necessary to

“break” the limit cycle. The more strongly attractiveγ is, the harder it is to break. From this we
see the advantage of havingλ small. By the same token, a stronger forcing,i.e., largerA, helps.
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Figure 1: The stretch-and-fold action of a kick followed by relaxation in the presence of shear.

The role ofσ, theshear, is explained pictorially in Fig. 1: Since the functionH is required to be
nonconstant, let us assume the kick drives some points on thelimit cycle γ up and some down, as
shown. The fact thatσ is positive means that points with largery-coordinates move faster in theθ-
direction. During the relaxation period, the “bumps” created by the kick are stretched as depicted.
At the same time, the curve is attracted back to the limit cycle. Thus, the combination of kicks
and relaxation provides a natural mechanism for repeated stretching and folding of the limit cycle.
Observe that the larger the differential in speed in theθ-direction,i.e. the largerσ, and the slower
the return toγ, i.e. the smallerλ, the more favorable the conditions are for this stretch-and-fold
mechanism.

1.2 Geometry and Singular Limits

In Eq. (1), the quantitiesλ, σ andA appear naturally. But what about in general limit cycles,
where the directions of the kicks vary? What, for example, will play the role ofσ, or what we
called shear in Eq. (1)? The aim of this subsection is to shed light on the general geometric picture,
and to explain how the dynamics ofFT for largeT can be understood.

Geometry of FT and the Strong Stable Foliation

Let γ be a hyperbolic limit cycle as in the beginning of Sect. 1.1. Through eachx ∈ γ passes
the strong stable manifoldof x, denotedW ss(x) [12]. By definition, W ss(x) = {y ∈ M :
d(Φt(y), Φt(x)) → 0 as t → ∞}; the distance betweenΦt(x) andΦt(y) in fact decreases ex-
ponentially. Some basic properties of strong stable manifolds are: (i)W ss(x) is a codimension
one submanifold transversal toγ and meetsγ at exactly one point, namelyx; (ii) Φt(W

ss(x)) =
W ss(Φt(x)), and in particular, if the period ofγ is p, thenΦp(W

ss(x)) = W ss(x); and (iii) the
collection{W ss(x), x ∈ γ} foliates the basin of attraction ofγ, that is to say, they partition the
basin into hypersurfaces.

We examine next the action of the kick mapκ in relation toW ss-manifolds. Fig. 2 is analogous
to Fig. 1; it shows the image of a segmentγ0 of γ underFT = ΦT ◦κ. For illustration purposes, we
assumeγ0 is kicked upward with its end points held fixed, and assumeT = np for somen ∈ Z

+

(otherwise the picture is shifted to another part ofγ but is qualitatively similar). SinceΦnp leaves
eachW ss-manifold invariant, we may imagine that during relaxation, the flow “slides” each point
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Figure 2: Geometry of folding in relation to theW ss-foliation. Shown are the kicked image of a segment
γ0 and two of its subsequent images underΦnp.

of the curveκ(γ0) back towardγ alongW ss-leaves. In the situation depicted, the effect of the
folding is evident.

Fig. 2 gives considerable insight into what types of kicks are conducive to the formation of
strange attractors. Kicks alongW ss-leaves or in directions roughly parallel to theW ss-leaves will
not produce strange attractors, nor will kicks that essentially carry oneW ss-leaf to another. What
causes the stretching and folding is thevariation in how far pointsx ∈ γ are moved byκ as
measured in the direction transverse to theW ss-leaves. Without attempting to give a more precise
characterization, we will refer to the type of chaos that results from the geometry above asshear-
induced chaos. We emphasize that the occurrence of shear-induced chaos relies on the interplay
between the geometries of the kicks and the dynamical structures of the unforced system.

Returning to the concrete situation of Theorem 2, since Eq. (1) without the kick term is linear,
it is easy to compute strong stable manifolds. In(θ, y)-coordinates, they are lines with slope−λ/σ.
Variations in kick distances here are guaranteed by the factthatH is nonconstant. WithH fixed, it
is clear that the largerσ/λ andA, the greater these variations. Note that the use of the word kick
“amplitude” in the statement of Theorem 2 is a little misleading, for it is not the amplitude of the
kicksper sethat leads to the production of chaos.

Singular Limits of FT as T → ∞

WhenT ≫ 1, i.e. when kicks are very infrequent, the mapFT sends a small tubeUT aroundγ
back into itself. This is an example of what is called arank-one mapin [37]. Roughly speaking,
a rank-one map is a smooth map whose derivative at each point is strongly contractive in all but
one of the directions. Rank-one maps can be analyzed using perturbative methods if they have
well-defined “singular limits.” In the context of limit cycles, these singular limits do exist; they are
a one-parameter family of maps{fa : γ 	} obtained by lettingT → ∞ in the following way: For
eacha ∈ [0, p) (recall thatp = period ofγ), let

fa(x) := lim
n→∞

Φnp+a(κ(x)) for all x ∈ γ . (2)

Equivalently,fa(x) is the unique pointy ∈ γ such thatκ(x) ∈ W ss(y). Notice thatfa(x) =
f0(x) + a (mod 1), where we identifyγ with [0, 1] (with the end points identified). For Eq. (1),fa

is easily computed to be

fa(θ) = θ + a +
σ

λ
A · H(θ), (3)
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where the right side should again be interpreted as mod 1. (Inthe setting of driven oscillators,
singular limits are sometimes known as “phase resetting curves”; they have found widespread use
in e.g.mathematical biology [38, 11].)

It is shown in [34, 35, 36, 37] that a great deal of informationon the attractorΓ of FT for
T ≫ 1 can be recovered from these singular limit maps. The resultsare summarized below. These
results hold for all singular limit maps satisfying the conditions in the references above, but as we
step through the 3 cases below, it is instructive to keep in mind Eq. (1) and its singular limit (3),
with σ

λ
A increasing as we go along:

(i) If fa is injective,i.e., it is a circle diffeomorphism, the attractorΓ for FT is an invariant circle.
This happens when the kicks are aimed in directions that are “unproductive” (see above), or
when their effects are damped out quickly. In this case, the competing scenarios onΓ are
quasi-periodicity and “sinks,”i.e. the largest Lyapunov exponent ofFT is zero or negative.

(ii) When fa loses its injectivity, the invariant circle is “broken”. When that first happens, the
expansion of the 1-D mapfa is weak, and all but a finite number of trajectories tend to sinks.
This translates into a gradient type dynamics forFT .

(iii) If fa is sufficiently expanding away from its critical points,Γ contains horseshoes for all
largeT . For an open set of theseT , the chaos is transient, while on a positive measure
set,FT has a strange attractor with the properties described in Sect. 1.1. These are the two
known competing scenarios. (They may not account for allT .) SinceFT ≈ FT+np for large
T , both sets of parameters are roughly periodic.

The analyses in the works cited suggest that when horseshoesare first formed, the set of
parameters with transient chaos is more dominant. The stronger the expansion offa, the
larger the set of parameters with strange attractors. In thefirst case, the largest Lyapunov
exponent ofFT may appear positive for some time (which can be arbitrarily long) before
turning negative. In the second case, it stays positive indefinitely.

1.3 Limitations of Current Analytic Techniques

Much progress has been made in hyperbolic theory in the last few decades; seee.g., [24, 19, 26, 27,
30, 18, 15, 9, 22, 29] in addition to the results reviewed in this section. Still, there is a very large
discrepancy between what is thought to be true and what can beproved. Maps that are dominated
by stretch-and-fold behavior are generally thought to havepositive Lyapunov exponents – although
this reasoning is also known to come with the following caveat: Maps whose derivatives expand
in certain directions tend to contract in other directions,and unless the expanding and contracting
directions are well separated (such as in Anosov systems), the contractive directions can conspire
to form sinks. This is how the transient chaos described in Sect. 1.2 comes about. Still, if the
expansion is sufficiently strong, one would expect that positive Lyapunov exponents are more
likely to prevail – even though for any one map the outcome cango either way.Provingresults of
this type is a different matter. Few rigorous results exist for systems for which one has noa priori
knowledge of invariant cones, and invariant cones are unlikely in shear-induced chaos.
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The rigorous results reviewed in the last two subsections have the following limitations: (i)
They pertain toFT for only very largeT . This is because the authors use a perturbative theory
that leans heavily on the theory of 1-D maps. No non-perturbative analytic tools are currently
available. (ii) A larger than necessary amount of expansionis required of the singular limit maps
fa in the proof of strange attractors. This has to do with the difficulty in locating suitable parameters
called Misiurewicz points from which to perturb. (This problem can be taken care of, however, by
introducing more parameters.) We point out that (i) and (ii)together exacerbate the problem:fa

is more expanding whenλ is small, but ifFT = ΦT ◦ κ is to be near its singular limit, thene−λT

must be very small,i.e. λT must be very large.

That brings us to the present paper, the purpose of which is tosupply numerical evidence to
support some of our conjectured ideas regarding situationsbeyond the reach of the rigorous work
reviewed. Our ideas are based on the geometry outlined in Sect. 1.2, but are not limited to periodic
kicks or to the folding of limit cycles.

2 Study 1: Periodically-Kicked Oscillators

Our first model is the periodic kicking of a linear shear flow with a hyperbolic limit cycle. The
setting is as in Theorem 2 withH(θ) = sin(2πθ), i.e., we consider

θ̇ = 1 + σy ,
ẏ = −λy + A · sin(2πθ) ·

∑∞

n=0
δ(t − nT ) ,

(4)

where(θ, y) ∈ S1 × R, S1 ≡ [0, 1] with the two end points of[0, 1] identified. In the absence of
kicks, i.e., whenA = 0, Φt(z) tends to the limit cycleγ = S1 ×{0} for all z ∈ S1 ×R. As before,
the attractor in the kicked system is denoted byΓ. The parameters of interest are:

σ = amount of shear,

λ = damping or rate of contraction toS1 × {0},

A = amplitude of kicks, and

T = time interval between kicks.

Our aim here is to demonstrate that the set of parameters withchaotic behavior is considerably
larger than what is guaranteed by the rigorous results reviewed in Sect. 1, and to gain some insight
into this parameter set. By “chaotic behavior,” we refer in this section to the property thatFT has
a positive Lyapunov exponent for orbits starting from a “large” set of initial conditions,i.e. a set
of full or nearly full Lebesgue measure in the basin of attraction of Γ. More precisely, weassume
that such Lyapunov exponents are well defined, and proceed tocompute the largest one, which we
call Λmax.

We begin with some considerations relevant to the search forparameters withΛmax > 0:

(a) It is prudent, in general, to ensure that orbits do not stray too far fromγ. This is because
while the basin of attraction ofγ in this model is the entire phase space, the basin is bounded
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in many other situations. We therefore try to keepΓ ⊂ {|y| < b} with relatively smallb.
This is guaranteed ifA is small enough thate−λT (b + A) < b; the bound is improved if, for
example, no point gets kicked to maximum amplitude two consecutive iterates.

(b) Let (θT , yT ) = FT (θ0, y0). A simple computation gives

θT = θ0 + T + σ
λ
· [y0 + A sin(2πθ0)] · (1 − e−λT ) (mod 1),

yT = e−λT [y0 + A sin(2πθ0)] .
(5)

For b relatively small, we expect the numberσA
λ

(1 − e−λT ) to be a good indicator of chaotic
behavior: if it is large enough, thenFT folds the annulus{|y| < b} with two turns and maps
it into itself. The larger this number, the larger the folds,meaning the more each of the
monotonic parts of the image wraps around in theθ-direction. (Note that Eq. (5) is a version
of the map studied in [10].)

Summary of Findings.

(i) With the choice of parameters guided by (a) and (b) above,we find that as soon as the
folding described in (b) is well formed,FT becomes “possibly chaotic”, meaningΛmax is
seen numerically to oscillate (wildly) between positive and negative values asT varies. We
interpret this to be due to competition between transient and sustained chaos; see (iii) in
Sect. 1.2. For largerσ

λ
A, i.e., as the stretching is stronger, and forT beyond an initial range,

this oscillation stops andΛmax becomes definitively positive for all the values ofT computed.

(ii) As for the range of parameters with chaotic dynamics, wefind thatΛmax > 0 occurs under
fairly modest conditions, e.g., forσ

λ
A = 3, we findΛmax > 0 starting from aboutT ≈ 3,

to be compared to the “T → ∞” in rigorous proofs. Also, while shear-induced chaos is
often associated with weak damping, we find that the phenomenon occurs as well for larger
λ, e.g., forλ ∼ 1, provided its relation to the other parameters are favorable.

Supporting Numerical Evidence.Figures 3 and 4 show the largest Lyapunov exponentΛmax of
FT versus the kick periodT . (Note that this is the expansion rate per kick period and isT times
the expansion rate per unit time. We have elected to plot the former as their graphs contain more
information: rates of expansion per unit time, while more natural, necessarily tend to zero as
T increases.) In Fig. 3,λ andA are fixed, andσ is increased. We purposefully start with too
small aσ so that we may see clearly the gradual changes inΛmax. The results are in excellent
agreement with the description at the end of Sect. 1.2 (whichpertains to regimes with very large
T ), even thoughT is not so large here: In the top picture, whereσ

λ
A is small, the plot confirms a

competition between quasi-periodicity and sinks; in the middle picture, we see firstΛmax becoming
increasingly negative, then transitions into a competition between transient and sustained chaos,
with the latter dominating in the bottom picture. Fig. 4 shows the same phenomena in reverse order,
with σ andA fixed andλ increasing. Notice that even forσ, λ andA leading to chaotic dynamics,
Λmax is negative for smallT . This is in agreement with the influence of the factor(1 − e−λT ) in
Eq. (5).

9



As explained in (a) above, whenλT is too small relative toA, orbits stray farther fromγ.
Data points corresponding to parameters for which this happens are marked by open squares. For
purposes of demonstrating the phenomena in question, thereis nothing wrong with these data
points, but as explained earlier, caution must be exercisedwith these parameters in systems where
the basin ofγ is smaller.

Simulation Details.The numbersΛmax are computed by iterating the map in Eq. (5) and its Jaco-
bian, and tracking the rate of growth of a tangent vector. We use4 × 105 iterates ofFT in each
run. Mindful of the delicate situation due to competition between transient and sustained chaos,
and to lower the possibility of atypical initial conditions, we perform 10 runs for each choice of
(σ, A, λ, T ), using for each run an independent, random (with uniform distribution) initial condi-
tion (θ0, y0) ∈ [0, 1)× [−0.1, 0.1]. Among the 10 values ofΛmax computed, we discard the largest
and the smallest, and plot the maximum and minimum of the remaining 8. As one can see in Figs. 3
and 4, the two estimates occasionally do not agree. This may be because not all initial conditions
in the system have identical Lyapunov exponents, or it may bethat the convergence to the true
value ofΛmax is sufficiently slow and more iterates are needed,i.e. there are long transients. These
occasional disagreements do not affect our conclusions.

3 Study 2: Poisson Kicks

We consider next a variant of Eq. (4) in which deterministic,periodic kicks are replaced by “ran-
dom kicks.” Here, random kicks refer to kicks at random timesand with random amplitudes. More
precisely, we consider

θ̇ = 1 + σy (6)

ẏ = −λy + sin(2πθ)
∑

n

Anδ(t − Tn)

where the kick timesTn are such thatTn+1 − Tn, n = 0, 1, 2, · · · , are independent exponential
random variables with meanT , and the kick amplitudesAn are independent and uniformly dis-
tributed over the interval[0.8 A, 1.2 A] for someA > 0. (We do not believe detailed properties
of the laws ofT andA have a significant impact on the phenomena being addressed.)The analog
here of the time-T map in Study 1 is therandom mapF = ΦT ◦ KA whereT andA are random
variables.

By the standard theory of random maps, Lyapunov exponents with respect to stationary mea-
sures are well defined and are nonrandom,i.e. they do not depend on the sample path taken [16].
Notice that ifσ 6= 0, the system (6) has a unique stationary measure which is absolutely continu-
ous with respect to Lebesgue measure onS1 × R: starting from almost everyz0 ∈ S1 × R, after
one kick, the distribution acquires a density in they-direction; since vertical lines become slanted
underΦt due toσ 6= 0, after a second kick the distribution acquires a (two-dimensional) density.

In terms of overall trends, our assessment of the likelihoodof chaotic behavior follows the
analysis in Study 1 and will not be repeated. We identify the following two important differences:
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Figure 3: Effect of increasing shear on the Lyapunov exponents of the periodically-kicked linear shear flow.
Note thatΛmax is the rate of expansion per kick. Squares indicate that the correspondingFT -orbits have
veered outside the region|y| < 0.15; circles indicate that they have not. Upper and lower estimates ofΛmax

are both shown (see Simulation Details).
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Figure 4: Effect of increasing damping on the Lyapunov exponents of the periodically-kicked linear shear
flow. Squares indicate that the correspondingFT -orbit has veered outside the region|y| < 0.15.
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(a) Smooth dependence on parameters.Due to the averaging effects of randomness, we expect
Lyapunov exponents to vary smoothly with parameter, without the wild oscillations in the
deterministic case.

(b) Effects of large deviations.A large number of kicks occurring in quick succession may have
the following effects:

(i) They can cause some orbits to stray far away fromγ = S1 × {0}. This is guaranteed
to happen, though infrequently, in the long run. Thus, it is reasonable to require only
that a large fraction — not all — of the stationary measure (orperhaps of therandom
attractorsΓω) to lie in a prescribed neighborhood ofγ.

(ii) It appears possible, in principle, for a rapid burst of kicks to lead to chaotic behavior
even in situations where the shear is mild and kick amplitudes are small. To picture this,
imagine a sequence of kicks sending (or maintaining) a segment far fromγ, allowing
the shear to act on it for an uncharacteristically long time.One can also think of such
bursts as effectively settingλ to near0 temporarily, creating a very largeσ

λ
A. On the

other hand, ifσ is small, then other forces in the system may try to coax the system
to form sinks between these infrequent events. On the basis of the reasoning in this
paragraph alone, there is no way to determine which scenariowill prevail.

Summary of Findings. In terms of overall trends, the results are consistent with those in Study
1. Two differences are observed. One is the rapid convergence ofΛmax and its smooth dependence
on parameters. The other is that positive Lyapunov exponents for F are found both for smaller
values ofσ

λ
A and for apparently very smallT (which is impossible for periodic kicks), lending

credence to the scenario described in (b)(ii) above.

Supporting Numerical Evidence.Fig. 5 showsΛmax as a function of the mean kick intervalT . As in
Study 1, we first show the effects of increasingσ and then the effects of increasingλ. Without the
oscillations seen previously, the present plots are straightforward to interpret. In case one wonders
how Λmax curves can switch from strictly-decreasing to strictly-increasing behavior, the middle
panel of Fig. 5(b) catches such a switch “in the act.” Squaresindicate that the orbit computed
spends> 20% of its time outside of the region{|y| < 0.1}.

4 Study 3: Continuous-Time Stochastic Forcing

In this section, we investigate the effect of forcing by white noise. The resulting systems are
described by stochastic differential equations (SDEs). Weconsider two ways to force the system:

Study 3a: Degenerate white noise applied in chosen direction:

dθ = (1 + σy) dt (7)

dy = −λy dt + a sin(2πθ) dBt

13
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(b) Increasing damping

Figure 5: Lyapunov exponents for the linear shear flow with Poisson kicks. Squares indicate the correspond-
ing orbit spends more than 20% of the time in the region|y| > 0.1.
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Study 3b: Isotropic white noise:

dθ = (1 + σy) dt + a sin(2πθ) dB1
t (8)

dy = −λy dt + a sin(2πθ) dB2
t

In Study 3a,Bt is standard 1-dimensional Brownian motion (meaning with variance= 1). In Study
3b,(B1

t , B
2
t ) is a standard 2-D Brownian motion,i.e., they are independent standard 1-D Brownian

motions. For definiteness, we assume the stochastic terms are of Itô type. Notice that the two
parametersA andT in Studies 1 and 2 have been combined into one, namelya, the coefficient of
the Brownian noise.

By standard theory [1, 17], the solution process of an SDE canbe represented as a stochastic
flow of diffeomorphisms. More precisely, if the coefficientsof the SDE are time-independent,
then for any time step∆t > 0, the solution may be realized, sample path by sample path, asthe
composition of random diffeomorphisms· · · ◦ f3 ◦ f2 ◦ f1, where thefi are choseni.i.d. with
a law determined by the system (thefi are time-∆t flow-maps following this sample path). This
representation enables us to treat an SDE as arandom dynamical systemand to use its Lyapunov
exponents as an indicator of chaotic behavior. It is clear that system (8) has a unique invariant
density, which is the solution of the Fokker-Planck equation. Even though the stochastic term in
system (7) is degenerate, for the same reasons discussed in Study 3, it too has a unique stationary
measure, and this measure has a density. The Lyapunov exponents considered in this section are
with respect to these stationary measures.

Before proceeding to an investigation of the two systems above, we first comment on the case
of purely additive noise,i.e. Eq. (8) without thesin(2πθ) factor in either Brownian term. In this
case it is easy to see that all Lyapunov exponents are≤ 0, for the random maps are approximately
time-∆t maps of the unforced flow composed with random (rigid) translations. Such a system is
clearly not chaotic.

With regard to system (7), we believe that even though the quantitative estimates from Study
1 no longer apply, a good part of thequalitative reasoningbehind the arguments continues to be
valid. In particular, we conjecture that

(a) trends, including qualitative dependence onσ andλ, are as in the previous two studies;

(b) the effects of large deviations noted for Poisson kicks (Study 2, item (b)) are even more
prominent here, given that the forcing now occurs continuously in time.

As for system (8), we expect it to be less effective in producing chaos,i.e. more inclined to form
sinks, than system (7). This expectation is based on the following reasoning: Suppose first that we
forceonly in theθ-direction,i.e., suppose thedB2

t term in (8) is absent. Then the stochastic flow
leaves invariant the circleS1 ×{0}, which is the limit cycle of the deterministic part of the system.
A general theorem (seee.g., [16]) tells us that when a random dynamical system on a circle has an
invariant density, its Lyapunov exponent is always≤ 0; in this case, it is in fact strictly negative
because of the inhomogeneity caused by the sine function. Thus the corresponding 2-D system
has “random sinks.” Now let us put they-component of the forcing back into the system. We have
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seen from previous studies that forcing they direction alone may lead to chaotic behavior. The
tendency to form sinks due to forcing in theθ-direction persists, however, and weakens the effect
of the shear-induced stretching.

We now discuss the results of simulations performed to validate these ideas.

Summary of Findings.

(i) In the case ofdegeneratewhite noise, the qualitative dependence ofΛmax onσ andλ are as
expected, and the effects of large deviations are evident. In particular,Λmax is positive for
very small values ofσ, λ anda providedσ

λ
is large. This cannot happen for periodic kicks;

we attribute it to the effect of large deviations.

(ii) Isotropic white noise is considerably less effective in producing chaos than forcing in the
y-direction only, meaning it produces a smaller (or more negative)Λmax.

(iii) In both cases, we discover the following approximate scaling: Under the scaling transforma-
tionsλ 7→ kλ, σ 7→ kσ anda 7→

√
ka, Λmax transforms approximately asΛmax 7→ kΛmax.

In the case of degenerate white noise, when bothσ and λ
σ

are not too small (e.g.,> 3), this
scaling gives excellent predictions ofΛmax for the values computed.

We remark that (iii) does not follow by scaling time in the SDE. Indeed, scaling time byk in
Eq. (7), we obtain

dθ = (k + kσy) dt , (9)

dy = −kλy dt +
√

ka sin(2πθ) dBt .

Thus the approximate scaling in (iii) asserts that the Lyapunov exponent of system (9), equivalently
k times theΛmax for Eq. (7), is roughly equal to that of the system obtained bychanging the first
equation in (9) todθ = (1 + kσy)dt. In other words,Λmax seems only to depend minimally on the
frequency of the limit cycle in the unforced system.

Supporting Numerical Evidence.Plots ofΛmax as functions ofa are shown in Figs. 6 – 9.
In Fig. 6, the forcing is degenerate, and for fixedσ, Λmax decreases with increasing damping as

expected. Notice that compared to the two previous studies,a somewhat larger damping is required
to maintain a good fraction of the attractor nearγ.

Fig. 7 shows thatΛmax is positive for values ofσ andλ as small as0.2 and0.01, and white noise
amplitudesa close to0. Notice first that this is consistent with the scaling conjectured in (iii) above,
and second that in the case of periodic kicks, comparable values ofσ andλ would require a fairly
substantial kick, not to mention long relaxation periods, before chaotic behavior can be produced.
We regard this as convincing evidence of the significant effects of large deviations in continuous-
time forcing. (It must be pointed out, however, that in our system, the basin of attraction is the
entire phase space, and a great deal of stretching is createdwhen|y| is large. That means system
(7) takes greater advantage of large deviations than can be expected ordinarily.
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Figure 6: Lyapunov exponents for the linear shear flow drivenby degenerate white noise (Eq. (7)). Open
squares indicate that the corresponding orbits spend more than 20% of the time in the region|y| > 0.3;
shaded squares do the same for the region|y| > 0.5.
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Figure 7: Lyapunov exponents for the linear shear flow drivenby degenerate white noise, for small values
of σ andλ.

Fig. 8(a) showsΛmax in the isotropic case for the same parameters as in Fig. 6. A comparison
of the two sets of results confirms the conjectured tendency toward negative exponents when the
forcing is isotropic. Fig. 8(b) shows that this tendency canbe overcome by increasingσ.

Fig. 9 shows four sets of results, overlaid on one another, demonstrating the scaling discussed
in item (iii) above. Fixingσ

λ
= 6, we show the graphs ofΛmax/σ as functions ofa/

√
σ for four

values ofσ. The top two curves (corresponding toσ = 6 and9) coincide nearly perfectly. Similar
approximate scalings, less exact, are observed for smallervalues ofσ

λ
, both whenΛmax is positive

and negative.

Simulation Details.We compute Lyapunov exponents numerically by solving the corresponding
variational equations and tracking the growth rate of a tangent vector. We have found that an Euler
solver with time steps of10−5 is sufficient for our purpose and that more complicated, higher-
order SDE solvers are unnecessary. To account for the impactof the realization of the forcing on
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(b) σ = 7.0

Figure 8: Lyapunov exponent for the linear shear flow driven by isotropic white noise (Eq. (8)). Squares
indicate that the corresponding orbits spend more than 20% of the time in the region|y| > 0.3.

the computed exponents, for each choice of(σ, λ, a) we perform 12 runs in total, using 3 indepen-
dent realizations of the forcing and, for each realization,4 independent initial conditions (again
uniformly-distributed in[0, 1) × [−0.1, 0.1]). For almost all the parameter values, the estimates
agree to within a few percent, so we simply average over initial conditions and plot the result.

Related Results. The asymptotic stability of dynamical systems driven by random forcing has
been investigated by many authors using both numerical and analytic methods. Particularly rele-
vant to our study are results pertaining to the random forcing of oscillators (such as Duffing-van
der Pol oscillators) and stochastic Hopf bifurcations; seee.g. [2, 3, 7, 5, 6, 8, 28, 23]. Most of the
existing results are perturbative,i.e., they treat regimes in which both the noise and the damping
are very small. Positive Lyapunov exponents are found undercertain conditions. We do not know
at this point if the geometric ideas of this paper provide explanations for these results.
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Figure 9: Evidence of scaling: We fixσ
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from top to bottom, the curves are in order of decreasingσ.

5 Study 4: Sheared-Induced Chaos in Quasiperiodic Flows

Model and Background Information

In this section, we will show that external forcing can lead to shear-induced chaos in a coupled
phase oscillator system of the form

aff

θ2θ1I(t) 
afb

The governing equations are

θ̇1 = ν1 + z(θ1)[afbg(θ2) + I(t)] , (10)

θ̇2 = ν2 + z(θ2)[affg(θ1)].

This simple model arises from neuroscience [38, 32], and itsdynamics are explored in more de-
tail in [21]. The state of the system is specified by two angles, (θ1, θ2), so that the phase space
is the torusT2. The constantsν1 andν2 are the oscillators’ intrinsic frequencies; we setν1 = 1
andν2 = 1.1 (representing similar but not identical frequencies). Theconstantsaff andafb gov-
ern the strengths of the feedforward and feedback couplings. The oscillators are pulse-coupled:
the coupling is mediated by a bump functiong supported on[− 1

20
, 1

20
] and normalized so that∫

1

0
g(θ) dθ = 1; specifically,g(θ) ∝ (1 − 400 · θ2)

3 for |θ| ≤ 1

20
. The functionz(θ), which we

take to bez(θ) = 1

2π
[1−cos(2πθ)], specifies the sensitivity of the oscillators to perturbations when

in phaseθ. Finally, we drive the system with an external forcingI(t), which is applied to only the
first oscillator and will be taken to be either periodic kicksor white-noise forcing.

Let Φt denote the flow of the unforced system,i.e., with I(t) ≡ 0. Flowlines are roughly
northeasterly and are linear except in the strips{|θ1| < 1

20
} and{|θ2| < 1

20
}, where they are

bent according to the prescribed values ofaff andafb. Let ρ denote the rotation number of the
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first return map ofΦt to the cross-section{θ2 = 0}. It is shown in [20] that foraff = 1, ρ
is monotonically increasing (constant on extremely short intervals) as one increasesafb, until it
reaches1 at afb = a∗

fb ≈ 1.4, after which it remains constant on a large interval. Atafb = a∗
fb, a

limit cycle emerges in which each oscillator completes one rotation per period; we say the system
is 1:1 phase-locked, or simplyphase-locked. In [20], it is shown numerically that forcing the
system by white noise after the onset of phase-locking leadsto Λmax > 0. The authors of [20]
further cite Wang-Young theory (the material reviewed in Sect. 1) as a geometric explanation for
this phenomenon.

In this section, we provide geometric and numerical evidence of shear-induced chaos both
before and after the onset of phase-locking atafb = a∗

fb. Our results forafb > a∗
fb support the

assertions in [20]. Forafb < a∗
fb, they will show thatlimit cycles are not preconditions for shear-

induced chaos. We will show that in Eq. (10), the mechanism for folding is already in place
before the onset of phase-locking, where the system is quasi-periodic or has periodic orbits of very
long periods; the distinction between these two situationsis immaterial since we are concerned
primarily with finite-time dynamics. In the rest of this section, we will, for simplicity, refer to the
regime prior to the onset of phase-locking as “near-periodic.”

Folding: Geometric Evidence of Chaos

As discussed above, both periodic kicks and white-noise forcing are considered. The dynamical
picture of kicks followed by a period of relaxation has a simpler, more clear-cut geometry than
that of continuous, random forcing. Thus we use the former todemonstrate why one may expect
chaotic behavior in the relevant parameter ranges. The kickmap is denoted byκ as in Section 1.

Folding in the periodic (i.e. phase-locked) regime.We will useafb = 1.47 for illustration purposes;
similar behavior is observed over a range ofafb from 1.4 to 1.6. Note that the system is phase-
locked for a considerably larger interval beyondafb = 1.6, but the strength of attraction grows with
increasingafb, and when the attraction becomes too strong, it is harder forfolding to occur.

Fig. 10 shows the limit cycleγ (thick, solid curve) of the unforced system atafb = 1.47; more
precisely, it shows a “lift” ofγ to R

2, identifying the torusT2 with R
2/Z

2. Also shown is the
imageκ(γ) of the cycle after a single kick (dashed curve), where the kick mapκ corresponds to
I(t) = A

∑
n δ(t − nT ) with A = 1.5, i.e. κ is given byκ = limε→0 κε(ε) whereκε(t) is the

solution ofθ̇1 = A
ε
z(θ1), θ̇2 = 0. Notice the special form of the kicks:κ acts horizontally, and does

not move points onθ1 = 0. In particular,κ fixes a unique point(0, b) on the cycle; this point is, in
fact, not affected byanykick of the form considered in Eq. (10). Several segments of strong stable
manifolds (thin curves) of the unforced system are drawn. Recall that ifp is the period of cycle and
n ∈ Z

+, thenΦnp(κ(z)) lies on theW ss-curve throughκ(z) and is pulled toward the cycle asn
increases (see Sect. 1.2). From the relation between theW ss-curves and the cycle, we see that for
z ∈ γ, Φt(κ(z)) will lag behindΦt(z) during the relaxation period. Notice in particular that there
are points onκ(γ) above the lineθ2 = b that are pulled toward the part ofγ belowθ2 = b. Since
(0, b) stays put, we deduce that some degree of folding will occur ifthe time interval between kicks
is sufficiently long.

Fig. 11 illustrates how this folding happens through three snapshots. We begin with a segment
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Figure 10: The strong-stable foliation of the system (10) inthe phase-locked regime: Here the torus is
identified withR

2/Z
2. Solid curve:the limit cycle lifted toR

2. Dashed curve:the image of the cycle after
a single kick. Some leaves of the strong-stable foliation ina neighborhood of the limit cycle are shown. The
parameters areν1 = 1, ν2 = 1.1, aff = 1, andafb = 1.47.

γ0 ⊂ γ betweenθ2 = 0 andθ2 = 1 (thick, solid curve) and its image after a single kick (dashed
curve). Both curves are then evolved forward in time and their images att = 2.5 and t = 3.5
are shown. The dot marks the point onγ0 which does not move when kicked. Notice that these
pictures are shown in amoving frameto emphasize the geometry ofΦt(κ(γ0)) relative toΦt(γ0).

Folding in the near-periodic regime.Fig. 12 shows snapshots of a similar kind forafb = 1.2; this
value ofafb puts the system in the near-periodic regime. The snapshots begin with an (arbitrary)
orbit segmentγ0 and its imageκ(γ0); the location ofγ0 is near that of the limit cycle in Fig. 10.
The kicked segment clearly folds; indeed, the picture is qualitatively very similar to that of the
limit cycle case. Note that atafb = 1.2, the rotation number of the return map to{θ2 = 0} is a
little below 1, so thatΦt(κ(γ0)) has an overall, slow drift to the left when viewed in the fixed frame
[0, 1)2. This slow, left-ward drift is not especially relevant in our moving frame (which focuses
on the movement ofΦt(κ(γ0)) relative to that ofΦt(γ0)). The point is that after a few units of
time,Φt(κ(γ0)), which is folded, looks quite close to an orbit segment of theunforced flow. As it
moves around the torus, it is kicked periodically. In particular, as it returns to the part of the torus
shown in the figure, and the sequence of actions depicted in Fig. 12 is repeated. We regard this as
geometric evidence of shear-induced chaos.

We have seen that in the phase-locked regime, the folding of the limit cycle (when the time
interval between kicks is sufficiently large) can be deducedfrom the geometry of the strong stable
foliation. A natural question is: in the quasi-periodic regime, are there geometric clues in the
unforced dynamics that will tell us whether the system is more likely to exhibit chaotic behavior
when forced? Since folding occurs in finite time, we believe the answer lies partially in what we
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Figure 11: Snapshots of the limit cycle and its kicked image in a moving frame lifted toR2 as in Fig. 10.
Solid curves:Φt-images ofγ0, the part of the limit cycle betweenθ2 = 0 andθ2 = 1. Dashed curves:κ(γ0)
and its images.Dots: images of the (unique) point onγ0 not affected by the kick. The parameters are the
same as in Fig. 10.

call finite-time stable manifolds, a picture of which is shown in Fig. 13. Finite-time manifolds have
been studied by many authors; seee.g., [14, 34]. We first explain what these objects are before
discussing what they can — and cannot — tell us.

Fix t > 0. At eachz ∈ T
2, let V (z) be the most contracted direction of the linear map

DΦt(z) if it is uniquely defined,i.e. if v is a unit tangent vector atz in the directionV (z), then
|DΦt(z)v| ≤ |DΦt(z)u| for all unit tangent vectorsu atz. A smooth curve is called atime-t stable
manifoldif it is tangent toV at all points; these curves together form thetime-t stable foliation. In
general, time-t stable manifolds are not necessarily defined everywhere; they vary witht, and may
not stabilize ast increases. When “real” (i.e. infinite-time) stable manifolds exist, time-t stable
manifolds converge to them ast → ∞.

The thick, solid curves in Fig. 13 are two distinct orbit segments ofΦt. The angles between
these segments and the time-5 stable manifolds (thin curves) reflect the presence of shear. For
example, if a kick sends points on the left segment to the right, then within5 units of time most
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Figure 12: Snapshots of an orbit segment and its image after asingle kick in a moving frame, for the system
(10) in a near-periodic regime.Solid curves:a segmentγ0 of an orbit and its forward imagesΦt(γ0) at
t = 3.5, 5. Dashed curves:κ(γ0) and its forward images.Dots: images of the (unique) point onγ0 not
affected by the kick. The parameters areν1 = 1, ν2 = 1.1, aff = 1, andafb = 1.2.

points on the kicked segment will lag behind their counterparts on the original orbit segment —
except for the point withθ1 = 0 at the time of the kick. Pinching certain points on an orbit segment
while having the rest slide back potentially creates a scenario akin to that in Fig. 2; see Sect. 1.2.
Notice that the fact that finite-time stable manifolds are not invariant is of no consequence: all that
matters is that a folding occurs in the first 5 units of time, and that once folded, there is no obvious
mechanism for it to become undone.

Whether or not the shear here is strong enough to cause the formation of folds in 5 units of
time cannot be determined from the foliation alone; more detailed information such as contraction
rates are needed. What Fig. 13 tells us are the mechanism and the shapes of the folds if theydo
form. Notice also that shearing occurs in opposite directions along the two orbit segments. This
brings us to a complication not present previously: each orbit of Φt spends only a finite amount of
time near, say, the left curve before switching to the regionnear the right curve, and when it does
so, it also switches the direction of shear. Finite-time stable foliations for system (10) have also
been computed fort ∈ {3, 5} and a sample ofafb ∈ (1.1, 1.6) (not shown). They are qualitatively
similar to Fig. 13, with most of the leaves running in a northeasterly direction.
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Figure 13: Finite-time stable foliation of the system (10) in a near-periodic regime.Thick curves:two orbit
segments.Thin curves:time-5 stable foliation. The parameters here are the same asin Fig. 12.

In summary, fort not too large, time-t stable foliations generally do not change quickly witht
or with system parameters. They are good indicators of shear, but do not tell us if there isenough
shear for folds to form. For the system defined by (10), given that the finite-time stable manifolds
are nearly parallel to flowlines and the kick map acts unevenly with respect to this foliation, we
conclude the presence of shear. Fig. 12 and similar figures for otherafb (not shown) confirm that
folding does indeed occur when the system is forced in the near-periodic regime.

Computation of Lyapunov exponents

To provide quantitative evidence of shear-induced chaos inthe situations discussed above, we com-
puteΛmax. Recall that while periodic kicks followed by long relaxations provide a simple setting
to visualize folding, it is not expected to give clean results for Λmax because of the competition
between transient and sustained chaos (see Sect. 1.2). Continuous-time random forcing, on the
other hand, produces numerical results that are much easierto interpret.

Study 4a: Stochastic Forcing. We consider system (10) withaff = 1 andafb ∈ [1.1, 1.6]. The
forcing is of the formI(t) = a · dBt whereBt is standard Brownian motion.

Study 4b: Periodic kicks. The equation and parameters are as above, and the forcing is given
by I(t) = A · ∑n δ(t − nT ).

Summary of Findings. PositiveΛmax are found for stochastic forcing in the parameter interval
studied, both before and after the onset of phase-locking atafb = a∗

fb. For periodic kicks with large
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Figure 14: Lyapunov exponent of the system (10) subjected towhite noise forcing. The parameters corre-
spond to those in Figs. 10 and 12, respectively.
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Figure 15: Lyapunov exponent of the system (10) subjected toperiodic kicks. The parameters correspond to
those in Figs. 10 and 12, respectively. As in Study 1, both upper and lower estimates ofΛmax (which differ
in a few places) are shown.

enoughA andT , it appears thatΛmax is positive for a fraction of the forcing periods tested, but
the results are hard to interpret due to the competition between transient and sustained chaos.

Supporting Numerical Evidence.Fig. 14 shows some results for stochastic forcing. Forafb =
1.47, negative Lyapunov exponents are found for very small amplitudes of forcing, while slightly
stronger forcing (e.g. a ≈ 0.4) is needed beforeΛmax > 0 can be concluded with confidence. In
contrast, even fairly small values of forcing seem to lead toΛmax > 0 whenafb = 1.2, i.e. in the
near-periodic regime. This may be explained by the damping in the limit cycle case, especially for
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largerafb. Notice also that in this model large amplitudes of forcing do not lead to largerΛmax.
This is due to the fact that unlike the system in Studies 1–3, avery strong forcing merely presses
most of the phase space against the circleθ1 = 0, which is not very productive from the point of
view of folding phase space. Fig. 15 shows plots ofΛmax for periodic kicks. Here, roughly 40%
of the kick periodsT for which Lyapunov exponents were computed yield a positiveexponent.
More generally, we find thatΛmax > 0 for over 40% of kick intervalsT asA varies over the range
[0.75, 1.5]. See Simulation Details in Study 1.

Conclusions

Shear-induced chaos, by which we refer to the phenomenon of an external force interacting with
the shearing in a system to produce stretches and folds, is found to occur for wide ranges of
parameters in forced oscillators and quasi-periodic systems. Highlights of our results include:

(i) For periodically kicked oscillators, positive Lyapunov exponents are observed under quite
modest conditions on the unforced system and on the relaxation time between kicks (in
contrast to existing rigorous results). These regimes are,as expected, interspersed with those
of transient chaos in parameter space.

(ii) Continuous-time stochastic forcing is shown to be as effective in producing chaos as periodic
kicks. The qualitative dependence on shear, damping and amplitude of forcing is also similar.
We find that suitably directed, degenerate white noise is considerably more effective than
isotropic white noise (and additive noise will not work). Wehave also found evidence for an
approximate scaling law relatingΛmax to σ, λ, anda. Other types of random forcing such as
Poisson kicks are also studied and found to produce chaos.

(iii) The shear-induced stretching-and-folding mechanism can operate as well in quasi-periodic
systems as it does in periodic systems,i.e. limit cycles are not a precondition for shear-
induced chaos. We demonstrate this through a pulse-coupled2-oscillator system. Chaos is
induced under both periodic and white noise forcing, and a geometric explanation in terms
of finite-time stable manifolds is proposed.

The conclusions in (i) and (ii) above are based on systematicnumerical studies of a linear shear
flow model. As this model captures the essential features of typical oscillators, we expect that our
conclusions are valid for a wide range of other models. Our numerical results, particularly those
on stochastic forcing, point clearly to the possibility of anumber of (rigorous) theorems.
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