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Introduction

This paper is about a class of strange attractors that have the dual property of occurring
naturally and being amenable to analysis. Roughly speaking, a rank one attractor is an attractor
that has some instability in one direction and strong contraction in m − 1 directions, m here
being the dimension of the phase space.

The results of this paper can be summarized as follows. Among all maps with rank one
attractors, we identify inductively subsets Gn, n = 1, 2, 3, · · · , consisting of maps that are “well-
behaved” up to the nth iterate. The maps in G := ∩n>0Gn are then shown to be nonuniformly
hyperbolic in a controlled way and to admit natural invariant measures called SRB measures.
This is the content of Part II of this paper. The purpose of Part III is to establish existence
and abundance. We show that for large classes of 1-parameter families {Ta}, Ta ∈ G for positive
measure sets of a.

Leaving precise formulations to Section 1, we first put our results into perspective.

A. In relation to hyperbolic theory

Axiom A theory, together with its extension to the theory of systems with invariant cones
and discontinuities, has served to elucidate a number of important examples such as geodesic
flows and billiards (see e.g. [Sm],[A],[Si1],[B],[Si2],[W]). The invariant cones property is quite
special, however. It is not enjoyed by general dynamical systems.

In the 1970s and 80s, an abstract nonuniform hyperbolic theory emerged. This theory is
applicable to systems in which hyperbolicity is assumed only asymptotically in time and almost
everywhere with respect to an invariant measure (see e.g. [O],[P],[R],[LY]). It is a very general
theory with the potential for far-reaching consequences.

Yet using this abstract theory in concrete situations has proved to be difficult, in part because
the assumptions on which this theory is based, such as the positivity of Lyapunov exponents
or existence of SRB measures, are inherently difficult to verify. At the very least, the subject
is in need of examples. To improve its utility, better techniques are needed to bridge the gap
between theory and application. The project of which the present paper is a crucial component
(see B and C below) is an attempt to address these needs.

We exhibit in this paper large numbers of nonuniformly hyperbolic attractors with controlled
dynamics near every 1D map satisfying the well-known Misiurewicz condition. A detailed ac-
count of the mechanisms responsible for the hyperbolicity is given in Part II.

With a view toward applications, we sought to formulate conditions for the existence of SRB
measures that are verifiable in concrete situations. These conditions cannot be placed on the
map directly, for in the absence of invariant cones, to determine whether a map has this measure
requires knowing it to infinite precision. We resolved this dilemma for the systems in question
by identifying checkable conditions on 1-parameter families. These conditions guarantee the
existence of SRB measures with positive probability, i.e. for positive measure sets of parameters.
See Section 1.

B. In relation to one dimensional maps

In terms of techniques, this paper borrows heavily from the theory of iterated 1D maps,
where much progress was made in the last 25 years. Among the works that have influenced
us the most are [M],[J],[CE],[BC1] and [TTY]. The first breakthrough from 1D to a family of
strongly dissipative 2D maps is due to Benedicks and Carleson, whose paper [BC2] is a tour
de force analysis of the Hénon maps near the parameters a = 2, b = 0. Much of the local
phase-space analysis in this paper is a generalization of their techniques, which in turn have
their origins in 1D. Based on [BC2], SRB measures were constructed for the first time in [BY]
for a (genuinely) nonuniformly hyperbolic attractor. The results in [BC2] were generalized in
[MV] to small perturbations of the same maps. These papers form the core material referred to
in the second box below.
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All of the results in the second box depend on the formula of the Hénon maps. In going
from the second to the third box, our aim is to take this mathematics to a more general setting,
so that it can be leveraged in the analysis of attractors with similar characteristics (see below).
Our treatment of the subject is necessarily more conceptual as we replace the equation of the
Hénon maps by geometric conditions. A 2D version of these results was published in [WY1].

We believe the proper context for this set of ideas is m dimensions, m ≥ 2, where we retain
the rank one character of the attractor but allow the number of stable directions to be arbitrary.
We explain an important difference between this general setup and 2D: For strongly contractive
maps T with T (X) ⊂ X , by tracking T n(∂X) for n = 1, 2, 3, · · · , one can obtain a great deal
of information on the attractor ∩n≥0T

n(X). This is because the area or volume of T n(X)
decreases to zero very quickly. Since the boundary of a 2D domain consists of 1D curves, the
study of planar attractors can be reduced to tracking a finite number of curves in the plane.
This is what has been done in 2D, implicitly or explicitly. In D > 2, both the analysis and the
geometry become more complex; one is forced to deal directly with higher dimensional objects.
The proofs in this paper work in all dimensions including D = 2.

C. Further results and applications

We have a fairly complete dynamical description for the maps T ∈ G (see the beginning
of this introduction), but in order to keep the length of the present paper reasonable, we have
opted to publish these results separately. They include (1) a bound on the number of ergodic
SRB measures, (2) conditions that imply ergodicity and mixing for SRB measures, (3) almost-
everywhere behavior in the basin, (4) statistical properties of SRB measures such as correlation
decay and CLT, and (5) coding of orbits on the attractor, growth of periodic points, etc. A 2D
version of these results is published in [WY1]. Additional work is needed in higher dimensions
due to the increased complexity in geometry.

We turn now to applications. First, by leveraging results of the type in this paper, we were
able to recover and extend – by simply checking the conditions in Section 1 – previously known
results on the Hénon maps and homoclinic bifurcations ([BC2],[MV],[V]).

The following new applications were found more recently: Forced oscillators are natural
candidates for rank one attractors. We proved in [WY2],[WY3] that any limit cycle, when
periodically kicked in a suitable way, can be turned into a strange attractor of the type studied
here. It is also quite natural to associate systems with a single unstable direction with scenarios
following a loss of stability. This is what led us to the result on the emergence of strange
attractors from Hopf bifurcations in periodically kicked systems [WY3]. Finally, we mention
some work in preparation in which we, together with K. Lu, bring some of the ideas discussed
here including strange attractors and SRB measures to the arena of PDEs.

About this paper: This paper is self-contained, in part because relevant results from previ-
ously published works are inadequate for our purposes. The table of contents is self-explanatory.
We have put all of the computational proofs in the Appendices so as not to obstruct the flow
of ideas, and recommend that the reader omit some or all of the Appendices on first pass. This
suggestion applies especially to Section 3, which, being a toolkit, is likely to acquire context
only through subsequent sections. That having been said, we must emphasize also that the
Appendices are an integral part of this paper; our proofs would not be complete without them.
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1 Statement of Results

We begin by introducing M, the class of one-dimensional maps of which all maps studied in this
paper are perturbations. In the definition below, I denotes either a closed interval or a circle,
f : I → I is a C2 map, C = {f ′ = 0} is the critical set of f , and Cδ is the δ-neighborhood of
C in I. In the case of an interval, we assume f(I) ⊂ int(I), the interior of I. For x ∈ I, we let
d(x,C) = minx̂∈C |x− x̂|.

Definition 1.1 We say f ∈ M if the following hold for some δ0 > 0:
(a) Critical orbits: for all x̂ ∈ C, d(fn(x̂), C) > 2δ0 for all n > 0.
(b) Outside of Cδ0 : there exist λ0 > 0,M0 ∈ Z

+ and 0 < c0 ≤ 1 such that
(i) for all n ≥M0, if x, f(x), · · · , fn−1(x) 6∈ Cδ0 , then |(fn)′(x)| ≥ eλ0n;
(ii) if x, f(x), · · · , fn−1(x) 6∈ Cδ0 and fn(x) ∈ Cδ0 , any n, then |(fn)′(x)| ≥ c0e

λ0n.
(c) Inside Cδ0 : there exists K0 > 1 such that for all x ∈ Cδ0 ,

(i) f ′′(x) 6= 0;
(ii) ∃p = p(x), K−1

0 log 1
d(x,C) < p(x) < K0 log 1

d(x,C) , such that f j(x) 6∈ Cδ0 ∀j < p

and |(fp)′(x)| ≥ c−1
0 e

1
3λ0p.

This definition may appear a little technical, but the properties are exactly those needed for
our purposes. The class M is a slight generalization of the maps studied by Misiurewicz in [M].

Assume f ∈ M is a member of a one-parameter family {fa} with f = fa∗ . Certain orbits of
f have natural continuations to a near a∗: For x̂ ∈ C, x̂(a) denotes the corresponding critical
point of fa. For q ∈ I with infn≥0 d(f

n(q), C) > 0, q(a) is the unique point near q whose
symbolic itinerary under fa is identical to that of q under f . For more detail, see Sects. 2.1 and
2.4.

Let X = I ×Dm−1 where I is as above and Dm−1 is the closed unit disk in R
m−1, m ≥ 2.

Points in X are denoted by (x, y) where x ∈ I and y = (y1, · · · , ym−1) ∈ Dm−1. To F : X → I
we associate two maps, F# : X → X where F#(x, y) = (F (x, y), 0) and f : I → I where
f(x) = F (x, 0). Let ‖ · ‖Cr denote the Cr norm of a map. A one-parameter family Fa : X → I
(or Ta : X → X) is said to be C3 if the mapping (x, y; a) 7→ Fa(x, y) (respectively (x, y; a) 7→
Ta(x, y)) is C3.

Standing Hypotheses We consider embeddings Ta : X → X, a ∈ [a0, a1], where ‖Ta−F#
a ‖C3

is small for some Fa satisfying the following conditions:

(a) There exists a∗ ∈ [a0, a1] such that fa∗ ∈ M.

(b) For every x̂ ∈ C = C(fa∗) and q = fa∗(x̂),

d

da
fa(x̂(a)) 6= d

da
q(a) 3 at a = a∗. (1)

(c) For every x̂ ∈ C, there exists j ≤ m− 1 such that

∂F (x̂, 0; a∗)
∂yj

6= 0. (2)

A T -invariant Borel probability measure ν is called an SRB measure if (i) T has a positive
Lyapunov exponent ν-a.e.; (ii) the conditional measures of ν on unstable manifolds are absolutely
continuous with respect to the Riemannian measures on these leaves.

3Here q(a) is the continuation of q(a∗) viewed as a point whose orbit is bounded away from C; it is not to be
confused with fa(x̂(a)).
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Theorem In addition to the Standing Hypotheses above, we assume that ‖Ta − F#
a ‖C3 is

sufficiently small depending on {Fa}. Then there is a positive measure set ∆ ⊂ [a0, a1] such that
for all a ∈ ∆, T = Ta admits an SRB measure.

Notation For z0 ∈ X , let zn = T n(z0), and let Xz0 be the tangent space at z0. For v0 ∈ Xz0 ,
let vn = DT n

z0
(v0). We identify Xz freely with R

m, and work in R
m from time to time in local

arguments. Distances between points in X are denoted by | · − · |, and norms on Xz by | · |. The
notation ‖ · ‖ is reserved for norms of maps (e.g. ‖Ta‖C3 as above, ‖DT ‖ := supz∈X ‖DTz‖).

For definiteness, our proofs are given for the case I = S1. Small modifications are needed to
deal with the case where I is an interval. This is discussed in Sect. 3.9 at the end of Part I.

PART I PREPARATION

2 Relevant Results from One Dimension

The attractors studied in this paper have both an m-dimensional and a 1-dimensional character,
the first having to do with how they are embedded in m-dimensional space, the second due the
fact that the maps in question are perturbations of 1D maps. In this section, we present some
results on 1D maps that are relevant for subsequent analysis. When specialized to the family
fa(x) = 1−ax2 with a∗ = 2, the material in Sects. 2.2 and 2.3 is essentially contained in [BC2];
some of the ideas go back to [CE]. Part of Sect. 2.4 is a slight generalization of part of [TTY],
which also contains an extension of [BC1] and the 1D part of [BC2] to unimodal maps.

2.1 More on maps in M
The maps in M are among the simplest maps with nonuniform expansion. The phase space is
divided into two regions: Cδ0 and I \ Cδ0 . Condition (b) in Definition 1.1 says that on I \ Cδ0 ,
f is essentially (uniformly) expanding. (c) says that every orbit from Cδ0 , though contracted
initially, is not allowed to return to Cδ0 until it has regained some amount of exponential growth.

An important feature of f ∈ M is that its Lyapunov exponents outside of Cδ are bounded
below by a strictly positive number independent of δ. Let δ0, λ0, M0 and c0 be as in Definition
1.1.

Lemma 2.1 For f ∈ M, ∃c′0 > 0 such that the following hold for all δ < δ0:

(a) if x, f(x), · · · , fn−1(x) 6∈ Cδ, then |(fn)′(x)| ≥ c′0δe
1
3 λ0n;

(b) if x, f(x), · · · , fn−1(x) 6∈ Cδ and fn(x) ∈ Cδ0 , any n, then |(fn)′(x)| ≥ c0e
1
3 λ0n.

Obviously, as we perturb f , its critical orbits will not remain bounded away from C. The
expanding properties of f outside of Cδ, however, will persist in the manner to be described.
Note the order in which ε and δ are chosen in the next lemma.

Lemma 2.2 Let f and c′0 be as in Lemma 2.1, and fix an arbitrary δ < δ0. Then there exists
ε = ε(δ) > 0 such that the following hold for all g with ‖g − f‖C2 < ε:

(a) if x, g(x), · · · , gn−1(x) 6∈ Cδ, then |(gn)′(x)| ≥ 1
2c

′
0δe

1
4 λ0n;

(b) if x, g(x), · · · , gn−1(x) 6∈ Cδ and gn(x) ∈ Cδ0 , any n, then |(gn)′(x)| ≥ 1
2c0e

1
4 λ0n.

Lemmas 2.1 and 2.2 are proved in Appendix A.1
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2.2 A larger class of 1D maps with good properties

We introduce next a class of maps more flexible than those in M. These maps are located in
small neighborhoods of f0 ∈ M. They will be our model of controlled dynamical behavior in
higher dimensions.

For the rest of this subsection, we fix f0 ∈ M, and let δ0, λ0,M0 and c0 be as in Definition
1.1. The letter K ≥ 1 is used as a generic constant that is allowed to depend only on f0. (By
“generic”, we mean K may take on different values in different situations.) We fix also λ < 1

5λ0

and α << min{λ, 1}.
Let δ > 0, and consider f with ‖f − f0‖C2 << δ. Let C be the critical set of f . We assume

that for all x̂ ∈ C, the following hold for all n > 0:

(G1) d(fn(x̂), C) > min{δ, e−αn}; 4

(G2) |(fn)′(f(x̂))| ≥ ĉ1e
λn for some ĉ1 > 0.

Proposition 2.1 Let δ > 0 be sufficiently small depending on f0. Then there exists ε =
ε(f0, λ, α, δ) > 0 such that if ‖f−f0‖C2 < ε and f satisfies (G1) and (G2), then it has properties
(P1)–(P3) below.

(P1) Outside of Cδ: There exists c1 > 0 such that the following hold:

(i) if x, f(x), · · · , fn−1(x) 6∈ Cδ, then |(fn)′(x)| ≥ c1δe
1
4λ0n;

(ii) if x, f(x), · · · , fn−1(x) 6∈ Cδ and fn(x) ∈ Cδ0 , any n, then |(fn)′(x)| ≥ c1e
1
4λ0n.

For x̂ ∈ C, let Cδ(x̂) = (x̂− δ, x̂+ δ). We now introduce a partition P on I: For each x̂ ∈ C,
P|Cδ(x̂) = {I x̂

µj} where I x̂
µj are defined as follows: For µ ≥ log 1

δ
(which we may assume is an

integer), let I x̂
µ = (x̂ + e−(µ+1), x̂ + e−µ); for µ ≤ log δ, let I x̂

µ be the reflection of I x̂
−µ about x̂.

Each I x̂
µ is further subdivided into 1

µ2 subintervals of equal length called I x̂
µj . We usually omit

the superscript x̂ in the notation above, with the understanding that x̂ may vary from statement
to statement. For example, “x ∈ Iµj and fn(x) ∈ Iµ′j′” may refer to x ∈ I x̂

µj and fn(x) ∈ I x̂′

µ′j′

for x̂ 6= x̂′. The rest of I, i.e. I \ Cδ, is partitioned into intervals of length ≈ δ.

(P2) Partial derivative recovery for x ∈ Cδ(x̂): For x ∈ Cδ, let p(x), the bound period of
x, be the largest integer such that |f ix− f ix̂| ≤ e−2αi ∀j < p(x). Then

(i) K−1 log 1
|x−x̂| ≤ p(x) ≤ K log 1

|x−x̂| .

(ii) |(fp(x))′(x)| > e
λ
3 p(x).

(iii) If ω = Iµj , then |fp(x)(Iµj)| > e−Kα|µ| for all x ∈ ω.

The idea behind (P1) and (P2) is as follows: By choosing ε sufficiently small depending
on δ, we are assured that there is a neighborhood N of f0 such that all f ∈ N are essentially
expanding outside of Cδ. Non-expanding behavior must, therefore, originate from inside Cδ. We
hope to control that by imposing conditions (G1) and (G2) on C, and to pass these properties
on to other orbits starting from Cδ via (P2).

(P2) leads to the following view of an orbit:

Returns to Cδ and ensuing bound periods: For x ∈ I such that f i(x) 6∈ C for all i ≥ 0,
we define (free) return times {tk} and bound periods {pk} with

t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · ·

as follows: t1 is the smallest j ≥ 0 such that f j(x) ∈ Cδ. For k ≥ 1, pk is the bound period
of f tk(x), and tk+1 is the smallest j ≥ tk + pk such that f j(x) ∈ Cδ. Note that an orbit may
return to Cδ during its bound periods, i.e. ti are not the only return times to Cδ.

4We will, in fact, assume f is sufficiently close to f0 that fn(x̂) 6∈ Cδ0 for all n with e−αn > δ.
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The following notation is used: If P ∈ P , then P+ denotes the union of P and the two
elements of P adjacent to it. For an interval Q ⊂ I and P ∈ P , we say Q ≈ P if P ⊂ Q ⊂ P+.
For practical purposes, P+ containing boundary points of Cδ can be treated as “inside Cδ”
or “outside Cδ”.5 For an interval Q ⊂ I+

µj , we define the bound period of Q to be p(Q) =
minx∈Q{p(x)}.

(P3) is about comparisons of derivatives for nearby orbits. For x, y ∈ I, let [x, y] denote
the segment connecting x and y. We say x and y have the same itinerary (with respect to P)
through time n − 1 if there exist t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · · ≤ n such that for every
k, f tk [x, y] ⊂ P+ for some P ⊂ Cδ, pk = p(f tk [x, y]), and for all i ∈ [0, n) \ ∪k[tk, tk + pk),
f tk [x, y] ⊂ P+ for some P ∩Cδ = ∅.

(P3) Distortion estimate: There exists K (independent of δ, x, y or n) such that if x and y
have the same itinerary through time n− 1, then

∣

∣

∣

∣

(fn)′(x)
(fn)′(y)

∣

∣

∣

∣

≤ K.

We remark that the partition of Iµ into Iµj -intervals is solely for purposes of this estimate.
A proof of Proposition 2.1 is given in Appendix A.1.

2.3 Statistical properties of maps satisfying (P1)–(P3)

We assume in this subsection that f satisfies the assumptions of Proposition 2.1, so that in
particular (P1)–(P3) hold. Let ω ⊂ I be an interval. For reasons to become clear later, we write
γi = f i, i.e. we consider γi : ω → I, i = 0, 1, 2, · · · .
Lemma 2.3 For ω ≈ Iµ0j0 , let n be the largest j such that all s ∈ ω have the same itinerary up
to time j. Then n ≤ K|µ0|.

We call n+ 1 the extended bound period for ω. The next result, the proof of which we leave
as an exercise, is used only in Lemma 8.2.

Lemma 2.4 For ω ≈ Iµ0j0 , there exists n ≤ K|µ0| such that γn(ω) ⊃ Cδ(x̂) for some x̂ ∈ C.

The results in the rest of this subsection require that we track the evolution of γi to infinite
time. To maintain control of distortion, it is necessary to divide ω into shorter intervals. The
increasing sequence of partitions Q0 < Q1 < Q2 < · · · defined below is referred to as a canonical
subdivision by itinerary for the interval ω: Q0 is equal to P|ω except that the end intervals are
attached to their neighbors if they are strictly shorter than the elements of P containing them.
We assume inductively that all ω̂ ∈ Qi are intervals and all points in ω̂ have the same itinerary
through time i. To go from Qi to Qi+1, we consider one ω̂ ∈ Qi at a time.

– If γi+1(ω̂) is in a bound period, then ω̂ is automatically put into Qi+1. (Observe that if
γi+1(ω̂) ∩ Cδ 6= ∅, then γi+1(ω̂) ⊂ I+

µ′j′ for some µ′, j′, i.e. no cutting is needed during
bound periods. This is an easy exercise.)

– If γi+1(ω̂) is not in a bound period, but all points in ω̂ have the same itinerary through
time i+ 1, we again put ω̂ ∈ Qi+1.

– If neither of the last two cases hold, then we partition ω̂ into segments {ω̂′} that have
the same itineraries through time i + 1 and with γi+1(ω̂

′) ≈ P for some P ∈ P . (If, for
example, a segment appears that is strictly shorter than the Iµj containing it, then it is
attached to a neighboring segment.) The resulting partition is Qi+1|ω̂.

5In particular, if Iµ0j0 is one of the outermost Iµj in Cδ, then I+
µ0j0

contains an interval of length δ just
outside of Cδ.
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For s ∈ ω, let Qi(s) be the element of Qi to which s belongs. We consider the stopping time
S on ω defined as follows: For s ∈ ω, let S(s) be the smallest i such that γi(Qi−1(s)) is not in
a bound period and has length > δ.

Lemma 2.5 Assume δ is sufficiently small, and let ω ≈ Iµ0j0 . Then

|{s ∈ ω : S(s) > n}| < e−
1
2K−1n |ω| for all n > K|µ0|.

Here K is the constant in the statement of Lemma 2.2.

Corollary 2.1 There exists K̂ > 0 such that for any ω ⊂ I with δ < |ω| < 3δ,

|{s ∈ ω : S(s) > n}| < e−K̂−1n|ω| for n > K̂ log δ−1.

For δ̂ < δ, s ∈ ω and n ≥ 0, let Bn(s) be the number of i ≤ n such that γi(s) is in a bound
period initiated from a visit to C

δ̂
.

Proposition 2.2 Given any σ > 0, there exists ε1 > 0 such that for all δ̂ > 0 sufficiently small,
the following holds for all ω ≈ Iµ0j0 :

|{s ∈ ω : Bn > σn}| < e−ε1n |ω| for all n ≥ σ−1Kµ0.

Proofs of all the results in this subsection are given in Appendix A.2 except that of Lemma
2.4, which is left to the reader as an exercise.

Remark The main use of Proposition 2.2 in this paper is in parameter estimates. When
used in that context, it will be necessary for us to stop considering certain elements ω′ of Qi

corresponding to deletions. Without going further into parameter considerations, we introduce
the following notation. Let ∗ be the “garbage symbol”. At step i, we may, in principle, choose
to set γi = ∗ on any collection of elements of Qi. Once we set γi|ω′ = ∗, it follows automatically
that γj |ω′ = ∗ for all j ≥ i, i.e. we do not iterate ω′ forward from time i on. We leave it as an
(easy) exercise to verify that Proposition 2.2 remains valid in this slightly more general setting
if we count only those i for which γi(s) 6= ∗ in the definition of Bn(s).

2.4 Parameter transversality

We begin with a description of the structure of f ∈ M in terms of its symbolic dynamics. Let
J = {J1, · · · , Jq} be the components of I \ C. For x ∈ I such that f ix 6∈ C for all i ≥ 0, let
φ(x) = (ιi)i=0,1,··· be given by ιi = k if f ix ∈ Jk.

Lemma 2.6 For f ∈ M, there exists an increasing sequence of compact sets Λ(n) with ∪nΛ(n)

dense in I such that the following hold:
(a) Λ(n) ∩ C = ∅, f(Λ(n)) ⊂ Λ(n), and f |Λ(n) is conjugate to a shift of finite type;
(b) if infi>0 d(f

i(x), C) > 0, then f(x) ∈ Λ(n) for some n.

Our next result, which is a corollary of Lemmas 2.2 and 2.6, guarantees that continuations
of the type in Standing Hypothesis (b) are well defined.

Corollary 2.2 Let f ∈ M, and let q ∈ f(I) be such that δ1 := infn≥0 d(f
n(q), C) > 0. Then

for all g with ‖g − f‖C2 < ε where ε = ε(δ1) is as in Lemma 2.2, there is a unique point qg ∈ I
with φg(qg) = φf (q).

Let {fa} be as in Section 1, with fa∗ ∈ M. We fix x̂ ∈ C(fa∗), and let q = fa∗(x̂). Let ω be
an interval containing a∗ on which x̂(a) and q(a) (as given by Corollary 2.2) are well defined.
We write x̂k(a) = fk

a (x̂(a)).
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Proposition 2.3 (i) a 7→ q(a) is differentiable;
(ii) as k → ∞,

Qk(a∗) :=
dx̂k

da
(a∗)

(fk−1
a∗ )′(x̂1(a∗))

→ dx̂1

da
(a∗) − dq

da
(a∗) =

∞
∑

i=0

∂afa(x̂i(a
∗))|a=a∗

(f i
a∗)′(x̂1(a∗))

.

A proof of this proposition, which is a slight adaptation of a result in [TTY], is given in
Appendix A.3. Hypothesis (b) states that the expression on the right is nonzero. This condition,
which can be viewed as a transversality condition for one-parameter families in the space of C2

maps, is open and dense among the set of all 1-parameter families fa passing through a given
f ∈ M. The proof in [TTY] is easily adapted to the present setting.

3 Tools for Analyzing Rank One Maps

This section is a toolkit for the analysis of maps T : X → X that are small perturbation of maps
from X to I ×{0}. More conditions are assumed as needed, but detailed structures of the maps
in question are largely unimportant. The purpose of this section is to develop basic techniques
for use in the rest of the paper.

Notation The following rules on the use of constants are observed throughout:

- Two constants, K0 ≥ 1 and 0 < b << 1, are used to bound the sizes of the objects being
studied; they appear in assumptions.

- K is used as a generic constant; it appears in statements of results. In Sects. 3.1–3.4,
K depends only on K0 and m, the dimension of X ; from Sect. 3.5 on, it depends on an
additional object to be specified.

- b is assumed to be as small as need be; it is shrunk a finite number of times as we go along.
Under no conditions is K allowed to depend on b.

For small angles, θ is often confused with | sin θ|.

3.1 Stability of most contracted directions

Most contracted directions on planes

Consider first M ∈ L(2,R) and assume M 6= cO where O is orthogonal and c ∈ R. Then
there is a unit vector e, uniquely defined up to sign, that represents the most contracted direction
of M , i.e. |Me| ≤ |Mu| for all unit vectors u. From standard linear algebra, we know e⊥ is the
most expanded direction, meaning |Me⊥| ≥ |Mu| for all unit vectors u, and Me ⊥ Me⊥. The
numbers |Me| and |Me⊥| are the singular values of M .

Next let M ∈ L(m,R) for m ≥ 2, and let S ⊂ R
m be a 2D linear subspace. Then the ideas

in the last paragraph clearly apply to M |S , and we say e = e(S) is a most contracted direction
of M restricted to S if |Me| ≥ |Mu| for all unit vectors u ∈ S. We let f denote one of the
two unit vectors in S orthogonal to e, i.e. f represents the most expanded direction in S, and
|Mf | = ‖M |S‖, the norm of M restricted to S.

Two notions of stability for most contracted directions

For M1,M2, · · · ∈ L(m,R), we let M (i) denote the composition Mi · · ·M2M1.

(1) Let S ⊂ R
m be as above, and let ei(S) be the most contracted direction of M (i)|S assuming

that is well defined. It is known that if M (i)|S , i = 1, 2, · · · , has two distinct Lyapunov exponents
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as i→ ∞, then ei(S) converges to some e∞(S) as i→ ∞. We are interested in the speed of this
convergence.

(2) For parametrized families of linear maps Mi(s) and plane fields S(s) where s = (s1, · · · , sq)
is a q-tuple of numbers, control of ∂kei and ∂kM (n)ei represents another form of stability for
ei. Here ∂k denotes any one of the kth partial derivatives in s.

Main results

The ideas above are used to study the relation between pairs of vectors under the action of
DT n. To accommodate the many situations in which this analysis will be applied, we formulate
our next lemma in terms of abstract linear maps. For motivation, the reader should think
of Mi as DTzi−1 where z0 ∈ X and T : X → X is as in Sect. 1.1. For (H2), consider
z0(s) ∈ X,S(s) ⊂ Xz0(s), and Mi(s) = DTzi−1(s).

(H1) Let Mi = (M̂1
i , · · · , M̂m

i ) ∈L(m,R), i.e. M̂ j
i : R

m → R. Then for all i ≥ 1,

(i) ‖M̂1
i ‖ < K0;

(ii)‖M̂ j
i ‖ < b for j = 2, · · · ,m.

(H2) Let u(s) and v(s) ∈ R
m be linearly independent, and let S(s) = S(u(s), v(s)) be the

2D subspace spanned by u and v. Let Mi(s) ∈ L(m,R). We assume the maps s 7→
u(s), v(s),Mi(s) are C2 with

(i) ‖u‖C2, ‖v‖C2 < K0;

(ii) ‖M̂1
i ‖C2 < Ki

0;

(iii) ‖M̂ j
i ‖C2 < Ki

0b for j = 2, · · · ,m.

Lemma 3.1 (a) Let Mi be as in (H1), let S ⊂ R
m be an arbitrary 2D subspace, and let κ be

such that b
1
3 < κ ≤ 1. If ‖M (i)|S‖ > K−1

0 κi−1 for all 1 ≤ i ≤ n, then

|ei+1(S) − ei(S)| < (Kb κ−2)i for i < n;

|M (i)en(S)| < (Kb κ−2)i for i ≤ n.

(b) Let Mi(s) and S(s) be as in (H2), and b
1
5 ≤ κ ≤ 1. If for 1 ≤ i ≤ n, ‖M (i)|S‖ > K−1

0 κi−1

for all s, then for k = 1, 2,

|∂ke1(S)| < K;

|∂k(ei+1(S) − ei(S))| <
(

Kb κ−(2+k)
)i

for i < n;

|∂kM (i)en(S)| <
(

Kb κ−(2+k)
)i

for i ≤ n.

A proof of Lemma 3.1 is given in Appendix A.5, after some preliminary material in Appendix
A.4.

Assumptions for the rest of Section 3 We consider T : X → X with the following
properties: Let T = (T̂ 1, · · · , T̂m) be the coordinate maps of T . Then

(i) ‖T̂ 1‖C3 < K0;
(ii) ‖T̂ j‖C3 < b for j = 2, · · · ,m.

9



3.2 A perturbation lemma

The next lemma compares wn = DT n
z0

(w0) and w′
n = DT n

z′
0
(w′

0) where zi is near z′i for 0 ≤ i < n

and w0 ∈ Xz0 and w′
0 ∈ Xz′

0
are unit vectors such that w0 ≈ w′

0.

Lemma 3.2 There exists K1 depending on K0 such that for κ and η satisfying κ ≤ 1 and
b

1
2 < η < K−1

1 κ8, the following hold: Let (z0, w0) and (z′0, w
′
0) be such that ∠(w0, w

′
0) < η

1
4 ,

|wi| > K−1
0 κi−1 and |zi − z′i| < ηi+1 for 1 ≤ i < n. Then

(a) |w′
n| > 1

2K
−1
0 κn−1;

(b) ∠(wn, w
′
n) < η

n+1
4 .

Lemma 3.2 is proved in Appendix A.6.

3.3 Temporary stable curves and manifolds

One dimensional strong stable curves – temporary or infinite-time – can be obtained by inte-
grating vector fields of most contracted directions. In the proposition below, a neighborhood of
0 in Xz0 is identified with a neighborhood of z0 in X , which in turn is identified with an open
set of R

m.

Proposition 3.1 Let κ and η be as in Lemma 3.2, and let z0 ∈ X and w0 ∈ Xz0 be such that
|wi| ≥ K−1

0 κi−1|w0| for i = 1, · · · , n. Let S be a 2D plane in X containing z0 and z0 + w0.
For any n ≥ 1, we view en(S) as a vector field on S, defined where it makes sense, and let
γn = γn(z0, S) be the integral curve to en(S) with γn(0) = z0. Then

(a) γn is defined on [−η, η] or until it runs out of X;
(b) for all z ∈ γn, |T iz0 − T iz| < (Kb

κ2 )iη for all i ≤ n.

Proposition 3.1 is proved in Appendix A.7.

We call γn a temporary stable curve or stable curve of order n through z0. To obtain the
full temporary stable manifold through z0, we let S vary over all 2D planes containing z0 and
z0 + w0, obtaining

W s
n(z0) := ∪S γn(z0, S),

which we call a temporary stable manifold of order n through z0. Observe that W s
n(z0) is a

C1-embedded disk of co-dimension one. (The fact that W s
n(z0) is C1 away from z0 follows from

Lemma 3.1; at z0 it has continuous partial derivatives.)

3.4 A curvature estimate

Let γ0 : [c1, c2] → X be a C2 curve, and let γi(s) = T i(γ0(s)). We denote the curvature of γi at
γi(s) by ki(s). Here γ′i(s) is the tangent vector to γi(s).

Lemma 3.3 Let κ > b
1
3 , and let γ0 be such that k0(s) ≤ 1 for all s. Then the following hold

for every n > 0: If
|DT j

γn−j(s)
(γ′n−j(s))| ≥ κj |γ′n−j(s)|

for every j < n, then

kn(s) ≤ Kb

κ3
.

Lemma 3.3 is proved in Appendix A.8.
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Additional assumptions for Sects. 3.5–3.8 Let δ > 0 be a small number.

(1) The following is assumed about T̂ 1 : X → I and f := T̂ 1|I×{0}. Let C = {f ′ = 0}. Then
(i) outside of Cδ, f satisfies (P1) in Sect. 2.2;
(ii) inside Cδ, |f ′′| > K−1

0 ;

(iii) for all x̂ ∈ C, there exists i such that |∂yi T̂ 1(x, 0)| > K−1
0 for all x ∈ Cδ(x̂).

(2) From here on we restrict T to R1 := I × {|y| ≤ (m − 1)
1
2 b}. Note that T (R1) ⊂ R1 (see

assumption (ii) at the end of Sect. 3.1).

From here on the generic constant K depends on the map T̂ 1 as well as K0 and m. We
introduce the following notation used in the rest of the paper:

• The first critical region C(1) is defined to be

C(1) = {(x, y) ∈ R1 : |x− x̂| < δ, x̂ ∈ C(f)}.

• v ∈ R
m (identified with Xz, any z) is a fixed unit vector with zero x-component such that

|DT̂ 1
(x,0)v| > K−1

0 for all x ∈ Cδ. The existence of v is guaranteed by assumption (1)(iii)

above. (We may take it to be orthogonal to the kernel of DT̂ 1
(x̂,0) for x̂ ∈ C but that

is not necessary.) In general, v will be thought of as a reference vector in the “vertical”
direction.

3.5 Dynamics outside of C(1)

For u ∈ R
m, let (ux, uy) denote its x and y (or first and last m − 1) components, and let

s(u) =
|uy|
|ux| . Curvature continues to be denoted by k.

Definition 3.1 Assuming |f ′| > K−1
0 δ outside of C(1), we say u ∈ R

m is b-horizontal if
s(u) < 3K0

δ
b. A curve γ in R1 is called a C2(b)-curve if γ′(s) is b-horizontal and k(s) is < K1b

δ3

for all s where K1 is defined explicitly in the proof of Lemma 3.4. 6

Lemma 3.4 (a) For z 6∈ C(1), if u ∈ Xz is b-horizontal, then so is DTz(u); in fact, s(DTz(u)) <
3K0

2δ
b. Also, for z ∈ C(1), DTz(v) is b-horizontal.

(b) If γ is a C2(b)-curve outside of C(1), then T (γ) is again a C2(b)-curve.

Proof: The first assertion in (a) follows from the following invariant cones condition: Let u be
such that |ux| = 1 and |uy| < 3K0

δ
b. Then

s(DTz(u)) <
b(1 + 3K0

δ
b)

K−1
0 δ −K0

3K0

δ
b
<

3K0

2δ
b

provided b is sufficiently small. For z ∈ C(1), s(DTz(v)) < 2K0b. For (b) we apply Lemma 3.3
to one iteration of T : Since T is a small perturbation of f , we have |DTu| > 1

2c1δ where c1 is

as in (P1). This together with Lemma 3.3 gives k < K1

δ3 b where K1 = 8c−3
1 K and K is as in

Lemma 3.3. �

The next lemma says that outside of C(1), iterates of b-horizontal vectors behave in a way
very similar to that in 1D. Its proof is an easy adaption of the arguments in Sects. 2.1 and 2.2
made possible by part (a) of the last lemma.

6Quantities such as K1
δ3 b, 3K0

δ
b appearing in this definition will be denoted as O(b).
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Lemma 3.5 There exists c2 > 0 independent of δ such that the following hold: Let z0 ∈ R1 be
such that zi ∈ R1 \ C(1) for i = 0, 1, · · · , n− 1, and let w0 ∈ Xz0 be b-horizontal. Then

(i) |wn| > c2δe
1
4λ0n|w0|;

(ii) if, in addition, zn ∈ C(1), then |wn| ≥ c2e
1
4λ0n|w0|.

3.6 Properties of e1(S) for suitable S

We consider in this subsection e1 of DT restricted to suitable choices of S.

Lemma 3.6 For z0 6∈ C(1), let w ∈ Xz0 be b-horizontal, and let S ⊂ Xz0 be any 2D plane
containing w. Then ∠(e1(S), w) > K−1δ.

Proof: Assuming |w| = 1, write e1 = a1w + a2v where v ∈ S is a unit vector ⊥ w. Then
Kb > |DT (e1)| = |a1DT (w) + a2DT (v)|. Since |DT (w)| > K−1δ, it follows that |a2| > K−1δ.
�

Let γ be a C2(b) curve in C(1) parametrized by arclength. At each point γ(s), we let

S(s) = S(γ′(s),v). Let u(s) = γ′(s), v(s) = v−〈u,v〉u
|v−〈u,v〉u| , i.e. v(s) is a unit vector in S(s)

perpendicular to u(s), and let η(s) = 〈e1(S(s)), v(s)〉.

Lemma 3.7 Let γ(s), S(s) and η(s) be as above. Then e1(S(s)) is well-defined on all of γ, and

∣

∣

∣

∣

dη(s)

ds

∣

∣

∣

∣

> K−1
1 (3)

for some K1 independent of γ.

Lemma 3.7 is a direct consequence of our assumptions that f ′′(x̂) 6= 0 and ∂yi T̂ 1
(x̂,0) 6= 0 for

x̂ ∈ C. A proof is given in Appendix A.9.

3.7 Critical points on C2(b) curves in C(1)

We fix K̂0 > 10K0 where K0 satisfies |DT̂ 1
(x,0)v| > K−1

0 .

Definition 3.2 Let γ be a C2(b)-curve in C(1). We say that z0 is a critical point of order n
on γ if

(a) |DT i
z0

(v)| ≥ K̂−1
0 for i = 1, 2, · · · , n;

(b) at z0, ∠(en(S), γ′) = 0 with S = S(γ′,v).

Corollary 3.1 (Corollary to Lemma 3.7) On any C2(b)-curve traversing the full length of a
component of C(1), there exists a unique critical point of order 1.

We now turn to the problem of inducing new critical points on nearby curves starting from
a known critical point on a C2(b)-curve. We begin with two lemmas the exact form of which
will be used.

Lemma 3.8 Let γ and γ̂ be C2(b)-curves parametrized by arclength in C(1). Assume
(a) γ(0) is a critical point of order n on γ with |DT i

γ(0)(v)| ≥ 2K̂−1
0 for i ≤ n;

(b) |γ(0) − γ̂(0)|, |γ′(0) − γ̂′(0)| < b
n
4 ; and

(c) γ̂(s) is defined for all s ∈ [−bn
5 , b

n
5 ].

Then there exists a unique s, |s| < Kb
n
4 , such that γ̂(s) is a critical point on γ̂.
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Lemma 3.9 There exists K2 for which the following holds: Let γ be a C2(b)-curve parametrized
by arclength in C(1), and let z = γ(0) be a critical point of order n. If

(a) |DT i
z(v)| ≥ 2K̂−1

0 for i = 1, 2, · · · , n+m, and
(b) γ(s) is defined for s ∈ [−K2(Kb)

n,K2(Kb)
n],

then there exists a unique critical point ẑ of order n+m on γ, and |ẑ − z| < K2(Kb)
n.

Proofs of Corollary 3.1 and Lemmas 3.8 and 3.9 are given in Appendix A.10.

3.8 Tracking wn = DT n
z0

(w0): a splitting algorithm

Let z0 ∈ R1, and let w0 ∈ Xz0 be a b-horizontal unit vector. In the case where zi 6∈ C(1) for all
i, the resemblance to 1D dynamics is made clear in Lemmas 3.4 and 3.5. Consider next an orbit
z0, z1, · · · that visits C(1) exactly once, say at time t > 0. Assume:

(i) There exists ℓ > 1 such that |DT i
zt

(v)| ≥ K−1
0 for all i ≤ ℓ, so that in particular eℓ(S) is

defined at zt with S = S(v, wt).

(ii) ∠(wt, eℓ(S)) ≥ b
ℓ
2 .

Then DT i
z0

(w0) can be analyzed as follows. We split wt into wt = ŵt + Ê where ŵt is a scalar

multiple of v and Ê is a scalar multiple of eℓ(S). For i ≤ t and i ≥ t + ℓ, let w∗
i = wi. For i

with t < i < t+ ℓ, let w∗
i = DT i−t

zt
(ŵt). We claim that all the w∗

i are b-horizontal vectors, and
that {|w∗

i+1|/|w∗
i |}i=0,1,2,··· resembles a sequence of 1D derivatives, with |w∗

t+1|/|w∗
t | simulating

a drop in the derivative when an orbit comes near a critical point in 1D.
In light of Lemma 3.4, to show that w∗

i is b-horizontal, it suffices to consider w∗
t+ℓ. Observe

from assumption (ii) above that |ŵt| > b
ℓ
2 |Ê|. (Note that eℓ is close to e1 from Lemma 3.1, and

s(e1) < Kδ for z ∈ C(1).) This together with assumption (i) implies that

|DT ℓ
zt

(Ê)| ≤ (Kb)ℓ|Ê| ≤ Kℓb
ℓ
2 |ŵt| ≤ K0K

ℓb
ℓ
2 |DT ℓ

zt
(ŵt)|.

Since s(DT ℓ
zt

(ŵt)) <
3K0

2δ
b (see Lemma 3.4), w∗

t+ℓ = DT ℓ
zt

(ŵt) +DT ℓ
zt

(Ê) is b-horizontal.
The discussion above motivates the following

Splitting algorithm We give this algorithm only for z0 ∈ C(1) and w0 = v since this is mostly
how it will be used. Let t1 < t2 < · · · be the times > 0 when zi ∈ C(1). For each tj , fix
ℓtj

≥ 2 with the property that |DT i
ztj

(v)| > K−1
0 for i = 1, · · · , ℓtj

(such ℓtj
always exist). The

following algorithm generates two sequences of vectors w∗
i and ŵi:

1. For 0 ≤ i < t1, let w∗
i = ŵi = wi.

2. At i = t1, set w∗
i = wi, and define ŵi as follows: If w∗

i is a scalar multiple of v, let
ŵi = w∗

i . If not, let S = S(w∗
i ,v). Then split w∗

i into

w∗
i = ŵi + Êi

where ŵi is a scalar multiple of v and Êi is a scalar times eℓi
(S).

3. For i > t1, we let

w∗
i = DTzi−1(ŵi−1) +

∑

j: tj+ℓtj
=i

DT
ℓtj
ztj

(Êtj
), (4)

and define ŵi as follows: if i = tj , split w∗
i into w∗

i = ŵi + Êi as in item 2; if i 6= tj for any j,
set ŵi = w∗

i .

This algorithm is of interest when the contributions from the Êi-terms as they rejoin w∗
i are

negligible; the meaning of w∗
i and ŵi are unclear otherwise. The next lemma contains a set of

technical conditions describing a “good” situation:
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Lemma 3.10 Let z0, ℓtj
, wi and w∗

i be as above, and let Ij := [tj , tj + ℓtj
). Assume

(a) for each i = tj, |ŵi| > b
ℓi
2 |Êi|;

(b) the Ij are nested, i.e. for j < j′, either Ij ∩ Ij′ = ∅ or Ij′ ⊂ Ij .
Then the w∗

i are b-horizontal.

A proof of Lemma 3.10 is given in Appendix A.11.

3.9 Attractors arising from interval maps

We explain how to deal with the endpoints of I in the case where I is an interval.
Let f ∈ M. By assumption, f(I) ⊂ int(I). We let Λ = Λ(n) be as in Lemma 2.3 where n is

large enough that f(I) is well inside [x1, x2], the shortest interval containing Λ. It is a standard
fact that periodic points are dense in topologically transitive shifts of finite type. From this one
deduces easily that pre-periodic points are dense in all shifts of finite type, transitive or not. Let
y1 and y2 be pre-periodic points so that f(I) is well inside [y1, y2]. For i = 1, 2, let ki and ni be
such that fki+ni(yi) = fni(yi). Our plan is to prove the following for T when b is sufficiently
small:

(i) Near (fki(yi), 0), i = 1, 2, T has a periodic point zi.
(ii) zi is hyperbolic; it therefore has a codimension one stable manifold W s(zi). We claim

that Wi, the connected component of W s(zi) containing zi, spans R1 in the sense that it is the

graph of a function from {|y| ≤ (m− 1)
1
2 b} to I.

(iii) Near (yi, 0) there is a connected component Vi of W s(zi); Vi also spans R1.
(iv) If R̂1 is the part of R1 between V1 and V2, then T (R̂1) ⊂ R̂1.

The existence and hyperbolicity of zi follows from the fact that |(fki)′(fniyi)| > 1 (Lemma
2.1). That Wi spans the cross-section of R1 follows from Lemma 3.1 and the construction in
Sect. 3.3 with n → ∞. Moving on to (iii), the existence of a component of T−kiWi near (yi, 0)
follows by continuity. Repeating the arguments at zi on a (any) point in Vi, we see that not
only does Vi span R1 but its tangent vectors make angles > K−1δ with the x-axis. Thus the
diameter of Vi is arbitrarily small as b→ 0, and (iv) follows from f(I) ⊂ (y1, y2).

In Part II, we restrict the domain of T to R̂1. The two ends of R̂1, namely V1 ∪ V2, are
asymptotic to the periodic orbits of z1 and z2. In particular, they stay away from C(1). This
part of ∂R̂1 is not visible in local arguments. In Sections 7 and 8, in the treatment of monotone
branches, there will be some special branches that end in T j(Vi). Modifications in the arguments
are straightforward.

In Part III, we take zi(a) to be continuations of the same periodic orbits, so that R̂1(a) varies
continuously with a.

Notation for the rest of the paper

• We assume T = (T̂ 1, · · · , T̂m) : X → X is such that ‖T̂ j‖C3 < b for j = 2, · · · ,m.

• R1 := I × {y ∈ R
m−1 : |y| < (m− 1)

1
2 b}; Rk := T k−1R1 for k = 2, 3, · · · .

• For definiteness, we let F1 be the foliation on R1 given by {y =constant} (this can be
replaced by any foliation whose leaves are C2(b) curves); for k > 1, Fk := T k−1

∗ (F1), i.e.
the leaves of Fk are the T k−1-images of those of F1.

• A subset H ⊂ Rj is called a section of Rj if it is the diffeomorphic image of Φ : [−1, 1]×
Dm−1 → Rj with Φ−1(∂Rj) = [−1, 1]× ∂Dm−1. A section H of Rj is called horizontal
if each component of Φ({±1} × Dm−1) is contained in a hyperplane {x = const} and
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all the leaves of Fj |H are C2(b)-curves. The cross-sectional diameter of a horizontal
section H is defined to be the supremum of diam(V ∩H) as V varies over all hyperplanes
perpendicular to S1.

• The distance from z to z′ in R1 is denoted by |z − z′|, and their horizontal distance,
i.e. difference in x-coordinates, is denoted by |z − z′|h.

PART II PHASE-SPACE DYNAMICS

The goal of Part II is to identify, among all maps T : X → X that are near small perturbations
of 1D maps, a class G with certain desirable features. To explain what we have in mind, consider
the situation in 1D. In Sect. 2.2, we show that for maps sufficiently near f0 ∈ M, two relatively
simple conditions, (G1) and (G2), imply dynamical properties (P1)–(P3), which in turn lead to
other desirable characteristics. Our class G will be modelled after these maps.

The first major hurdle we encounter as we attempt to formulate higher dimensional analogs
of (G1) and (G2) is the absence of a well defined critical set. As we will show, the concept of a
critical set can be defined, but only inductively and only for certain maps. This implies that our
“good maps” can only be identified inductively. The task before us, therefore, is the inductive
construction of Gn, n = 1, 2, · · · , consisting of maps that are “good” in their first n iterates, and
G is taken to be ∩n≥0Gn.

We do not claim in Part II that G is nonempty, and we consider one map at a time to
determine if it is in G; no parameters are involved. The existence (and abundance) of maps in
G is proved in Part III.

Organization Sections 4–9, which comprise Part II, are organized as follows:

Sect. 4.1 contains five statements describing 5 aspects of dynamical behavior. Together,
these statements give a snapshot of the maps in Gn for certain n. The rest of Section 4 is
devoted to the elucidation of the ideas introduced.

Implications of these ideas are developed in Section 5, and a formal inductive construction
of Gn for n ≤ N0 ∼ (log 1

b
)2 is given in Section 6.

After N0 iterates, a fundamental, qualitative change in geometry occurs. The new complex-
ities that arise are dealt with in Sections 7 and 8.

The existence of SRB measures for T ∈ G is proved in Section 9.

The notation is as in Section 1, namely that f : S1 → S1, F : R1 → S1 and F# : R1 → R1

are related by F (x, 0) = f(x) and F#(x, y) = (F (x, y), 0), and T : R1 → R1 is a C3 embedding.

Standing hypotheses Throughout Part II, we fix f0 ∈ M and K0 > 1, and consider
• f : S1 → S1 with ‖f − f0‖C2 < a,
• F : R1 → S1 with ‖F‖C3 < K0 and |DF(x̂,0)(v)| > K−1

0 for x̂ ∈ C(f0), and

• T : R1 → R1 with ‖T − F#‖C3 < b
where a, b > 0 are as small as need be. The letter K is used as a generic constant which, in Part
II, is allowed to depend only on f0,K0 and our choice of λ.

4 Critical Structure and Orbits

4.1 Formal assumptions

We describe in this subsection several aspects of geometric and dynamical behaviors to be viewed
as desirable. These assumptions, labelled (A1)–(A5), will eventually be part of the inductive
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cycle up to a certain time. For the moment they are only formal statements.
For purposes of the present discussion, λ > 0 can be any number < 1

5λ0 (see Sect. 2.2). We

choose α so that b << α << min(λ, 1), and let α∗ = 6
λ
α. Let θ = K

log 1
b

where K is chosen so

that bθ < ‖DT ‖−20. Let N be a positive integer >> 1. For simplicity of notation, we assume
θN, θ−1, 1

α∗ ∈ Z
+ (otherwise write [θN ], [θ−1], [ 1

α∗ ]).

(A1) Geometry of critical regions There are sets C(1) ⊃ C(2) ⊃ · · · ⊃ C(θN) called critical
regions with the following properties:

(i) C(1) is as introduced in Sect. 3.4. For 1 < k ≤ θN , C(k) is the union of a finite number
of connected components {Q(k)} each one of which is a horizontal section of Rk of length

min(2δ, 2e−λk) and cross-sectional diameter < b
k
2 .

(ii) C(k) is related to C(k−1) as follows: For each Q(k−1), either Rk ∩ Q(k−1) = ∅ or it meets
Q(k−1) in a finite number of horizontal sections {H} each one of which extends > 1

2e
−αk

beyond the two ends of Q(k−1). Each H ∩Q(k−1) contains exactly one component of C(k)

located roughly in the middle. (See Fig. 1.)

(iii) Inside each Q(k), a point z0 = z∗0(Q(k)) whose x-coordinate is exactly half-way between
those of the two ends of Q(k) is singled out; z0 is a critical point of order k in the sense
of Definition 3.2 with respect to the leaf of the foliation Fk containing it.
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Fig. 1 Structure of critical regions

We call z∗0(Q(k)) a critical point of generation k, and let Γk denote the set of all critical
points of generation ≤ k. Let Q(k)(z0) denote the component of C(k) containing z0.

The next three assumptions prescribe certain behaviors on the orbits of z0 ∈ ΓθN . To state
them, we need the following definitions:

First, we define a notion of distance to critical set for zi, denoted dC(zi). If zi 6∈ C(1), let
dC(zi) = δ+ d(zi, C(1)). If zi ∈ C(1), we let dC(zi) = |zi −φ(zi)| where φ(zi) is defined as follows.
Let j be the largest integer ≤ α∗θi with the property that zi ∈ C(j). Then φ(zi) := z∗0(Q(j)(zi))
is called the guiding critical point for zi. As the name suggests, the orbit of φ(zi) will be
thought of as guiding that of zi through its derivative recovery. Suppose zi ∈ C(1) and φ(zi) is
of generation j. We say w ∈ Xzi

is correctly aligned, or correctly aligned with respect to the
leaves of the Fj-foliation, if ∠(τj(zi), w) << K−1

1 dC(zi) where K−1
1 is a lower bound on | d

ds
e1|

along C2(b)-curves in C(1) in the sense of Lemma 3.7 and τj(zi) is tangent to the leaf of Fj

through zi. We say w is correctly aligned with ε-error if ε << K−1
1 and ∠(τj(zi), w) < εdC(zi).

For z0 ∈ ΓθN , we let w0 = v, and for a chosen family of ℓi corresponding to zi ∈ C(1), let
w∗

i , i = 0, 1, 2, · · · , be given by the splitting algorithm in Sect. 3.8. The numbers {ℓi} are called
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the splitting periods for z0. Let ε0 << K−1
1 be fixed. We shrink δ if necessary so that it is

<< ε0.

(A2)–(A4) Properties of critical orbits For z0 ∈ ΓθN of generation k, the following hold
for all i ≤ kθ−1:

(A2) dC(zi) > min(δ, e−αi).

(A3) There exist {ℓj} (to be specified in Sect. 4.4) so that w∗
i is correctly aligned with ε0-error

when zi ∈ C(1).

(A4) |w∗
i | > 1

2c2e
λi where c2 is as in Lemma 3.5.

Our next assumption gives the relation between zi and φ(zi). Let β̂ be such that α << β̂ <<

1. For z0, ξ0 ∈ R1, let p̂(z0, ξ0) be the smallest j > 0 such that |zj − ξj | ≥ e−β̂j . For reasons to
be explained in Sect. 4.3B, we will be interested in a range of p near p̂(z0, ξ0). Inside each Q(k),
let

B(k) = {z ∈ Q(k) : |z − z∗0(Q(k))|h < b
1
5k}.

(A5) How critical orbits influence nearby orbits For z0 = z∗0(Q(k)) and ξ0 ∈ Q(k) \B(k),
k ≤ θN , the following hold for all p ∈ [p̂(z0, ξ0), (1 + 9

λ
α)p̂(z0, ξ0)]:

(i) (Length of bound period) Suppose |z0 − ξ0| = e−h. Then

1

3 ln ‖DT ‖ h ≤ p ≤ 3

λ
h

the first inequality being valid if 1
3 ln ‖DT‖h ≤ kθ−1 and the second if 3

λ
h ≤ kθ−1.

(ii) (Partial derivative recovery) If p ≤ kθ−1, then |wp(z0)||ξ0 − z0| ≥ e
1
3λp.

(iii) (Quadratic nature of turns) Let γ be the Fk-leaf segment joining ξ0 to B(k). Then for all
η0 ∈ γ and ℓ(η0) < i ≤ min{p, kθ−1},

|ηi − zi| =
1

2

(

|de1
ds

(z0)| ± O(b)

)

·
(

|wi(z0)| ± O(|η0 − z0|
1
2 )
)

· |η0 − z0|2.

Here ℓ(η0) is defined by b
ℓ(η0)

2 = |η0 − z0|, and e1 = e1(S) where S = S(v, τk), τk being the
tangent to the Fk-leaf through z0.

This completes the formulation of the five statements (A1)–(A5). We also write (A1)(N)–
(A5)(N) when more than one time frame is involved. The rest of this section contains some
immediate clarifications.

Three important time scales We point out that in the dynamical picture described by
(A1)–(A5), there are three distinct time scales: θN << αN << N . The fastest time scale, N ,
gives the number of times the map is iterated. The slowest, θN , is the number of generations
of critical regions and critical points constructed. The middle time scale, which is on the order
of αN (α∗N to be precise), is an upper bound for the lengths of the bound periods initiated by
critical orbits returning to C(1) at times ≤ N (this follows from (A2) and (A5)(i) combined).

We assume (A1)–(A5) for the rest of Section 4.
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4.2 Clustering of critical orbits

In Sect. 4.1, we presented a viewpoint – convenient for some practical purposes – in which a
critical point z∗0(Q(k)) in each component Q(k) of C(k) is singled out for special consideration. To
understand the relation among the points in ΓθN , it is more fruitful to group them into clusters.
We propose here to view these clusters as represented by B(k). To justify this view, we prove

Lemma 4.1 For all k < k̂ < θN , if Q(k̂) ⊂ Q(k), then

|z∗0(Q(k)) − z∗0(Q(k̂))| < Kb
k
4

and B(k̂) ⊂ B(k).

The proof of this lemma uses the technical estimate below. Both results rely on the geometric
information on Q(k) in (A1). Proofs are given in Appendix A.12.

Lemma 4.2 Let k < k̂, Q(k̂) ⊂ Q(k), z ∈ Q(k), ẑ ∈ Q(k̂), and let γ and γ̂ be the Fk- and
F

k̂
-leaves containing z and ẑ respectively. Let τ and τ̂ be the tangent vectors to γ and γ̂ at z

and ẑ. Then
∠(τ, τ̂) ≤ b

k
4 + Kδ−3b · |z − ẑ|h.

Evolution of critical blobs A theme that runs through our discussion is that orbits emanating
from the same B(k) are viewed as essentially indistinguishable for kθ−1 iterates. Informally, we
call these finite orbits of B(k) critical blobs.

Recall that θ is assumed so that bθ < ‖DT ‖−20. This implies that for all i ≤ kθ−1,

diam(T iB(k)) < b
1
5k‖DT ‖i < (bθ)

1
5 i‖DT ‖i. This is << e−αi, the minimum allowed distance to

the critical set (see (A2)).
Obviously, we cannot iterate indefinitely and hope that T iB(k) remains small; that is why

we regard z∗0(Q(k)) as active for only kθ−1 iterates. The word “active” here refers to both (i)
prescribed behavior for zi (as in (A2)–(A4)) and (ii) the use of zi as guiding critical orbit or in
the sense of (A5).

It is useful to keep in mind the following dynamical picture:

At time i = 0, T has a set B(1) corresponding to each critical point of f . For i ≤ θ−1, the
T i-images of B(1) are relatively small, so that {T iB(1)}i=0,1,··· ,θ−1 for each B(1) can be treated
as a single orbit.

As i increases, the sizes of T iB(1) become larger, eventually becoming too large for {T iB(1)}i=0,1,···
to be treated as a single orbit. We stop considering these critical blobs long before that time,
however. At time i = θ−1, we replace each T θ−1

B(1) by the collection of T θ−1

B(2) contained
in it. For θ−1 < i ≤ 2θ−1, T iB(2) are again relatively small, and so can be viewed as a finite
collection of orbits. At time i = 2θ−1, each T 2θ−1

B(2) is replaced by the collection of T 2θ−1

B(3)

inside it, and so on.
As i increases, the number of relevant critical blobs increases, each becoming smaller in size.

Blobs that have separated move about “independently”. By virtue of (A2), they are allowed to
come closer to the critical set with the passage of time.

We finish by recording a technical fact that will be used in conjunction with Lemma 3.8.

Lemma 4.3 For any C2(b)-curve s 7→ l(s) traversing a given B(k) ⊂ Q(k), there exists a point
in l, denoted by l(0), such that

∠(l′(0), τ(z0)) < b
k
4

where z0 = z∗0(Q(k)) and τ(z0) is tangent to the leaf of Fk at z0.

As with Lemma 4.2, Lemma 4.3 is proved by a straightforward application of Sublemma
A.12.1 in Appendix A.12. We leave it as an exercise.
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4.3 Bound periods

Let z0 ∈ ΓθN be of generation k, and let zi ∈ C(1), i ≤ kθ−1. In Sect. 4.1, we assigned
to zi a guiding critical point φ(zi) ∈ ΓθN . (A5)(i)–(iii) hold for all p ∈ [p̂, (1 + 9

λ
α)p̂] where

p̂ = p̂(zi, φ(zi)). We now choose a specific number p = p(zi) in this range with certain desirable
properties. This number will be called the bound period of zi.

A. Remarks on φ(·) and dC(·)
In general, when zi ∈ C(1), it is in many Q(j). Since C(j) for larger j give better approx-

imations of the eventual critical set, it is natural to want to define dC(zi) using the largest j

possible. We do not do exactly that; instead, we take φ(zi) to be z∗0(Q(ĵ)(zi)) where ĵ is the
largest j ≤ α∗θi such that zi ∈ Q(j). The significance of this upper bound on j will become
clear in Section 6. For now we observe

Lemma 4.4 (i) |zi − φ(zi)| >> b
ĵ
5 ; in particular, zi ∈ Q(ĵ) \B(ĵ), so (A5) applies.

(ii) Let p ∈ [p̂, (1 + 9
λ
α)p̂] be as in (A5). Then p ≤ ĵθ−1.

Proof: Case 1. ĵ + 1 ≤ α∗θi. This implies zi ∈ Q(ĵ) ∩ Rĵ+1 \ Q(ĵ+1), i.e. dC(zi) > e−λ(ĵ+1).

Hence b
ĵ
5 << dC(zi) and p << ĵθ−1 by (A5)(i).

Case 2. ĵ + 1 > α∗θi. Using this relation between i and ĵ, we see that dC(zi) > e−αi >

e−
α

α∗ θ−1(ĵ+1), which we check is >> b
ĵ
5 by the definition of bθ and the facts that α

α∗ = λ
6 and

eλ < ‖DT ‖. Also, p ≤ 3
λ
αi by (A2) and (A5)(i). This upper bound is = 1

2α
∗i ≤ 1

2 (ĵ + 1)θ−1 ≤
ĵθ−1. �

We use φ(zi) to define dC(zi). One may ask if it makes a significant difference if some other
critical point is used. The answer is that when dC(zi) is relatively large, for example when

dC(zi) > b
1
5 , it does not matter much, but when dC(zi) is small, the values of |ẑ − zi| or even

|ẑ − zi|h can vary nontrivially as ẑ varies over ΓθN . For the same reason, for zi, z
′
j ∈ C(1), we

cannot conclude – without further information – that |dC(zi) − dC(z′j)| ≈ |zi − z′j |, for zi and
z′j can be in very different “layers” of the critical structure, resulting in φ(zi) and φ(z′j) being
relatively far apart.

We do have the following:

Lemma 4.5 (i) Let z ∈ Q(k) \ B(k). Then for all ẑ, z̃ ∈ ΓθN ∩ B(k) (meaning the B(k) inside

Q(k)(zi)), we have |z − ẑ| = (1 ±O(b
k
20 ))|z − z̃|.

(ii) Suppose ẑ0 = φ(zi), and ẑj ∈ C(1) for some 0 < j < p̂(ẑ0, zi). Then dC(zi+j) =

(1 ±O(e−
1
2 β̂j))dC(ẑj).

Proof: (i) By Lemma 4.1, |ẑ− z̃| < Kb
k
4 , and by assumption, z is > b

k
5 from the center of Q(k).

This proves |z − ẑ| = (1 ±O(b
k
20 )) |z − z̃|.

(ii) By definition, |zi+j − ẑj | < e−β̂j << e−αj , which is < dC(ẑj) by (A2). As explained
above, this in itself is insufficient for guaranteeing the asserted relationship between dC(zi+j)
and dC(ẑj). We have, however, the following additional information: By (A5)(iii), there is a
curve ω joining zi to ẑ0 such that diam(T j(ω)) << e−αj . Now suppose ẑj ∈ C(1) is such that

φ(ẑj) = z∗0(Q(k̂)). Since k̂ << j, T j(ω) is contained, or nearly contained, in Q(k̂)(ẑj). Part (i)
now enables us to make the desired comparison. �
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B. Definition of bound periods

Consider z0 ∈ ΓθN . For each i such that zi ∈ C(1), let p(zi) be the bound period of zi to be
defined. We say {p(zi)} has a nested structure if whenever i < j are such that zi, zj ∈ C(1) and
j < i+ p(zi), we have j + p(zj) ≤ i+ p(zi).

To define p(zi), we start with p̂i := p̂(φ(zi), zi) where p̂(φ(zi), zi) is as defined in Sect. 4.1.
There is no reason why {p̂i} should have a nested structure. We call j0 < j1 < · · · < jn a
chain of overlapping bound intervals if zjk

∈ C(1) and jk ∈ (jk−1, jk−1 + p̂jk−1
) for every k ≤ n.

Let Λi be the set of all integers k > i such that there is a chain of overlapping bound intervals
j0 < j1 < · · · < jn with j0 = i and jn + p̂n ≥ k. We define p(zi) := i′ − i where i′ is the
supremum of the set Λi. A priori, p(zi) can be >> p̂i; it can even be infinite. We prove in
Lemma 4.6 below that this is not the case.

Lemma 4.6 For all z0 ∈ ΓθN and all zi ∈ C(1),
(a) p(zi) < (1 + 6

λ
α)p̂i.

(b) {p(zi)} has a nested structure.

Proof: (a) For zi ∈ C(1), let j be such that i < j < i + p̂i. Then dC(zj) ≈ dC((φ(zi))j−i)) by
Lemma 4.5(ii). Applying (A2) to φ(zi) and then (A5)(i) to zj , we obtain p̂j ≤ 3

λ
α(j− i) ≤ 3

λ
αp̂i.

If j0 < j1 < · · · < jn is a chain of overlapping bound intervals with j0 = i, then similar reasoning
gives p̂jk

≤ 3
λ
αp̂jk−1

, so that

p̂j0 + p̂j1 + · · · + p̂jn
< (1 +

3

λ
α+ (

3

λ
α)2 + · · · )p̂i < (1 +

6

λ
α)p̂i.

Since this bound is valid for all chains, we have p(zi) < (1 + 6
λ
α)p̂i.

(b) We need to show that if j ∈ (i, i+p(zi)), then j+p(zj) ≤ i+p(zi). Note that since p(·) is
finite, there exists a chain of overlapping intervals i = j0 < · · · < jn such that jn+p̂jn

= i+p(zi).
If j + p(zj) > i+ p(zi), then the chain that goes from i to i+ p(zi) combined with the one that
goes from j to j+ p(zj) forms a new chain starting from i and extending beyond i+ p(zi). This
contradicts the definition of p(zi). �

Let β = β̂ − 9
λ

ln ‖DT ‖α, and let p(z0, ξ0) be the smallest j such that |zj − ξj | ≥ e−βj. An
easy calculation gives p̂(z0, ξ0)(1 + 9

λ
α) ≤ p(z0, ξ0).

Clarification: Relation between p̂(·, ·), p(·, ·) and p(zi) for z0 ∈ ΓθN

1. These definitions are brought about by the tension between our desire to define “bound
periods” in terms of the distances separating two orbits, and the advantages of having a nested
structure for bound periods along individual orbits. We showed in Lemma 4.6 that a nested
structure can be arranged if we allow some flexibility in scale when measuring distances, so that
for z0 ∈ ΓθN , there exist {p(zi)} with a nested structure and satisfying p̂(zi, φ(zi)) ≤ p(zi) ≤
p(zi, φ(zi)).

2. In general, in results pertaining to a single bound period (e.g. Propositions 5.1), we use
p(·, ·), so that the result is valid for as long a duration as possible. In situations in which we
follow the long range evolution of single orbits (e.g. Sect. 5.2), a nested structure arranged as
above is used.

C. Bound and free states

For z0 ∈ ΓθN of generation k, we now have a decomposition of the orbit z0, z1, · · · , zkθ−1

into intervals of bound and free periods, i.e. we say zi is free if and only if it is not in
a bound period. Calling the maximal bound intervals primary bound periods, the nested
structure above allows us to speak of secondary bound periods, tertiary bound periods, and
so on. Returns to C(1) at the beginning of primary bound periods are called free returns, while
returns at the start of seconding or higher order bound periods are called bound returns.

20



4.4 The splitting algorithm applied to DT i
z0

(v), z0 ∈ ΓθN

The considerations below are motivated by the discussion in Sect. 3.8 and by Lemma 3.10 in
particular. We continue to use the notation there.

A. Splitting periods

Fix z0 ∈ ΓθN . We explain how the ℓi at return times i in Sect. 4.1 are chosen. From Sect.
3.8, we see that the following properties are desirable:

(i) ℓi ≥ 2;
(ii) |DT j

zi
(v)| > K−1 for j = 1, 2, · · · , ℓi;

(iii) the intervals Ii = [i, i+ ℓi) have the nested property.

We explain why these properties can, in principle, be arranged. Let i be fixed for now. To
obtain property (ii), we use Lemma 3.2 and the fact that φ(zi) is a critical point. Observe that

(ii) always holds for ℓ ≤ 2, so (i) is not a problem. In general, as a first approximation, let ℓ̂ be

such that b
ℓ̂
3 = dC(zi). We claim that (ii) holds for all ℓ ≤ 5

3 ℓ̂. To justify this claim, we need to
check that ℓ ≤ the order of φ(zi) as a critical point (this follows from Lemma 4.4(i)), and that
the expanding property |DT j

φ(zi)
(v)| > K−1

0 passes to a disk of radius > dC(zi) (Lemma 3.2).

To achieve (iii), we need to show that if zj is a return for i < j < i+ ℓ̂i, then ℓ̂j < Kα(log 1
b
)−1ℓ̂i

(for which we follow the proof of Lemma 4.6).

Algorithm for choosing ℓi in (A3): Let ℓ̂i be as above. First we set ℓ′i = max{2, ℓ̂i}, then
increase ℓ′i to ℓ∗i if necessary so that the intervals Ii = [i, i + ℓ∗i ) are nested, and finally, for
convenience, let ℓi = ℓ∗i + 1 or 2 to ensure that no splitting period ends at a return or at the
step immediately after a return.

B. Correct alignment implies correct splitting

For z0 ∈ ΓθN , we let w∗
i , i = 1, 2, · · · , be generated by the splitting algorithm in Sect. 3.8

using the ℓi above. Our next lemma connects the “correct alignment” assumption in (A3)
to hypothesis (a) in Lemma 3.10. Suppose zi ∈ C(1) and write w∗

i = Aieℓi
(S) + Biv where

S = S(v, w∗
i ).

Lemma 4.7 If w∗
i is correctly aligned with ε-error where ε << K−1

1 , then

|Bi|
|Ai|

>
1

2
K−1

1 dC(zi)

where K−1
1 is the lower bound of | d

ds
e1| in Lemma 3.7.

When the conclusion of Lemma 4.7 holds, we say w∗
i splits correctly. We caution that

when dC(·) is very small, b-horizontal vectors do not necessarily split correctly.

Corollary 4.1 If at all returns, w∗
i is correctly aligned with ε-error where ε << K−1

1 , then w∗
i

is b-horizontal and splits correctly.

A proof of Lemma 4.7 is given in Appendix A.13. Corollary 4.1 follows from a direct appli-

cation of Lemma 3.10 once we note that 1
2K

−1
1 dC(zi) >> b

ℓi
2 .

5 Properties of Orbits Controlled by Critical Set

We continue to assume (A1)–(A5). This section contains a general discussion of the extent to
which the orbits of z0 ∈ ΓθN can be used to guide other (noncritical) orbits, or, put differently,
the extent to which (ξ0, w0) for arbitrary ξ0 ∈ R1 and w0 ∈ Xξ0 can be controlled by ΓθN . The
word control is given a formal definition in Sect. 5.2.
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5.1 Copying segments of critical orbits

For z, ξ in the same component of C(1), let p(z, ξ) be as defined in Sect. 4.3B, i.e. it is the
smallest j such that |T jz − T jξ| > e−βj. For z0 = z∗0(Q(k)) ∈ ΓθN and ξ0, ξ

′
0 ∈ Q(1)(z0), we

let p(z0; ξ0, ξ
′
0) := min{p(z0, ξ0), p(z0, ξ′0), kθ−1}. Unlike (A5), we do not presuppose here any

geometric relationship between ξ0, ξ
′
0 and z0. In particular, p(z0; ξ0, ξ

′
0) may not be in the time

range for which (A5) is applicable.
Let w0(ξ0) = w0(ξ

′
0) = w0(z0) = v. We apply the splitting algorithm to z0, ξ0 and ξ′0 for

i ≤ p(z0; ξ0, ξ
′
0) using for all three points the splitting periods for z0 as specified in Sect. 4.4.

Our next proposition compares w∗
i (ξ0) and w∗

i (ξ′0). Let

∆n(ξ0, ξ
′
0) :=

n
∑

s=0

b
s
4 2ℓn−s |ξn−s − ξ′n−s| (5)

where ℓn−s is the length of the longest splitting period zn−s find itself in, 0 if zn−s is out of all
splitting periods.

Proposition 5.1 There is a constant K1 such that for all ξ0, ξ
′
0 and z0 as above and i <

p(z0; ξ0, ξ
′
0),

|w∗
i (ξ0)|

|w∗
i (ξ′0)|

,
|w∗

i (ξ′0)|
|w∗

i (ξ0)|
≤ exp

{

K1

i−1
∑

n=1

∆n(ξ0, ξ
′
0)

dC(zn)

}

(6)

and
∠(w∗

i (ξ0), w
∗
i (ξ′0))) ≤ b

1
2 ∆i−1(ξ0, ξ

′
0). (7)

This proposition would not be very useful without a priori bounds for the quantities involved.
We explain how a bound for the right side of equations (6) and (7) can be arranged.

Lemma 5.1 Assume that (i) β is sufficiently large compared to α, (ii) δ is sufficiently small
depending on α and β, and (iii) b is small enough. Then for all z0, ξ0, ξ

′
0, i and n as above,

∆n < 2e−
1
2 βn << ε0dC(zn)

and

K1

i−1
∑

n=1

∆n(ξ0, ξ
′
0)

dC(zn)
<< 1.

Proposition 5.1 and Lemma 5.1 are proved in Appendix A.14. Our first application of
Proposition 5.1 is to the case where ξ′0 = z0. We assume α, β, δ and b are chosen so that the
following is an immediate corollary of Proposition 5.1 and Lemma 5.1.

Corollary 5.1 Let z0 ∈ ΓθN be of generation k. Then for ξ0 ∈ Q(1)(z0) and i < min{kθ−1,
p(z0, ξ0)},

(i) |w∗
i (ξ0)| > 1

4c2e
λi;

(ii) at return to C(1), w∗
i (ξ0) is correctly aligned with 2ε0-error.

5.2 A formal notion of “control”

Very roughly, a controlled orbit is one obtained by splicing together a finite number of orbit
segments each one of which is either free or bound to a critical orbit. The goal of this subsection
is to identify sufficient conditions at the joints that will guarantee that the resulting orbit has
desirable properties.

Let ξ0 ∈ R1 be an arbitrary point.
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Definition 5.1 We say ξ0 is controlled by ΓθN for M iterates, or equivalently, the orbit
segment ξ0, ξ1, · · · , ξM−1 is controlled by ΓθN , if the following hold: whenever ξi ∈ C(1), 0 ≤ i <
M , there exists Q(k), k ≤ θN , such that

(i) ξi ∈ Q(k) \B(k), and
(ii) min(p̂(z0, ξi),M − i) ≤ kθ−1 where z0 = z∗0(Q(k)).

Condition (i) guarantees that (A5) applies to ξi. Condition (ii) guarantees that the guiding
orbit z0 remains active until either the bound period or the period of control expires.

Orbits controlled by ΓθN can be seen as follows:
Let n1 ≥ 0 be the first time ξi ∈ C(1). For i ≤ n1, we regard ξi as free. At time n1, we assume

there exists z0 ∈ ΓθN satisfying the conditions in Definition 5.1. Such a critical point is usually
not unique. We make an arbitrary choice, call it φ̃(ξn1), and defined d̃C(ξn1) := |φ̃(ξn1) − ξn1 |.
From Lemma 4.1 we see that among the admissible choices of φ̃(ξn1), d̃C(ξn1) do not differ
substantially. Instead of φ̃(·) and d̃C(·), we write φ(·) and dC(·) for notational simplicity.

For the next p̂(ξn1 , φ(ξn1 )) iterates, we think of ξn1 as bound to φ(ξn1 ) as in Sect. 5.1,
inheriting from the orbit of φ(ξn1 ) bound and splitting periods. At the end of the p̂(ξn1 , φ(ξn1))
iterates, there may be some bound periods that have not expired. In the interest of a nested
structure for bound periods, we extend p̂(ξn1 , φ(ξn1 )) to p1, so that n1 + p1 is the first moment
when all bound periods initiated before n1 + p1 have expired. For the same reason as in the
proof of Lemma 4.6, we have p1 < (1 + 6

λ
α)p̂(ξn1 , φ(ξn1 )). (This uses condition (i) in Definition

5.1.)
We regard ξn1+p1 as “free”, and think of its orbit as remaining free until n2, the first time

≥ n1 + p1 when ξn2 ∈ C(1). For a controlled orbit, we are guaranteed the existence of at least
one critical point satisfying the conditions of Definition 5.1 with respect to ξn2 . We think of ξn2

as bound to φ(ξn2 ) for p2 iterates, and so on.
The process continues until the period of control expires. Splitting periods with a nested

structure are defined similarly.

Next we discuss what it means for a (ξ0, w0)-pair to be controlled. Let ε1 be such that
4ε0 < ε1 << K−1

1 where ε0 and K1 are as in Sect. 4.1. Let ξ0 be a controlled orbit, and let
w0 ∈ Xξ0 be an arbitrary unit vector. The vectors w∗

i (ξ0) are obtained by using the splitting
periods defined above.

Definition 5.2 We say (ξ0, w0) is controlled by ΓθN for M iterates, or equivalently, the se-
quence (ξ0, w0), · · · , (ξM−1, wM−1) is controlled by ΓθN , if ξ0 is controlled for M iterates and
the following holds: whenever ξi ∈ C(1), 0 ≤ i < M , w∗

i is correctly aligned with ε1-error, i.e.
if φ(ξi) is of generation j and dC(ξi) is as above, then ∠(w∗

i (ξ0), τ) < ε1dC(ξi) where τ is the
tangent to the leaf of Fj through ξi.

A slightly expanded definition: It is convenient to expand the definition of control to allow
the following initial condition: If ξ0 ∈ C(1) and w0 = v, then the conditions in Definitions 5.1
and 5.2 are waived at time 0. (The rationale for this inclusion is that since no splitting occurs
at time 0, derivative recovery is automatic.)

The properties of a controlled (ξ0, w0)-pair can be summarized as follows:

Proposition 5.2 Assume that (ξ0, w0) is controlled by ΓθN for M iterates. Then
(1) there exist 0 ≤ n1 < n1 + p1 ≤ n2 < n2 + p2 ≤ n3 · · · < M such that for each i,

(i) there is φ(ξni
) ∈ ΓθN to which ξni

is bound for pi iterates, pi ∼ log 1
dC(ξni

) ;

(ii) ξj 6∈ C(1) for ni + pi ≤ j < ni+1;

23



(2) w∗
i has the following growth properties:

|w∗
ni+pi

|
|w∗

ni
| > K−1e

1
3λpi ;

|w∗
ni+1

|
|w∗

ni+pi
| >

1

2
c2e

1
4λ0(ni+1−(ni+pi)).

Proof: (1) is a summary of the discussion following Definition 5.1; the estimate for pi uses
(A5)(i). The second inequality in (2) follows immediately from Lemma 3.5. The first is proved
as follows: By Proposition 5.1, we have |DT pi

ξni
(v)| > 1

2 |DT
pi

φ(ξni
)(v)|. For purposes of this proof,

it is simplest to split off a vector from w∗
ni

that is known to contract for pi iterates. Let e = epi

be the most contracted direction for DT pi

ξni
on S = S(wni

,v). We claim that if w∗
ni

= Ae+Bv,

then |B| > K−1dC(ξni
). (Reason: correct splitting is assumed at time ni; the (normal) splitting

period, ℓ, is << pi; and so ∠(e, eℓ) < (Kb)ℓ, which is << b
ℓ
3 ≈ dC(ξn1).) (A5)(ii) then gives

|DT pi

ξni
(Bv)| > K−1|DT pi

φ(ξni
)(v)|dC(ξni

) > K−1e
1
3λpi . The addition of DT pi

ξni
(Ae) has negligible

effect. �

In Sect. 2.2, we proved that for a class of “good” 1D maps, every orbit not passing through
the critical set has the properties in Proposition 5.2. A consequence of the definition of control,
therefore, is that (ξ0, w0)-pairs have 1D behavior.

5.3 A collection of useful facts

We record in this subsection a miscellaneous collection of facts related to controlled orbits that
are used in the future. Lemmas 5.2–5.6 are proved in Appendices A.15–A.17. Proposition 5.3
is proved in Appendix A.18.

A. Relation between |wi| and |w∗
i |

Lemma 5.2 Assume that (ξ0, w0) is controlled by ΓθN for M iterates. Under the additional
assumption that dC(ξi) > min(δ, e−αi) for all i < M , we have

K−εi|w∗
i (ξ0)| ≤ wi(ξ0) ≤ Kεie2αi|w∗

i (ξ0)|, ε = Kαθ. (8)

B. Angles at bound returns

Lemma 5.3 Let ξ0 be controlled by ΓθN for M iterates, and assume that at all free returns,
w∗

i is correctly aligned with < ε1-error. Then at all bound returns, w∗
i is correctly aligned with

< 3ε0-error.

Since ε1, the error in alignment of w∗
i at free returns, can be >> 3ε0, Lemma 5.3 implies

that the magnitudes of the errors at free returns are not reflected in the angles at returns during
ensuing bound periods provided they are within an acceptable range.

C. Growth of |wi|, |w∗
i | and ‖DT i‖

The next three results provide more detailed information on derivative growth than Propo-
sition 5.2.

Lemma 5.4 There exists λ′ with λ′ > 1
3λ−O(

√
b) such that if (ξ0, w0) is controlled by ΓθN for

M iterates , then for every 0 ≤ k < n < M ,

|w∗
n| ≥ K−1dC(ξj)e

λ′(n−k)|w∗
k|

where j is the first time ≥ k when a bound period extending beyond time n is initiated. If no
such j exists, set dC(ξj) = δ.
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Lemma 5.5 The setting and notation are as in Lemma 5.4. If in addition ξn is free, then

|wn| > δK−Kθ(n−k)eλ′(n−k)|wk|.

If ξn is a free return, then δ on the right side can be omitted.

We finish by recording a technical lemma that will be used in Part III.

Lemma 5.6 Suppose (ξ0, w0) is controlled for M iterates by ΓθN , and that dC(ξi) > e−αi for

all i ≤M . Then there exist constants K and λ̂ > 0 slightly smaller than 1
3λ such that for every

0 ≤ s < i < M ,

‖DT i−s
ξs

‖ ≤ Ke−λ̂s|wi|.

D. Quadratic properties of turns

We consider in this paragraph the special situation where the critical point on a C2(b)-curve
is controlled. The quadratic distance formula in Proposition 5.3 is used to prove estimates of
the kind in (A5).

The precise setting is as follows: Let γ ⊂ C(1) be a C2(b)-curve, and let z0 ∈ γ be a critical
point of order M on γ in the sense of Definition 3.2. (There is no restriction on the size of M ;
it can be > N .) We assume that

(1) (z0,v) is controlled by ΓθN for M iterates; and
(2) dC(zi) > min(δ, e−αi) for all 0 < i ≤M .

Let s 7→ ξ0(s) be the parametrization of γ by arclength with ξ0(0) = z0.

Proposition 5.3 For given s1 > 0, let p(s1) = min{p(ξ0(s1), z0),M}. Then for all 0 < s ≤ s1
and i ∈ [ℓ(s), p(s1)] with ℓ(s) = 2 log s

log b
, we have

|ξi(s) − zi| ≈ 1

2
| d
ds
e1(0)||wi(0)| s2

where e1 = e1(S) and S = S(γ′,v).

6 Identification of Hyperbolic Behavior: Formal Inductive
Procedure

6.1 Global constants (mostly review)

For N = 1, 2, · · · , we define below a set of “good” maps T : X → X denoted by

GN = GN (f0,K0, a, b; λ, α; δ, β, ε0, θ).

The arguments on the right side can be understood conceptually as follows:
1. The first group consists of f0 ∈ M and three constants, K0, a and b. These items appear

in the Standing Hypotheses at the beginning Part II; they define an open set in the space of C3

embeddings of X into itself.
2. In the next group are λ and α, two constants that appear in (A2) and (A4). As we will

see, (A2) and (A4) play a special role in determining if T in the open set above is in GN ; they
are analogous to (G1) and (G2) for 1D maps (see Sect. 2.2).

3. Unlike the situation in 1D, auxiliary constructions are needed before we are able to
properly formulate (A2) and (A4). The constants in the last group, namely δ, β, ε0 and θ,
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appear in these auxiliary constructions. They do not directly impact whether a map is in GN ,
but help maintain uniform estimates in the constructions.

In the definition of GN , f0 is chosen first; it can be any element of M. We then fix K0,
which can be any number > ‖f0‖C3. Precise conditions imposed on the rest of the constants
are given in the text. We review below their (rough) meanings and give the order in which they
are chosen. To ensure consistency in our choices, it is important that (i) only upper bounds are
imposed on each constant, and (ii) these bounds are allowed to depend only on the constants
higher up on the list (in addition to f0, K0, and m, the dimension of X). Except for λ, all the
constants listed below are << 1 and must be taken to be as small as necessary.

Important constants: their meanings, and the order in which they are chosen

– λ is our targeted Lyapunov exponent; it can be anything < 1
5λ0 where λ0 is a growth rate

of |f ′
0| (see Definition 1.1). Once chosen, it is fixed throughout.

– Next we fix α and β and think of e−αn and e−βn as representing two small scales. The
requirements are that 0 < α, β << min{λ, 1} and β > Kα for some K depending on f0
and K0. The meaning of α is that critical orbits are not allowed to approach the critical
set at speeds faster than e−αn. Two orbits {zi} and {z′i} with |zi − z′i| < e−βi are to be
thought of as “bound together”.

– ε0, which depends only on f0,K0 and m, has the following meaning: For z ∈ C(1), vec-
tors v ∈ Xz that make angles < ε0dC(z) with certain Fk-leaves are viewed as “correctly
aligned”.

– The size of δ is limited by many factors. Examples of which include δ < δ0 where δ0 is
as in Definition 1.1, a bound used in distortion (Lemma 5.1), the Taylor formula estimate
at “turns” (Proposition 5.3), δ << ε0, and some purely numerical inequalities (e.g. if
δ = e−µ, then 1

µ2 << e−µ).

– Chosen last are a and b. It is best to think of a and b as very small numbers that we may
need to decrease a finite number of times as we go along.

- The smaller a is, the longer fn(x̂), x̂ ∈ C, can be kept out of Cδ0 .

- The smaller b is, the more closely T mimics F#.

– There is an important constant defined the same time as b, namely θ := K
log 1

b

where K is

chosen so that bθ = ‖DT ‖−20. With this choice of θ, critical orbits emanating from the
same B(k) can be viewed as a single orbit for kθ−1 iterates. We may, therefore, regard
the number of critical orbits (or “critical blobs”) present at time N as ≤ KθN for some K
depending on f0.

When referring to GN in the future, it will be understood that the arguments above are
implicit. In particular, G0 is the set of maps T satisfying the conditions at the beginning of Part
II with regard to some fixed f0,K0, a and b. Constants (such as K1) not on this list are regarded
as local in context; they must be specified each time they are used. Finally, we emphasize that
the generic constant K that appears in many of our results is allowed only to depend on f0,K0

and m provided that the other constants are appropriately small.

6.2 Three stages of evolution

Our construction of GN comes in three distinct stages: For N ≤ θ−1, the situation is, in many
ways, not far from that in 1D. This part is simple and is disposed of immediately in the next
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paragraph. At time N = θ−1, certain local complexities of higher dimensional maps begin
to develop, “turns” play a more prominent role, and the definition of GN becomes necessarily
inductive. We have been building up the dynamical picture for this part in Sections 4 and 5
and will complete its construction in Sects. 6.3 and 6.4. At N = θ−2, the global structure of T
begins to depart from those of 1D maps. New ideas are needed; they are discussed in Sections
7 and 8.

Getting started: the first θ−1 steps

Let T ∈ G0, and assume the leaves of F1 are parallel to the x-axis. Let C = {x̂1, · · · , x̂q} be
the critical set of f . Then near each x̂i, there exists x̃i such that e1(S) = ∂x at (x̃i, 0) where
S = S(∂x,v). A simple computation gives |x̃i− x̂i| < Kb. Let Γ1 = {(x̃1, 0), · · · , (x̃q, 0)}. These
are the only critical points for the first θ−1 iterates. Components of C(1) centered at these points
are constructed as required in (A1).

Before proceeding further, we observe that if γ0 is a C2(b)-segment with the property that
γi := T i(γ0) does not meet B(1) for all i < n, then the curves γi are roughly horizontal for all

i ≤ n. This follows immediately from the fact that for z with dC(z) > b
1
5 and u ∈ Xz with

s(u) < b
3
4 , s(DTz(u)) < b

3
4 (see Sect. 3.5).

For N = 1, 2, · · · , θ−1, let

GN = {T ∈ G0 | (A2) and (A4) hold for all z0 ∈ Γ1 and i ≤ N}.

(A2) and (A4) are, as noted earlier, analogs of (G1) and (G2) in Sect. 2.2.
We claim that for T ∈ GN , (A3) and (A5) are satisfied automatically. (A3) is easily verified

since all b-horizontal vectors are correctly aligned at dC > e−αθ−1

(bθ < e−α by definition, so

b << e−αθ−1

). (A5) follows from 1D estimates: Let γ0 be the curve joining ξ0 ∈ Q(1) \ B(1) to
B(1) in (A5). Then during its bound period, all tangent vectors to γi are roughly horizontal as
explained above. An argument entirely parallel to that in Appendix A.1 proves (A5)(i)-(iii).

Inductive scheme for going from N = θ−1 to N = θ−2

Beyond N = θ−1, more critical points are needed as orbits emanating from B(1) begin to
diverge. To help describe the structures needed for the identification of new critical points, we
have introduced a set of assumptions, namely (A1)–(A5). In Sect. 6.3, we will add another one,
(A6), which is also trivially satisfied up to time θ−1. Let

GN := {T ∈ G0 | (A1)(N) − (A6)(N) hold }, N ≤ θ−2.

Observe that this definition is consistent with the one defined earlier for N ≤ θ−1. The goal of
Sects. 6.3 and 6.4 is to prove the following:

(*) Let θ−1 < N < 1
α∗N ≤ θ−2. We assume T ∈ GN , and prove that

if T satisfies (A2) and (A4) up to time 1
α∗N , then it is in G 1

α∗ N .

The time step of the construction above is determined by the fact that at times ≤ 1
α∗N , the

lengths of the bound periods are ≤ N . This ratio is noted in the paragraph on “three important
time scales” in Sect. 4.1.

Why stop at N = θ−2?

We emphasize that the material in this section is for iterates N ≤ θ−2. The reason for this
time restriction is that as mentioned above, the sets T kB(1) begin to get “large” at k = θ−1,
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affecting the geometry of the critical regions. (A1) and (A6), which we will introduce shortly,
cannot be sustained as formulated.

Notation: In this section and the next, we will be working with the foliations Fk. Given that
we have defined F1 to be the initial foliation on R1, it is advantageous in discussions involving
Fk to let ξ1 denote arbitrary points in R1 and τ1 unit tangent vectors to the leaves of F1. This
convention (instead of the usual (ξ0, τ0)) leads to more pleasing notation such as ξk ∈ Rk and
τk as tangent vectors to the leaves of Fk.

6.3 Controlling Fk, and pushing forward (A1) and (A6)

One way to gain a better grip on the geometry of Rk is to control (ξi, τi) for ξ1 ∈ R1.

Rules for setting control

(1) We stop controlling (ξi, τi) once ξi enters B(i); this is compatible with the idea that
T kB(i), k = 1, 2, · · · , iθ−1, is to be seen as the orbit of a single point.

(2) In our inductive scheme to be detailed shortly, the control of (ξi, τi) proceeds in parallel
with the construction of Γi. For this reason, we will take φ(ξi) ∈ Γi.

(3) As explained in Sect. 5.2, it suffices to set control at free returns. Let i be a free return.
Then φ(ξi) is chosen as follows: If there exists j < i such that ξi ∈ C(j) \ C(j+1), then we let
φ(ξi) = z∗0(Q(j)) where Q(j) = Q(j)(ξi). If ξi ∈ Q(i), we have no choice (in view of (2)) but to
let φ(ξi) = z∗0(Q(i)).

To the five assumptions (A1)–(A5) in Sect. 4.1, we now add another one. We say the
foliation Fk+1 is controlled on Rk+1 by Γk if for all ξ1 ∈ R1 and i ≤ k, (ξi, τi) is controlled
by Γk provided ξi 6∈ B(i) for all i ≤ k. (The indices in the last sentence are intended as written:
we say Fk+1 is controlled because control of (ξi, τi) for i ≤ k leads to geometric knowledge of
the leaves of Fk+1.)

(A6)(N) For all k ≤ θN , Fk+1 is controlled on Rk+1 by Γk.

At this point we would like to assert that (A1)( 1
α∗N) and (A6)( 1

α∗N) hold for T ∈ GN . A

proof would involve simultaneously constructing C(k) and Γk, and using Γk to control Fk+1.
What prevents us from making a clean statement to this effect at this time is that without
having first assumed or proved (A2)(kθ−1)–(A5)(kθ−1) for k > θN , we cannot, in principle,
conclude that orbits controlled by Γk have the properties in Sect. 5.3.

We examine the situation more closely:
Assume T satisfies (A1)(N)–(A6)(N). Fix θN < i ≤ 1

α∗ θN , and assume (A1)(iθ−1) holds.

Let ξi ∈ C(1) be an arbitrary point. We define φ(ξi) as in (3) above and assume that τi is
correctly aligned (with respect to Fj where j is the generation of φ(ξi)). The discussion below
pertains only to time ≤ 1

α∗ θN .
Case 1. j ≤ θN . In this case, (ξi, τi) is controlled by ΓθN for the next min(p, 1

α∗ θN − i)
iterates where p is the bound period between ξi and φ(ξi).

Case 2. j > θN , and ξi 6∈ B(θN). The conclusion is as in Case 1. The orbit of ẑ0 := φ(ξi)
and that of z0 = z∗0(B(θN)(φ(ξi))) remain extremely close during the period in question (more

precisely, |ẑk − zk| < ‖DT ‖kb
θN
5 << e−βk), and it makes no difference whether we view ξi as

bound to ẑ0 or to z0.
Case 3. j > θN and ξi ∈ B(θN). The estimate in the last paragraph shows that ξi is

bound to φ(ξi) – and to z∗0(B(θN)(φ(ξi)) – through time 1
α∗ θN . From Proposition 5.1, we know

that eℓ is well defined on all of B(θN) for all ℓ ≤ N , and by our correct alignment assumption
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together with Lemma 4.7, τi splits correctly. The evolution of the v-component at ξi can then
be compared to that at z∗0(B(θN)) using Proposition 5.1 and Lemma 5.3.

The discussion above tells us that in the control (ξ1, τ1), (ξ2, τ2), · · · up to time 1
α∗ θN , the

only role played by Γk \ ΓθN and Fk for k > θN is to determine the correctness of alignment
and subsequent splitting period at free returns. The rest of the control is really provided by
ΓθN . We have argued that Lemmas 5.2–5.6 apply up to time 1

α∗ θN . Nevertheless, to distinguish
between the present situation and that after we have conferred (A2)–(A5) upon Γk, we will say,
if correct alignment holds for all i ≤ k, that the sequence (ξ1, τ1), · · · , (ξk, τk) is provisionally
controlled by Γk.

We now state the main result of this subsection.

Proposition 6.1 Let θ−1 ≤ N < 1
α∗N ≤ θ−2, and assume T satisfies (A1)(N)–(A6)(N). Then

for θN < k ≤ 1
α∗ θN :

(a)k C(k) and Γk with the properties in (A1) can be constructed;
(b)k if ξ1 ∈ R1 is such that ξi 6∈ B(i) for all i ≤ k, the sequence (ξ1, τ1), · · · (ξk, τk)

is provisionally controlled by Γk.

Proof: We assume (a)i and (b)i for all i < k.

Proof of (a)k: Noting that it makes sense to speak about those segments of Fk-leaves that are
provisionally controlled as being in a bound or free state, we begin with the following result of
independent interest:

Lemma 6.1 Let γ be a leaf of Fk. If every ξk ∈ γ is free, then γ is a C2(b)-curve.

Proof: That τk is b-horizontal follows from Corollary 4.1. As for curvature, we appeal to
Lemma 3.3 after using Lemma 5.5 to establish that |τk| ≥ δK−Kθ(k−i)|τi| for all i < k. �

Let γ be a leaf segment of Fk meeting C(k−1). We claim that it is contained in a maximal
free segment that traverses the entire length of Q(k−1), extending as a C2(b)-curve by > 1

2e
−αk

on both sides. To see this, let ξk ∈ Rk be such that dC(ξk) < 1
2e

−αk, and suppose it is not

free. Then there are only two possibilities: (1) For some i < k, ξi ∈ B(i) and we stopped
controlling its orbit, or (2) ξi is controlled for all i < k, and ξk is in a bound period initiated at
some time i < k. (1) is not feasible, for if we let z0 = z∗0(B(i)), then dC(zk−i) > e−α(k−i), and
diam(T k−iB(i)) << e−α(k−i), contradicting dC(ξk) < 1

2e
−αk. (2) is also impossible, for if we let

z0 = φ(ξi), then dC(zk−i) > e−α(k−i) while |ξk − zk−i| < e−β(k−i) << e−α(k−i).
We have proved that Rk ∩ Q(k−1), if non-empty, is the union of a collection of horizontal

sections {H}. In each H , we arbitrarily pick an Fk-leaf γ. The critical point z∗0(Q(k−1))
constructed in step (a)k−1 induces a critical point of order k− 1 on γ (Lemma 4.3 and 3.8). By
Lemma 3.9, this critical point can be upgraded to one of order k. We make it an element of
Γk, and construct a Q(k) of length min(2δ, e−λk) centered at it. Doing this for every horizontal
section H that passes through every Q(k−1) completes the construction of C(k) and Γk.

It follows directly from the next lemma that the sectional diameter of Q(k) is < b
k
2 .

Lemma 6.2 Every ξk ∈ Q(k) is contained in a codimension one manifold W with the property
that

(i) W meets every connected component of Fk-leaf in Q(k) in exactly one point;

(ii) for all ξ1, ξ
′
1 ∈ T−(k−1)W , |ξi − ξ′i| < b

i
2 for all i ≤ k.

Lemma 6.2 is proved in Appendix A.19.
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Proof of (b)k: As noted earlier, it suffices to consider the case where ξk is a free return, and
it suffices to show correct alignment of τk at ξk. Let γ be the maximal free segment of Fk-leaf
containing ξk. Then the endpoints of γ are in bound state, and so are outside of C(k). This
leaves two possibilities for the relation between γ and C(k).

Case 1. γ passes through the entire length of some Q(k). We consider Q(k) ⊂ Q(k−1) ⊂
Q(k−2) ⊂ · · · until we reach the first Q(j) that contains ξk. Since ξk ∈ (Q(j) \ C(j+1)), dC(ξk) >
e−λ(j+1). We let γ̂ be the Fj leaf through ξk, and apply Lemma 4.3 to obtain two points γ(0)
and γ̂(0) in γ and γ̂ respectively with

(i) |ξk − γ(0)| ≈ |ξk − γ̂(0)| ≈ dC(ξk), and

(ii) ∠(γ̂′(0), γ′(0)) < Kb
j
4 .

Letting τ̂j and τk denote the tangents to γ̂ and γ respectively at ξk and using the fact that γ
and γ̂ are C2(b)-curves between the points in question, we have

∠(τ̂j , τk) ≤ ∠(τ̂j , γ̂
′(0)) + ∠(γ̂′(0), γ′(0)) + ∠(γ′(0), τk)

<
Kb

δ3
dC(ξk) +Kb

j
4 +

Kb

δ3
dC(ξk)

< b
1
5 dC(ξk).

Case 2. γ does not meet C(k). We first formally treat the geometry before making the
required angle estimates.

Geometry: (i) Let j be the largest integer such that ξk ∈ Q(j), so that ξk ∈ (H \ Q(j+1))
whereH is a component of Rj+1∩Q(j). Suppose for definiteness that ξk lies in the right chamber
of H \Q(j+1). We move along γ to the left until we reach either ξ, the left end point of γ, or the
right boundary of Q(j+1), whichever happens first. Once ξ is reached, we stop. Otherwise we
continue moving through Q(j+1) until we reach either ξ or the right boundary of Q(j+2). (We
have used implicitly the fact that γ, which is a leaf of Fk, does not meet ∂Ri for i < k.) By
assumption, ξ is reached before we arrive at Q(k), so that ξ ∈ Q(j′) \ C(j′+1) for some j′ with
k > j′ ≥ j.

(ii) We note that ξ can also be regarded as in bound state, and argue now that φ(ξ) is to
the left of ξ. More precisely, we write ξ = ηk, let ηi, i < k, be the last free return, and let
φ(ηi) = ẑ0. Recalling the definition of φ(·) for critical orbits (Sects. 4.1 and 4.3A), we deduce
that φ(ξ) = φ(ẑk−i) is of generation j′′ for some j′′ ≤ j′ (it can be considerably smaller), and
that both ξ and ẑk−i are in Q(j′′) \B(j′′). To see that ξ is in the right chamber of Q(j′′) \B(j′′),
we interpolate between Q(j′) ⊂ · · · ⊂ Q(j′′), noting that the right chamber of each Q(i) does not
meet the left chamber of Q(i−1).

Angles: Let γ̂ be the leaf of Fj through ξk and γ̃ the leaf of Fj′′ through ξ. We will use the
following notation: τk,ξk

and τk,ξ are tangents to γ at ξk and ξ respectively; τ̂j,ξk
is tangent to

γ̂ at ξk, and τ̃j′′,ξ is tangent to γ̃ at ξ. Then

∠(τk,ξk
, τ̂j,ξk

) ≤ ∠(τk,ξk
, τk,ξ) + ∠(τk,ξ, τ̃j′′,ξ) + ∠(τ̃j′′,ξ, τ̂j,ξk

).

The terms above are estimated by

(i) ∠(τk,ξk
, τk,ξ) <

Kb
δ3 |ξ − ξk| since γ is free and hence C2(b);

(ii) ∠(τk,ξ, τ̃j′′,ξ) < 3ε0|ξ − φ(ẑk−i)| since ξ = ηk is a bound return (Lemma 5.3);

(iii) ∠(τ̃j′′,ξ, τ̂j,ξk
) < b

1
4 min(j,j”) + Kb

δ3 |ξ − ξk| from Lemma 4.2.

Also, we have argued that φ(ẑk−i) is to the left of ξ, so |ξ − ξk|, |ξ − φ(ẑk−i)| < dC(ξk).

These inequalities together with dC(ξk) >> b
j
4 and dC(ξk) > dC(ξ) > b

j′′

5 give ∠(τk,ξk
, τ̂j,ξk

) <
4ε0dC(ξk). �
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6.4 What it takes to go from GN to G 1
α∗ N

In this subsection we fix N with θ−1 ≤ N < 1
α∗N ≤ θ−2, and assume that T ∈ GN , i.e.

(A1)(N)–(A6)(N) hold for T . It is proved in Proposition 6.1 that without further assumptions,
(A1)( 1

α∗N) holds automatically. The purpose of this subsection is to determine what constraints
we need to impose on T to put it in G 1

α∗ N .

(A2): Rate of approach to critical set

By assumption, all z0 ∈ ΓθN obey (A2). At issue is whether or not z0 ∈ Γ 1
α∗ θN \ ΓθN

obeys (A2) as stated in Sect. 4.1. We distinguish between the two time intervals [1, N ] and
[N +1, 1

α∗N ]: On [1, N ], each z0 ∈ Γ 1
α∗ θN \ΓθN follows closely a critical point of generation θN

(Corollary 5.1). The two orbits do differ by a little, however, so it is possible for zi to violate
slightly the condition in (A2). On [N + 1, 1

α∗N ], there is no reason why (A2) is respected by
z0 ∈ Γ 1

α∗ θN \ ΓθN . We conclude that (A2)( 1
α∗N) is a new condition that must be imposed on

T if it is to belong in G 1
α∗ N .

(A3): Correct alignment

We will prove that (A3), in fact, comes for free. The mechanisms for ensuring correct
alignment of w∗

i at free returns and at bound returns are entirely different. At free returns, this
comes from geometry, from the “rank one” character of T in particular. At bound returns, it
comes from copying. We emphasize that we do not deduce (A3)( 1

α∗N) directly from (A3)(N).
We prove it from scratch, in a sense, keeping track of the increase in error each time the picture
is copied.

Proposition 6.2 Let T ∈ GN . We assume Γ 1
α∗ θN is constructed, and fix z0 ∈ Γ 1

α∗ θN . We

assume the condition in (A2) is imposed on z0 up to time 1
α∗N .7 Then (z0,v) is controlled by

ΓθN up to time 1
α∗N . In fact, we have the following stronger results:

(i) If zi is a free return, then wi is aligned correctly with error < dC(zi) << ε0;
(ii) If zi is a bound return, then w∗

i is aligned correctly with < ε0-error.

Proof: To establish control for the orbit of (z0, w0) with w0 = v, we define φ(zi) for i ≤ 1
α∗N

according to the rule in Sect. 4.1, i.e. φ(zi) is the critical point of highest generation j ≤
α∗θi ≤ θN with the property that zi ∈ C(j). Note that this implies φ(zi) ∈ ΓθN .8 With (A2)
imposed on z0, Lemma 4.4 shows that the conditions in Definition 5.1 are met. Correct splitting
is proved inductively as follows. Assume that (z0, w0) is controlled for k− 1 iterates by ΓθN for
some k ≤ 1

α∗N .

(i) zk is a free return Let j + 1 be the generation of φ(zk), and let τzk,j+1 be tangent to Fj+1

at zk. We need to show ∠(wk, τzk,j+1) << ε0dC(zk). Let ξ1 = T−jzk, i.e. zk = ξj+1. From
(A6)(N), we know that (ξ1, τ1) is controlled for j iterates unless ξn ∈ B(n) for some n ≤ j, which
is impossible because that would contradict our assumption that zk is free. Observe that

∠(wk, τzk,j+1) = ∠(DT j
ξ1
wk−j , DT

j
ξ1
τ1) ≤

|DT j
ξ1
wk−j ∧DT j

ξ1
τ1|

|wk||τj+1|

≤ (Kb)j |wk−j ∧ τ1|
|wk||τj+1|

≤ (Kb)j |wk−j |
|wk||τj+1|

.

7By this, we mean the condition dC(zi) > min(δ, e−αi) is assumed but only for the orbit of z0, i.e. no
assumptions are made on the behavior of other critical orbits beyond time N .

8This is the reason why we require j ≤ α∗θi in our definition of φ(zi) in Sect. 4.1.
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The second inequality above comes from Sublemma A.4.2 in Appendix A.4; the rest are straight-

forward. To estimate the quantity in the final bound, we claim that
|wk−j |
|wk| < Ke−λ′′j where

λ′′ is slightly smaller than 1
3λ. This is because (z0, w0) is, by inductive assumption, controlled

by ΓθN for k iterates, and zk being a free return, Lemma 5.5 applies. Next we claim that
1

|τj+1| < Ke−λ′′j . This is again a consequence of Lemma 5.5, after we establish the following:

With j ≤ θN , (ξ1, τ1) is a controlled pair by (A6)(N), and ξj+1 is a free return because the
bound-free structure on the orbit segment ξ1, ξ2, · · · , ξj+1 can be taken to be identical to that
of zk−j , zk−j+1, · · · , zk except that bound periods for zi initiated before time k− j do not count
for ξ1. Thus ∠(wk, τzk,j+1) < (Kb)j .

Correct alignment at zk is now straightforward: If j + 1 < θN , then ∠(wk, τzk,j+1) <

(Kb)j << e−2λj ≈ (dC(zk))2. In general, dC(zk) > e−αk ≥ e−α( 1
α∗ N), so that if j + 1 = θN ,

then
∠(wk, τzk,j+1) < (Kb)j = (Kb)θN−1 < e−

λ
3 N = e−α( 2

α∗ N) ≤ (dC(zk))2.

This completes the proof of the free return case.

(ii) zk is a bound return Consider first the following scenario:

Suppose zj, j < k, is a free return, and the bound period initiated at that time
extends beyond time k. Let φ(zj) = ẑ0, and assume ẑk−j is a free return.

We estimate the error in alignment at zk as follows: Let g and ĝ be the generations of φ(zk) and
φ(ẑk−j). We claim that g ≥ ĝ − 1. This is because if ẑk−j ∈ Q(n), then zk is also in Q(n) – or it
is just outside, in which case it is in the Q(n−1) containing Q(n) (see Lemma 4.5). Now in the
definition of φ(·), there is an upper bound on the generation of the guiding critical orbit. Since
k > k − j, a more stringent upper bound is imposed on ẑk−j than on zk. Hence the assertion.

In the discussion to follow, we let τz,n denote the tangent to the Fn-leaf at z. The angle to
be estimated, ∠(w∗

k(z0), τzk,g), is bounded above by

∠(w∗
k(z0), τzk,g) ≤ ∠(w∗

k(z0), wk−j(ẑ0)) + ∠(wk−j(ẑ0), τẑk−j ,ĝ) + ∠(τẑk−j ,ĝ, τzk,g).

From part (i), we have that the second term on the right is < (dC(zk))2: ẑk−j is free, and

dC(zk) ≈ dC(ẑk−j) from Lemma 4.5. The third term is < Kb
1
4 (ĝ−1) + Kbδ−3e−β(k−j) from

Lemma 4.2. To estimate the first term we write wj(z0) = Aek−j +Bv to obtain

∠(w∗
k(z0), wk−j(ẑ0)) < ∠(wk−j(zj), wk−j(ẑ0)) + (Kb)k−j <

1

2
e−

1
2β(k−j) + (Kb)k−j ;

the second inequality is from Proposition 5.1 and Lemma 5.1. Plugging dC(zk) > b
1
5 (ĝ−1)

(Lemma 4.4) and dC(zk) > e−α(k−j) into the three estimates above, we obtain

∠(w∗
k(z0), τzk,g) < dC(zk) {dC(zk) +Ke(

1
2β−α)(k−j) + (Kb)k−j +Kb

1
20 (ĝ−1)}

< ε0dC(zk).

In general, there exist j1 < j2 < · · · < jn < k and ẑ
(1)
0 , · · · , ẑ(n)

0 ∈ ΓθN such that

– zj1 is the last free return before time k, with φ(zj1) = ẑ
(1)
0 ;

– ẑ
(1)
k−j1

is not a free return; its last free return is at time j2, with φ(ẑ
(1)
j2−j1

) = ẑ
(2)
0 ;

– ẑ
(2)
k−j2

is not a free return; its last free return is at time j3, and so on, until

– finally, ẑ
(n)
k−jn

is a free return.

Considerations similar to those above show that as we go through the different layers of bindings,
the errors in alignment form a geometric series which add up to ≤ e−

1
2β(k−jn) + (Kb)k−jn . �
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(A4): Growth of |w∗
i |

Corollary 6.1 Under the hypothesis of Proposition 6.2, we have, for the critical orbit z0 in
question,

|w∗
i (z0)|

|w∗
N (z0)|

> K−1e(
1
3 λ−2α)(i−N), N < i ≤ 1

α∗N.

This corollary, which follows from the control of (z0,v) proved in Proposition 6.2, the con-
dition in (A2), and Lemma 5.4, is in the direction of maintaining (A4)( 1

α∗N) but the gain in
Lyapunov exponent is only about 1

3 of what is needed for that purpose. Indeed, (A4) is not a
self-perpetuating condition: the exponent in Corollary 6.1, when copied again in future inductive
steps, may lead to a downward spiral in the Lyapunov exponent along critical orbits.

We conclude that (A4)( 1
α∗N) must be imposed (by external means) to ensure that T ∈ G 1

α∗ N .

(A5): Quadratic turns, lengths of bound periods and derivative recovery

Proposition 6.3 Let T ∈ GN be such that (A2)( 1
α∗N) and (A4)( 1

α∗N) hold. Then (A5)( 1
α∗N)

holds automatically.

Proof: Let z0 ∈ Γ 1
α∗ θN be fixed. Suppose z0 = z∗0(Q(k)), and let ξ0 ∈ Q(k) \ B(k). For the

definitions of and relation between p̂(z0, ξ0) and p(z0, ξ0), see Sect. 4.3B.

Proof of (A5)(iii): Let γ be the Fk-leaf containing ξ0 in Q(k). Then there exists z̃0 ∈ γ ∩ B(k)

such that z̃0 is a critical point of order p = min{p(z0, ξ0), kθ−1} on γ. For all practical purposes,
z0 and z̃0 are indistinguishable for p iterates, so we may regard z̃0 as satisfying the hypotheses
of Proposition 5.3 (which z0 has been shown to satisfy). Proposition 5.3 then gives the desired
result (with z̃0 instead of z0).

Proof of (A5)(i): For the lower bound, we have, for all j ≤ h
3 log ‖DT‖ ,

|ξj − zj| < ‖DT ‖j|ξ0 − z0| < e−
2h
3 << e−β̂ h

3 log ‖DT‖ ,

proving p̂(z0, ξ0) ≥ h
3 log ‖DT‖ .

For the upper bound, by Proposition 5.3, p = p(z0, ξ0) is the smallest integer i such that
|wi(0)| · |z0 − ξ0|2 > K−1

1 e−βi. We claim that p ≤ 3h
λ

, for

|w 3h
λ

(z0)| · |z0 − ξ0|2 > K−ε 3h
λ |w∗

3h
λ

(z0)| · |z0 − ξ0|2 > K−ε 3h
λ eλ· 3h

λ e−2h > 1.

Lemma 5.2 is used in the first inequality above.

Proof of (A5)(ii): First we consider p̂ = p̂(z0, ξ0), for which we have |wp̂(z̃0)| ≈ |wp̂(z0)| (Corol-
lary 5.1), and

|z0 − ξ0||wp̂(z0)| = (|z0 − ξ0||wp̂(z0)|
1
2 ) · |wp̂(z0)|

1
2

> K−1|zp̂ − ξp̂| · |wp̂(z0)|
1
2 by (A5)(iii)

> K−1e−
β̂
2 p̂ · eλp̂

2 .

Now let p ∈ [p̂, p̂(1 + 9
λ
α)]. From Lemmas 5.2 and 5.4, |wp(z0)| ≥ e−4αp|wp̂(z0)|, and so

|z0 − ξ0||wp(z0)| > K−1e−4αpe−
β̂
2 p̂ · eλp̂

2 > e
1
3 λp.

�

(A6): Control of foliations

With (A2) and (A4) assumed and (A3) and (A5) proved up to time 1
α∗N , the provisional

control proved in Proposition 6.1 is, by definition, upgraded to control in the usual sense.

Summary: (*) in Sect. 6.2 is proved.
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7 Global Geometry via Monotone Branches

The purpose of this section is to introduce the main geometric ideas needed to construct T ∈ Gn

beyond N = θ−2, and to reformulate (A1) and (A6) to accommodate these new geometric
structures.

7.1 Introduction

The idea of studying piecewise monotonic 1D maps via their monotone branches has been used
many times. We attempt in this section to introduce a corresponding notion for T . For small
n, it is easy to see that Rn is the union of sets that are tubular neighborhoods of 1D monotone
curve segments. These should be, by any definition, monotone branches of T . For n ≤ θ−1,
we have seen that Rn is punctuated by (tiny) sections that are T i-images of B(n−i), i.e. the
“critical blobs” of Sect. 4.2. Intuitively, these sets are located at sharp “turns”; they divide Rn

into connected components that are comparatively “straight”. Leaving precise definitions for
later, we think of these components as monotone branches of generation n.

The picture in the last paragraph cannot be maintained indefinitely, however, for it relies on
the fact that critical blobs are very small compared to their distances to the critical set. As n
increases, it is inevitable that the images of B(k) will grow large, making it impossible to keep
them away from the critical regions. See Fig. 2. As explained in Sect. 6.2, the significance of
time N = θ−2 is that at time θ−2, the geometry of Rθ−1 becomes relevant, and θ−1 is the time
beyond which we cannot guarantee the smallness of the images of B(1).

critical region

Fig. 2 The images of B(k) cannot avoid critical regions forever

To avoid dealing with the situation depicted in Fig. 2, we declared in Sect. 4.2 that B(k)

ceases to be active after kθ−1 iterates. Once B(k) ceases to be active, we must “discontinue”, i.e.
stop considering, the monotone branches that end in T kθ−1

B(k). We do not wish to relinquish
control completely of the region occupied by a discontinued branch, however, for it is likely to
contain part of the attractor.

Central to our scheme is the idea of branch replacement. We will prove that all monotone
branches that are discontinued can be systematically replaced by branches of higher generations,
so that at every step n, there is a collection of “good” branches of generations ∼ n that together
account for all parts of the attractor. This replacement procedure is discussed at the end of
Section 8, after we make precise the notion of a monotone branch and integrate these new
geometric ideas into the dynamical picture described in sections 4, 5 and 6.

A 2D version of monotone branches was introduced in [WY1]. They were not used, however,
in the inductive construction of the dynamical picture.

7.2 Formal definitions and assumptions

The idea of monotone branches is inseparable from that of critical regions. Any definition
necessarily assumes that certain relevant critical structures have been identified. Likewise, the
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identification of these critical structures relies on the idea of monotone branches. Definition 7.1
below is how we have elected to enter this inductive cycle.

We say A1 ∪ A2 ∪ A3 are contiguous sections of Rk if (i) each Ai is a section of Rk, and
(ii) if Φi : [−1, 1] ×Dm−1 → Rk are the defining maps for Ai (see the definitions immediately
preceding Part II), then for i = 1, 2, Φi({1} ×Dm−1) = Φi+1({−1} ×Dm−1).

Definition 7.1 Let T ∈ G0 and n ≥ 2. Suppose that for each k < n, a collection of sections
{B(k)} of Rk has been identified. Then a monotone branch M of generation n for T is
a section of Rn that is the union of three contiguous sections E ∪M◦ ∪ E′ with the following
properties:

(a) There exist i, i′ < n and B̂(n−i), B̂(n−i′) such that
(i) T−i(E) = B̂(n−i) and i ≤ (n− i)θ−1;
(ii) T−i′(E′) = B̂(n−i′) and i′ ≤ (n− i′)θ−1;

(b) for all i < n, T−i(M◦) ∩B(n−i) = ∅ for all B(n−i).

E and E′ are called the ends of the monotone branch M , and M◦ is its main body. We say
the end E has reached the end of its period of activity if i = (n − i)θ−1. For T ∈ Gθ−2 and
k ≤ θ−1, {B(k)} is as in Sect. 4.1. Thus we know from Sections 4–6 that monotone branches of
generation n ≤ θ−1 + 1 are well defined. In this time range, every Rn is the union of a finite
number of monotone branches, with adjacent branches overlapping in T iB(n−i) for some B(n−i).

Remark. In the case that I is an interval, there are two special branches of generation n for
all n ≥ 2 with the property that one of their two ends is T n−1(Vi). Here V1 and V2 are the two
“vertical” components in the boundary of R̂1; see Sect. 3.9.

Tree of monotone branches

Associated with T ∈ Gθ−2 is a combinatorial object ∪1≤k≤θ−1Tk defined as follows: We
declare R1 to be the unique monotone branch of generation 1 (even though it has no ends),
and let T1 = {R1}. In general, Tk consists of a collection of monotone branches of generation
k. Let M ∈ Tk for some k < θ−1. Here is how M reproduces: By construction, M either
does not intersect any of the B(k), or it contains in its main body a finite number of them, say
B1, B2, · · · , Bs, in that order. In the first case, T (M) ∈ Tk+1. In the second, T (M) is the union
of s+ 1 elements of Tk+1, the main bodies of which connect T (E) to T (B1), T (Bi) to T (Bi+1),
and T (Bs) to T (E′). This construction defines a finite tree with θ−1 levels.

Suppose for n ≥ θ−1 the tree ∪1≤k≤nTk is defined, i.e. each Tk consists of a collection of
monotone branches of generation k and Tk and Tk+1 are related as above. We assume further
that the critical regions Q(n) and B(n) have been identified. Then we may extend the tree to
level n+1: Consider one M ∈ Tn at a time. First we check to see if either one of the two ends E
and E′ of M has reached the end of its period of activity. If so, the branch M is “discontinued”,
i.e. we do not iterate it further. If not, then M reproduces as in the last paragraph, and
Tn+1 consists of all the offsprings so obtained as M ranges over Tn. (Note that no branch is
discontinued for n < θ−1.)

Provided that the relevant monotone branches and {B(k)} are well defined and are related in
the manner described above, one can extend Tn indefinitely and obtain, as n → ∞, an infinite
tree T := ∪k≥1Tk.

We turn next to the inductive construction of Tk and C(k). From the previous discussion, it
is clear that the construction of these two objects must proceed hand in hand. Moreover, after
time N = θ−2, due to the discontinuation of certain branches, the structure of critical regions
becomes more complex, and (A1) and (A6) have to be modified accordingly. In (A1’) and (A6’)
below, we try to give as complete a geometric description of these structures as possible, without
seeking to present a minimal set of conditions.

35



(A1’)(N) Critical regions For 1 ≤ k ≤ θN , there are sets C(k) called critical regions with the
following properties:

(I) Geometric structure C(1) is as defined after Sect. 3.4. For k ≤ θN , C(k) has a finite
number of connected components {Q(k)} each one of which is a horizontal section of Rk.

(a) Relation among different Q(k)

(i) For Q(k) and Q(k′) with k < k′, either Q(k′) ⊂ Q(k) or Q(k) ∩ Q(k′) = ∅. This
defines a partial ordering on the set {Q(k), 1 ≤ k ≤ θN} with Q < Q′ if and only if
Q′ ⊂ Q.

(ii) If Q(k1) < · · · < Q(kn) is a maximal chain,9 then ki+1 ≤ ki(1 + 2θ).

(b) Properties of individual Q(k)

(i) Q(k) has length min(2δ, 2e−λk) and cross-sectional diameter < b
k
2 .

(ii) Exactly halfway between the two ends of Q(k) a point z0 = z∗0(Q(k)) is singled out;
z0 is a critical point of order k with respect to the leaf of the foliation Fk containing
it, and B(k) := {z ∈ Q(k) : |z − z0|h < b

k
5 }.

(II) Construction and relation to Tk Let M ∈ Tk, k ≤ θN , and let Q be a component of
C(j), (1 + 2θ)−1k ≤ j < k. Then either M ∩Q = ∅ or it is the union of a finite number of
horizontal sections each one of which extends > 1

2e
−αk on both sides of Q. If M ∩Q 6= ∅,

then each connected component H of M ∩ Q contains a unique Q(k), which is located in
roughly the middle of H in terms of x-coordinate. All Q(k) are constructed this way.

(A6’)(N) Monotone branches ∪0≤k≤θNTk+1 is defined with the following properties:

(I) Construction and relation to C(k) For each M ∈ Tk, 1 ≤ k ≤ θN , either M does not
meet any B(k), or it contains in its main body a finite number of them, and it reproduces
as described in the paragraph on “Tree of monotone branches”.

(II) Dynamical control For M ∈ ∪0≤k≤θNTk+1, Fk+1 is controlled on M◦ by Γk.

(III) Relation to Rk For k ≤ θN(1 + 2θ)−1,

Rk(1+2θ) ⊂ ∪{M,M ∈ ∪k<j<k(1+2θ)Tj}.

As before, we call z∗0(Q(k)) a critical point of generation k, and let Γk denote the set of
critical points of generation ≤ k.

We are finally in a position to give the definition of GN that is valid for all N ∈ Z
+:

GN := {T ∈ G0 | (A1′)(N), (A2)(N) − (A5)(N), and (A6′)(N) hold}.

The goal for the remainder of Part II, then, is to prove the following, which is a more general
statement than (*) in Sect. 6.2:

(**) For all N ≥ θ−1, if T ∈ GN satisfies (A2) and (A4) up to time 1
α∗N ,

then it is in G 1
α∗ N .

9By “maximal” we mean no other Q(k) can be squeezed between between Q(ki) and Q(ki+1).
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7.3 Clarification and implications

We have tried to capture in (A1’) and (A6’) a relatively concise summary of the geometric
structures that appear after generation θ−1. Before embarking on a formal proof of (**), we
would like to take this subsection to elaborate on the implications of these statements and to
highlight those features that are new.

In the discussion below, T is assumed to be in GN .

(1) Neighborhoods of attractor Our attractor Ω is defined to be Ω = ∩k≥1Rk. For k ≤ θ−1,
it is natural to see Rk as an approximation of Ω with “finite geometry”. Beyond k = θ−1, we
are forced to choose between Rk, the geometry of which becomes increasingly complex, and
something with simpler geometry. We opted for the latter. The set ∪M∈Tk

M , is in general not
a good approximation of Rk; in particular, ∪M∈Tk

M 6⊃ Ω. On the other hand, (A6’)(III) tells
us that for all j, ∪{M,M ∈ ∪j<k≤j(1+2θ)} ⊃ Ω. That is to say, while any one level of the tree
T may not be adequate, sets that are unions of branches from ∼ jθ levels starting with level j
are bona fide neighborhoods of Ω with finite geometry.

(2) Structure of critical regions (a) The structure of C(k) in (A1’) is not as complete as
that in (A1). First, these regions are no longer nested, i.e. it is not necessarily the case that
C(k+1) ⊂ C(k). From its construction in (A1’)(II), however, it follows that

C(k) ⊂
⋃

(1+2θ)−1k≤j<k

C(j).

(b) The following structure inside each component Q of C(k) is used many times in the analysis
to follow: 10

– With regard to the partial order in (A1’)(I)(a), there exist components of C(j), j > k,
which lie immediately below Q, i.e. if we call these components Qi, then Qi > Q and
there is no other Q′ with Qi > Q′ > Q.

– By (A1’)(I)(a)(ii), Qi is of generation ki with k < ki ≤ k(1 + 2θ). We remark that for
k ≤ θ−1, ki = k + 1. For k > θ−1, this is not necessarily the case. The phenomenon
described here will be referred to as the “skipping of generations”; it introduces a
number of technical problems (that will be addressed in Sect. 8.1).

– By (A1’)(II), each Qi is contained in a horizontal section Hi that stretches across Q,
extending considerably beyond, and

– if k ≤ θN(1 + 2θ)−1, then by (A6’)(III), (Q ∩Rk(1+2θ)) ⊂ ∪iHi.

We caution that there may be points z ∈ Q(k) ∩Rk+1 that are not in ∪iHi.

(3) Eventual set of critical points At the end of our inductive construction, there is a set
C defined by

C = lim
k→∞

Γk or, equivalently, C = ∩n>0 ∪k≥n C(k).

C is the set of critical points for T ∈ G. Note that all orbits of z0 ∈ C satisfy (A2) and (A4).

(4) Critical blobs and geometry of monotone branches

(a) In the notation of Definition 7.1, E and E′ are precisely what we called critical blobs in Sect.
4.2. The requirements that n− i ≤ iθ−1 and n− i′ ≤ i′θ−1 are equivalent to discontinuing M

10If the degree of T is zero, then it can happen that Q ∩
`

∪j>kC
(j)

´

= ∅.
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as soon as one of z∗0(B(i)) or z∗0(B(i′)) ceases to be active.

(b) We state a result which together with Lemma 6.1 reinforces our mental picture of what a
monotone branch should be: either M is relatively small (such as when all or most of it is in
bound state), or it consists of a relatively long horizontal section, namely the part that is free,
connecting two relatively small pieces at the ends consisting of points that are in bound state.

Lemma 7.1 Let T ∈ GN , N ≥ θ−1. Then for M ∈ Tk, 1 ≤ k ≤ θN , the set

{ξk+1 ∈M : ξk+1 is free},

if nonempty, is a connected set omitting a neighborhood of E ∪ E′ in M .

Corollary 7.1 below is a direct consequence of Lemma 7.1. A bound of this type is needed
in the treatment of parameter issues in Part III.

Corollary 7.1 There exist K1,K2 depending only on f0 such that for all T ∈ GN , the following
hold for k ≤ θN :

(i) M ∈ Tk has at most K1 children;
(ii) C(k) has at most Kk

2 connected components.

Lemma 7.1 and Corollary 7.1 are proved in Appendix A.20.

We note again that (A1’) and (A6’) are consistent with (A1) and (A6) for N ≤ θ−2. This is
because no monotone branches are discontinued before time N = θ−2.

8 Completion of Induction

8.1 Preparation: Sections 4, 5 and 6 revisited

Assume T ∈ GN . We begin by bringing to the foreground how the new geometry introduced in
Section 7 affects the statements and/or proofs in Sections 4, 5 and 6.

1. Angles between leaves of Fk for different k (Lemma 4.2): The statement of Lemma 4.2 is
unchanged. Its proof, which as stated compares the leaves of Fk and Fk′ by going through the
leaves of Fj for all intermediate j. Since not all of the Q(j) are present, the argument needs to
be modified slightly: Replace k + i by ki, i = 0, 1, · · · , n, where Q(k) = Q(k0) ⊃ Q(k1) ⊃ · · · ⊃
Q(kn) = Q(k̂) are the critical regions present. Using the fact that ki+1 ≤ ki(1 + 2θ), the proof
goes through as is.

2. Distances between critical points (Lemma 4.1): The statement of Lemma 4.1 is unchanged. In
the proof, which estimates |z∗0(Q(k))−z∗0(Q(k+1))|, replace k+1 by k′ where k′ is the generation
of the next Q(i) inside Q(k). To use Lemma 3.8 to induce a new critical point it suffices to have γ̂
traverse B(k). This holds easily because k′ ≤ k(1 + 2θ). The order of the newly induced critical
point is then updated as before.

3. “Reproduction” of critical blobs (last paragraph of Sect. 4.2): Let Q and Qi be as in
paragraph (2)(b) in Sect. 7.3, and let B(k) and B(ki) be associated with Q and Qi respectively.

Then at time kθ−1, T kθ−1

(B(k)) is replaced by {T kθ−1

(B(k1)), · · · , T kθ−1

(B(ks))}, i.e. in the

absence of in-between generations, some of the critical blobs T kθ−1

(B(kj)) may be born a little
earlier than before.
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4. Existence of suitable φ(·) for critical orbits (Lemma 4.4): This is a genuine concern, since
fewer critical regions and therefore fewer critical points are available. Both the definition of
φ(zi) and the statement of Lemma 4.4 are unchanged. Its proof is modified as follows:

Case 1. ĵ(1 + 2θ) ≤ α∗θi. This implies zi ∈ Q(ĵ) ∩ (H \Q(j)) for some horizontal

section H of generation j crossing Q(ĵ), ĵ < j ≤ ĵ(1 + 2θ).
Case 2. ĵ ≤ α∗θi < ĵ(1 + 2θ). Here all ĵ + 1 are replaced by ĵ(1 + 2θ), and

dC(zi) > e−αi is used as before.
In both cases, there is enough room for the new estimates to go through.

With regard to Section 5, we remark that unlike the situation in the last paragraph, the
results in this section assume the existence of guiding critical orbits and so are unaffected. We
go directly to Sect. 6.3.

5. Setting control for (ξk, τk) (Sect. 6.3): Here we need to set control for all ξi ∈ M◦ ∩ C(1),
M ∈ Ti. The rules on the selection of φ(ξi) at free returns are essentially the same as (1)–(3) in
the beginning of Sect. 6.3, with (3) modified to read as follows: If there exists j < i such that
ξi ∈ C(j) \∪k>jC(k), then we let φ(ξi) = z∗0(Q(j)(ξi)); otherwise φ(ξi) is of generation i. At issue
is the suitability of this choice of φ(ξi). Given that φ(ξi) may be of a lower generation than it
would have been (due to the skipping of generations) and that certain monotone branches are
discontinued, two questions are: (i) Do we know that φ(ξi) will remain active for as long as it is
needed? (ii) If φ(ξi) is of generation j < i, is ξi 6∈ B(j)?

Let j be the generation of φ(zi). There are two cases to consider.
Case 1. j ≤ i(1 + 2θ)−1. Here ξi, which is in Ri, lies in a horizontal section of generation j′

crossing Q(j)(ξi). We may assume j < j′ ≤ j(1+2θ); see (2)(b) in Sect. 7.3. Observe that since
j′ > j, ξi is not in C(j′) by assumption. It follows that dC(ξi) > e−λ(j+1)(1+2θ), so ξi 6∈ B(j) and
p(ξi) << θ−1j.

Case 2. j > i(1 + 2θ)−1. By assumption, ξi ∈ Mi ∩ Q(j) for some Mi ∈ Ti. It follows, by
(A1’)(II), that Mi extends all the way across Q(j) and Mi ∩Q(j) contains a component Q(i) of
C(i). If ξi 6∈ Q(i), the situation is as in Case 1. If ξi ∈ Q(i), then φ(ξi) = z∗0(Q(i)(ξi)). It is easy
to show that for k = 1, 2, · · · , T kξi and T kφ(ξi) lie in the same element of Ti+k until either this
branch is discontinued or the bound period of ξi expires. Recall that when the orbit of φ(ξi)
ceases to be active, the monotone branch containing it is automatically discontinued.

6. Proposition 6.1 (Sect. 6.3): With the idea of provisional control as before, we reformulate
Proposition 6.1 as follows:

Proposition 8.1 For T ∈ GN , and θN < k ≤ 1
α∗ θN :

(a)k C(k) and Γk with the properties in (A1’) can be constructed;
(b)k Tk+1 with the properties in (A6’) – except for the provisional nature of the control in

(A6’)(II) – can be constructed.

The proof of this proposition is postponed to Sect. 8.2. Assuming it for now, we continue
with our list of modifications.

7. Alignment of vectors at free returns (Sect. 6.4): In the proof of Proposition 6.2(i), we
view zk−j as a point ξ1 ∈ R1 and show that (ξ1, τ1) is controlled for j iterates. In this type
of arguments, one needs to verify that there exists M ∈ Tj+1 such that ξj+1 ∈ M , i.e. the
ancestors of this branch were not discontinued. Here we know M exists because our choice of
φ(zk) implies the existence of Q(j+1) with φ(zk) = z∗0(Q(j+1)) and ξj+1 = zk ∈ Q(j+1), and, by
definition, every Q(j+1) is contained in some M ∈ Tj+1. The rest of the proof of Proposition 6.2
is not affected.
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The quadratic estimate in (A5) relies on the behavior of the guiding critical orbits and not
on global geometry; it is therefore not affected.

This completes our list of modifications for Sections 4, 5 and 6 and hence the proof of (**)
stated at the end of Sect. 7.2 – modulo the proof of Proposition 8.1.

8.2 Construction of critical regions and monotone branches

Proof of Proposition 8.1: We follow in outline the proof of Proposition 6.1, focusing on
those aspects of the situation that are new.

Assume (a)i and (b)i for all i < k. For M ∈ Tk, if ξ1 ∈ T−(k−1)M◦, then the sequence
(ξ1, τ1), · · · (ξk−1, τk−1) is provisionally controlled by Γk−1. Thus it makes sense to speak about
the leaf segments of Fk on M◦ as being in bound or free states. We divide the proof of (a)k and
(b)k into the following steps:

1. Construction of C(k) and Γk

Let M ∈ Tk, and let Q = Q(j), k(1 + 2θ)−1 ≤ j < k, be such that M ∩Q 6= ∅. We observe
that M ∩ Q is the union of horizontal sections each extending > 1

2e
−αk on both sides of Q.

This is true because by (A2) for a much earlier time, (E ∪E′) ∩Q = ∅ where E and E′ are the
ends of M . We then consider one Fk-leaf segment in M at a time and argue as in the proof of
Proposition 6.1.

Next we explain where Q(k) is constructed (postponing how it is done to the next paragraph).
For each M ∈ Tk, let I(M) be the set of all connected components of M ∩Q(j), k(1 + 2θ)−1 ≤
j < k. We define a partial order on I(M) by set inclusion, i.e. S < S′ if S ⊃ S′. Let H(M) be
the set of maximal elements. A critical region Q(k) is constructed in each H ∈ H(M).

As to how to construct Q(k), let H ∈ H(M) be a component of M ∩Q(j). We fix an arbitrary
Fk-leaf γ in H , and use Lemma 3.8 and z∗0(Q(j)) to induce a (unique) critical point z′0 of order

j on γ. In x-coordinate, we know from Lemma 3.8 that z′0 is < Kb
j
4 away from the center of

Q(j). Lemma 3.9 then tells us that near z′0 there is a unique critical point z0 of order k on γ.
We put z0 ∈ Γk, and construct a Q(k), i.e. a section of length 2 min(δ, e−λk) centered at it.

C(k) is defined to be the union of all the Q(k) constructed as we let M vary over Tk.

2. Verification of (A1’):

The procedure above gives immediately the following: (1) The Q(k) constructed are disjoint
sections of Rk and hence are genuine connected components of C(k). (2) The partial order in
(A1’)(I)(a) is extended to {Q(k′), k′ ≤ k}; this is because each Q(k) constructed lies immediately
below a unique Q(j), k(1 + 2θ)−1 ≤ j < k, in this partial order. (2) implies (3), namely that
the jumps in generation in (A1’)(I)(ii) are as claimed. Observe also that (A1’)(II) is fulfilled.
As for (A1’)(I)(b), all statements are true by construction except the one regarding sectional
diameter, which follows directly from the next lemma.

Lemma 8.1 Let M ∈ Tk. Then for all ξk ∈ M◦, there exists a codimension one manifold W
with ξk ∈ W such that

- W meets every connected component of Fk-leaf in M in exactly one point;
- for all ξ1, ξ

′
1 ∈ T−k+1W , |ξi − ξ′i| < (Kb)

i
2 for i ≤ k.

The proof of this lemma is a small modification of that of Lemma 6.2. Details are left to the
reader.

3. Construction of Tk+1 and verification of (A6’)(I) and (II)

The relation between M ∈ Tk and B(k) follows immediately from our construction in Step
1. We construct Tk+1 as described in the paragraph on “Tree of monotone branches” in Sect.
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7.2, proving (A6’)(I). To prove (A6’)(II), it suffices, as in the proof of Proposition 6.1, to prove
correct alignment of the τ -vectors at free returns, and we consider the two cases as before.
To make transparent the effect of the “missing generations”, we describe in some detail the
geometry in Case 2, the case where γ, our maximal free Fk-segment, does not meet C(k).

Let ξk be fixed. We let j = j0 be the largest integer such that ξk ∈ C(j), and let Q(j0) =
Q(j0)(ξk). Then j0(1 + 2θ) < k, otherwise γ would lie in a monotone branch crossing Q(j0),
contradicting our assumption that it does not meet C(k). By (A6’)(III), ξk ∈ Rj0(1+2θ) ⊂
∪{M,M ∈ ∪j0<ℓ<j0(1+2θ)Tℓ}. Thus ξk ∈ H where H is a horizontal section of generation j1,

j0 < j1 ≤ j0(1 + 2θ), that crosses the entire length of Q(j0)(ξk). We may assume Q(j1) is
immediately below Q(j0) in the partial order. Suppose for definiteness that ξk lies in the right
chamber of H \Q(j1). We move left along γ until we reach either ξ, the left endpoint of γ, or the
right boundary of Q(j1), noting that since j1 < k, γ cannot meet ∂Rj1 . If we reach the boundary
of Q(j1) before reaching ξ, then we continue to move left along γ, going into Q(j1). For the same
reason as above, j1(1 + 2θ) < k, so that as we enter Q(j1), we have entered a horizontal section
of generation j2, j1(1+2θ)−1 ≤ j2 < j1, that crosses the entire length of Q(j1), and so on. After
going through a finite number of Q(ji), we must arrive at ξ, for the ji are strictly increasing
with i and < k(1 + 2θ)−1.

The argument showing φ(ξ) is to the left of ξ is essentially the same, except for the fact that
the interpolating chain Q(j′) ⊂ · · · ⊂ Q(j′′) also involves skips in generation. One way to see
that such a chain exists is to start from Q(j′′).

After these preparations, the angle estimates are unchanged. This completes the verification
of (A6’)(II).

4. Proof of (A6’)(III) This step involves a very different set of ideas. We formulate the result
as Proposition 8.2 and give the proof in the next subsection.

Proposition 8.2 We consider T ∈ GN , and let n ≤ 1
α∗ θN . Assume (a)k and (b)k in Proposi-

tion 8.1 for all k ≤ n− 1. Then for all k ≤ n(1 + 2θ)−1,

Rk(1+2θ) ⊂ ∪{M,M ∈ ∪k≤j<k(1+2θ)Tj}. (9)

Modulo this result, the proof of Proposition 8.1 is now complete. �

8.3 Branch replacement: Proof of Proposition 8.2

As explained in Sect. 8.1, a monotone branch is discontinued before either one of its ends
becomes too large. The problem of “branch replacement”, roughly speaking, is one of finding
a collection of branches of higher generations that together cover the part of the attractor
“exposed” by the removal of the discontinued branch. Proposition 8.2 tells us explicitly what
neighborhoods are covered by which collections of branches.

We begin with some preliminary definitions. Let M1 be a monotone branch of generation
k1 > k. We say M1 is subordinate to M if (i) M1 ⊂ M , (ii) the ends of M and M1 are
related as follows: Let E and E′ be the ends of M , and E1 and E′

1 the ends of M1. Suppose

T−iE = B̂(k−i), then T−iE1 = B̂
(k1−i)
1 with B̂

(k1−i)
1 ⊂ B̂(k−i); and E′ and E′

1 are related
the same way. A collection of monotone branches {Mj} subordinate to M is called a viable
replacement for M if (M◦ ∩ Ω) ⊂ ∪jMj.

Lemma 8.2 There exists K > 0 for which the following holds: Suppose M ∈ Tk, k ≤ n, has
an end E with the property that T−iE = B̂(k−i), i ≥ Kα(k − i). Then T−iM is contained in a
horizontal section H of Rk−i of length < e−2α(k−i) centered at B̂(k−i).
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Lemma 8.2 is proved in Appendix A.21. Assume, for definiteness, that T−iM lies in the
right half of H (it contains, needless to say, B̂(k−i)). To look for a viable replacement for M ,
we examine the structures inside H more closely.

For j = 1, 2, · · · , i− 1, let Sj ∈ Tk−i+j be the ancestors of M , and let Ŝ0 = T−1S1, so that

Ŝ0 is a section of Rk−i containing the right half of H . From Lemma 8.2, it follows that there
exists ℓ with ℓ < Kα(k − i) such that T−ℓSℓ ⊂ H .

Consider now P ∈ Tp, (k − i) < p < (1 + 2θ)(k − i+ 1), such that P ∩H 6= ∅. Then P ∩H
is the union of horizontal sections that run the entire length of H . (See Fig. 3.) We fix one
component of H ∩P , call it Ĥ , and let B̂(p) denote the B(p) in Ĥ . Whenever possible, we define
Pj ∈ Tp+j , j = 1, 2, · · · , i, as follows: P1 is the child of P such that T−1P1 contains the right

half of Ĥ ; for j > 1, Pj is the child of Pj−1 one of whose ends is T jB̂(p). If well defined, Pj

depends on M,P and Ĥ ; we write Pj(M,P, Ĥ).

PT  M
−i

B     =T   E(k−i) −i
H T  P

−i

i

Fig. 3 Replacement branches: ∪P is used to replaced M

We observe that Pj may not be defined: First, P may be discontinued, in which case it has
no children. If that is not the case, then P1 is defined. Let E′

1 denote the end of P1 not equal
to T (B̂(p)). This is clearly the older of the two ends of P1. It may cause P1 to be discontinued.
We may also have P2 = T (P1), with T (E′

1) causing P2 to be discontinued, and so on.
Let n be as in the statement of Proposition 8.2, and let M,P and H be as above.

Lemma 8.3 We assume k ≤ (1 + 2θ)−1n. Then the following hold for every component Ĥ of
P ∩H: If P1 is well defined and E′

1 remains active for ℓ generations for some ℓ with T−ℓSℓ ⊂ H,
then

(i) Pj is well defined for all j ≤ i, and
(ii) Pi is subordinate to M .

Lemma 8.3 is proved in Appendix A.21.

Proof of Proposition 8.2: Our strategy is to construct, for m = 1, 2, · · · , n(1 + 2θ)−1, a
collection of monotone branches Sm with the following properties:

(i) For every M ∈ Sm, if M ∈ Tk and E is an end of M with T−iE = B(k−i), then i ≤
2
3 (k − i)θ−1;

(ii) Sm ⊂ ∪m≤k<m(1+2θ)Tk, and

(iii) ∪{M,M ∈ Sm} ⊃ Rm(1+2θ).

Proposition 8.2 follows immediately from (ii) and (iii). We say M ∈ Sm is at replacement time
if equality holds in (i), i.e. i = 2

3 (k − i)θ−1, for one of its ends. For reasons to become clear
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momentarily, we have elected to define replacement time to occur somewhat before the branch
is discontinued.

Let S1 = {R1}. We assume for all k ≤ m, Sk has been constructed and has properties
(i)–(iii).

Construction of Sm+1 with property (i): We consider M ∈ Sm one at a time. If M has not
reached its replacement time, then we put all the children of M into Sm+1. If it has, then we
put into Sm+1 the children of {P ′} where {P ′} is defined as follows: Suppose M ∈ Tk and E is
an end with T−iE = B̂(k−i) and i = 2

3 (k − i)θ−1. Then {P ′} = {Pi(M,P, Ĥ) : P ∈ Sk−i+1 and

Ĥ is a component of H ∩ P}.11
First we show that P ′ is well defined as an element of Tp+i where p is the generation of P .

To do that, it suffices to verify the hypotheses of Lemma 8.3. To begin with, P1 is well defined
as an element of Tp+1 because P ∈ Sk−i+1 and by property (i) for Sk−i+1, both ends of P will
remain active for some period of time. Let E′

1 be as above, i.e. the “other” end of P1. We claim
that E′

1 will last >> Kα(k− i) generations: Suppose it was created ℓ generations prior to p+1.
Then ℓ ≤ 2

3 (p+ 1 − ℓ)θ−1, so that

Kα(k − i) + ℓ ≤ Kα(k − i− ℓ) + (Kα+ 1)ℓ

≤ Kα(k − i− ℓ) + (Kα+ 1)
2

3
(p+ 1 − ℓ)θ−1

< (p+ 1 − ℓ)θ−1.

The hypothesis of Lemma 8.3 is verified and P ′ is defined.
To prove that the children of P ′ meet the condition in property (i) for Sm+1, we let Ê and

Ê′ be its two ends, Ê being the one contained in E. This end is created the same time E is
created. Clearly, i < 2

3pθ
−1 since p > k − i. As for Ê′, it follows from the analysis in Lemma

8.3 that this is the younger of the two ends. Thus it cannot have reached replacement time if Ê
has not. This completes the construction of Sm+1 with property (i).

Proof of property (ii) for Sm+1: Let M ∈ Sm. If M is not replaced, then the children of M are
obviously of acceptable generation. If replacement occurs, then the generation of P ′ is estimated
as follows: Let all notation be as above. Since P ∈ Sk−i+1, we have, by inductive assumption,
p < (1 + 2θ)(k − i+ 1). Combining this with 3

2θi = k − i, we have

p+ i ≤ i+ (1 + 2θ)(k − i+ 1) = i+ (1 + 2θ)(
3

2
θi + 1) < (i+ 1)(1 + 2θ).

To complete the proof, we show that i ≤ m. First, it is true for m = 2. In general, we
claim that if E is an end of M and T−iE = B(k−i), then i ≤ m. This is obviously so if no
replacement occurs. In a replacement procedure, observe that even though the generations of
the new branches are higher, their ends are created exactly the same number of generations
earlier as the branch replaced. (See the proof of Lemma 8.3.)

Proof of property (iii) for Sm+1: As before, it suffices to consider the case where M ∈ Sm is at
replacement time. We claim that {P ′} is a viable replacement for M . Let H be as above. By
induction hypothesis, more specifically, by (iii) for k − i+ 1,

H ∩R(k−i+1)(1+2θ) ⊂ H ∩ (∪{M ′,M ′ ∈ Sk−i+1}) ⊂ H ∩ (∪P ) ,

that is to say, H \ (∪P ) does not meet R(k−i+1)(1+2θ). Thus the part of phase space deleted as
we replace M by {P ′} does not meet Rg where

g := (k − i+ 1)(1 + 2θ) + i .

11If H ∩ P = ∅ for all P ∈ Sk−i+1, then there is no need for replacement. Also, where I is an interval (see
Sect. 3.9), the two special branches in Tm having T m−1Vi as one of their ends are always in Sm.
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The same computation as in the proof of property (ii) gives g < (m+ 1)(1 + 2θ).

This completes the proof of Proposition 8.2. �

Remarks 1. As the proof shows, there is a natural time step for branch replacements. They
occur very infrequently, roughly once every ∼ θ−1 iterates. Thus when working with the replace-
ment of a branch of generation k, it is mostly structures of generation up to ∼ θk – including
assumption (A6’)(III) for these times – that count, although certain properties of critical orbits
and the well-definedness of branches up to time k − 1 are also needed.

2. In spite of the qualitative flavor of the statement, the existence of viable replacements in the
setting above reflects the fact that monotone branches reproduce at rates much faster than the
speed with which critical blobs are allowed to approach the critical set.

9 Construction of SRB Measures

The definition of SRB measures is given in Section 1. For more information on the subject, see
[Y1] and [Y2]. The goal of this section is to prove

Proposition 9.1 Let T ∈ G. Then T has an SRB measure.

9.1 Generic part of construction

Our construction can be thought of as having a “generic” part, i.e. a part that can be used for
many dynamical systems, and a “situation-dependent” part, i.e. a part that relies (seriously) on
the properties of the map in question. The goal of this subsection is to treat the generic part. We
pinpoint what specific information is needed and then assume it to complete the construction.
For notational convenience, we give the proof in the setting of Part II of this paper, remarking
that aside from dimWu = 1, other properties of T used below are inessential.

Step 1. Pushing forward Lebesgue measure on a Wu-leaf

Let l0 be a piece of local unstable manifold through ẑ where ẑ is a hyperbolic periodic point
or belongs in a uniformly hyperbolic invariant set. We let m0 be the Riemannian measure on
l0, and for n = 1, 2, · · · , define

νn =
1

n

n−1
∑

i=0

T i
∗(m0)

where T i
∗(m0) is the measure with T i

∗(m0)(E) = m0(T
−i(E)) for all Borel sets E. Let ν be a

limit point of νn in the weak∗ topology. It is easy to see that ν is T -invariant.
To prove that ν is an SRB measure, it is necessary to show that it has absolutely continuous

conditional measures (accm) on unstable manifolds. By design, this property is enjoyed by νn

for all n. Whether it is passed from νn to ν, however, depends on a number of factors that
are situation-dependent. We describe in Step 2 a construction to facilitate this passage if the
conditions are right. Our construction is based on the idea (also used in [BY]) that it suffices
to control a small fraction of νn.

Step 2. “Catching” a fraction of ν with accm on unstable curves

First we introduce some language convenient for our purposes. We call a curve γ an unstable
curve if there exist κ < 1 and K > 1 such that for all z ∈ γ and τ ∈ Xz tangent to γ,
|DT−n

z τ | ≤ Kκn|τ | for all n ≥ 0. Next we introduce the objects used to “catch” a part of ν.
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Let L be an interval, and let Σ be a compact set. We say Ψ : L×Σ → R1 is a continuous family
of unstable curves if

(a) Ψ maps L× Σ homeomorphically onto its image;
(b) for each α ∈ Σ, Ψ|L×{α} is a C1 embedding, and Dα := Ψ(L×{α}) is an unstable curve;
(c) α 7→ Ψ|L×{α} is continuous as a map from Σ to C1(L,R1).

We will use the notation N = Ψ(L× Σ) = ∪αDα.
The following condition, the validity of which depends on the specifics of the map in question,

is assumed for the rest of this subsection:

(S) There exist c > 0,K ≥ 1, a continuous family of unstable curves N = ∪αDα, and a
sequence of integers n1 < n2 < · · · for which the following hold. For each i ≥ 0, there is a

collection {ω(i)
j } of subsegments of l0 such that

(i) for each i, j, T i(ω
(i)
j ) = Dα for some α;

(ii) letting τ(z) denote a unit vector tangent to l0 at z ∈ l0, we have, for all z, z′ ∈ ω
(i)
j ,

|DT i
zτ(z)|

|DT i
z′τ(z′)|

< K;

(iii) 1
nk

∑nk−1
i=0 m0(∪jω

(i)
j ) > c m0(l0) for all nk.

Let ν̂nk
= 1

nk

∑nk−1
i=0 T i

∗(m0|∪jω
(i)
j

), and let ν̂ be a limit point of ν̂nk
. It follows from (iii)

in Condition (S) that ν̂(N ) > cm0(l0) > 0. From (i) and (ii), we see that for each nk, ν̂nk

is supported on a finite number of Dα, and its densities with respect to arclength measure on
Dα are bounded between K and 1

K
. The absolute continuity of conditional measures of ν̂ on

{Dα} is now a simple exercise: Let η1 < η2 < · · · be any increasing sequence of finite partitions
on Σ such that

∨

i>0 ηi partitions Σ into points, and let Ei be the partition on N given by
{Ψ(L × S) : S ∈ ηi}. Then E∞ :=

∨ Ei is the partition of N into {Dα}. Let ℓ ⊂ L be an
arbitrary interval, and let A = Ψ(ℓ×Σ). Then there exists K ′ depending on the constant K in
(S)(ii) and on the norms of the embeddings Ψ|L×{α} such that for all nk and i,

1

K ′
|ℓ|
|L| ≤ (ν̂nk

|Ei)(A) ≤ K ′ |ℓ|
|L| . (10)

Here ν̂nk
|Ei denotes the conditional measure of ν̂nk

given Ei. The relation in (10) is first passed
to ν̂|Ei by letting nk → ∞. It is then passed, by the martingale convergence theorem, to ν̂|E∞.
Our assertion on the conditional measures of ν̂ follows as we let ℓ range over a countable basis
of the Borel topology on L.

Step 3. Extracting an SRB measure from ν

Let ν be as in Step 1. Then ν(N ) ≥ ν̂(N ) > 0, and νN := ν|N is TN -invariant where
TN : N → N is the first return map of T to N . Let R : N → Z

+ be the first return time, and
assume for the moment that νN has accm on {Dα}. We claim that

µ :=
∑

n≥0

n−1
∑

k=0

T k
∗ (νN |{R=n})

normalized is an SRB measure. To prove this, it suffices to show (i) T has a positive Lyapunov
exponent µ-a.e., and (ii) the Dα-curve through a.e. z ∈ N is its local unstable manifold. Both
are true by the construction in Step 2.
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While ν̂ (which is not necessarily TN -invariant) has accm on {Dα}, we do not know in general
that νN does as well. The following procedure is used to extract a part of νN with the desired
property: Let νΣ = (πΣ)∗(Ψ−1

∗ (νN )) where πΣ : L×Σ → Σ is projection. Let λ denote Lebesgue
measure on L, and let νLeb = Ψ∗(λ × νΣ). We then decompose νN into νN = νac + ν⊥ where
νac is absolutely continuous with respect to νLeb and ν⊥ is singular with respect to it (written
νac << νLeb and µ⊥ ⊥ νLeb). Since (TN )∗(νac) << νLeb and (TN )∗(ν⊥) ⊥ νLeb, it follows that
both νac and ν⊥ are TN -invariant. By Condition (S), νac(N ) ≥ ν̂(N ) > 0. The construction of
µ above can now be carried out with νac in the place of νN .

Summary: We have shown that if for some l0 = Wu
loc(ẑ) there is a family of unstable curves

N = ∪αDα for which Condition (S) is satisfied, then T admits an SRB measure.

For the rest of this section, we assume T ∈ G.

9.2 Dynamics on unstable manifolds

Let Ωδ := {z0 ∈ Ω : dC(zi) ≥ δ ∀i ∈ Z}. From Sect. 3.5, we know that T |Ωδ
is uniformly

hyperbolic. Fix ẑ ∈ Ωδ, and let l0 = Wu
r (ẑ) denote its local unstable curve of radius r. We

assume r is small enough that for all ξ0 ∈ l0, dC(ξ−i) >
1
2δ for all i ≥ 0. In the rest of this

section, we let τ0(ξ0) ∈ Xξ0 denote the positively oriented unit vector tangent to l0, and use τ
to denote generic unit vectors tangent to li := T il0.

A. Control of (ξ0, τ0) for ξ0 ∈ l0

For z ∈ Ω \ C, a natural choice of φ(z) is φ(z) = z∗0(Q(j)) where j is the largest k such that
z ∈ Q(k). Observe that j = ∞ corresponds exactly to z ∈ C. Thus for all ξ0 ∈ Ω such that
ξi 6∈ C for all 0 ≤ i < k, ξ0 is controlled by ∪j>0Γj for k iterates. Proof of control for τ0(ξ0) is
obtained by leveraging (A6’); details are given in Appendix A.22.

Lemma 9.1 For all ξ0 ∈ l0, the sequence (ξ0, τ0), · · · , (ξk, τk) is controlled by ∪Γj provided
ξi 6∈ C for all i < k.

Once control is established, the evolution of li is very similar to that of Fk-leaves. We record
their geometric and dynamical properties in B and C below.

B. Geometry of li

The proof of the following is entirely parallel to that of Lemma 7.1:
(i) For each i > 0, li is partitioned by {T i−kzk, k < i, z0 ∈ Γ̄} where Γ̄ is the closure of ∪jΓj

into a finite disjoint union of monotone segments {σ}.
(ii) The free part of σ, if nonempty, is connected, and the function on σ giving the number

of iterates before a point becomes free is U -shaped.
(iii) If σ ∩Q(1) 6= ∅, then either (a) σ ∩Q(1) meets Γ̄ in a single point ẑ0, and σ contains a

C2(b) curve of length e−αi centered at ẑ0, or (b) σ ∩Q(1) lies strictly to one side of Γ̄; in this
case we let ẑ0 = φ(ξ) where ξ is the point in σ ∩Q(1) closest to C.

C. 1D behavior

Behavior near the “turns” excepted, the dynamics of l0 → l1 → l2 → · · · bear a striking
resemblance to those of iterated 1D maps. By this, we mean a qualitative resemblance rather
than the existence of a specific map f : I → I with the property that fk(πx(l0)) ≈ πx(lk) for
all k. Here πx denotes projection onto the x-axis. To make precise this qualitative resemblance,
we formulate three properties in analogy with (P1)–(P3) in Sect. 2.2.
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Proposition 9.2 T k|l0 , k = 1, 2, · · · , satisfy (P1’)–(P3’) below.

(P1’) (Outside of C(1)) Let f0 ∈ M be as in Sect. 6.1, and let ε = max(O(a),O(b)). Then
for all z ∈ li \ C(1) in a free state, we have

|πx(Tz)− f0(πx(z))|, ||DTz(τ)| − f ′
0(πx(z))| < ε.

From this it follows that results analogous to (P1)(i),(ii) with |(fn)′| replaced by |DT n(τ)| hold
with slightly weaker constants for segments of li in free state.

(P2’) (Bound periods and derivative recovery) Let ω be the maximal free segment in
a component of li ∩ C(1), let ẑ0 be as in B(iii) above, and let P ẑ0 be the partition in Sect. 2.2
centered at πx(ẑ0). Then there exist K0 and K1 such that

(i) K−1
0 log 1

|z−ẑ0| ≤ p(z) ≤ K0 log 1
|z−ẑ0| for all z ∈ ω;

(ii) |DT p
z (τ)| > e

1
4λp(z) for all z ∈ ω;

(iii) if πx(ω) ≈ Iµj for some Iµj ∈ P ẑ0 , then |T p(ω)| > e−K1α|µ|.

Let ω be a segment of li. We say all z ∈ ω have the same itinerary for n− 1 iterates if there
exist t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · · ≤ n such that for every k, πx ◦ T tkω ⊂ P+ for some
P ⊂ Cδ, pk = minz∈ω p(T

tkz), and for all i ∈ [0, n) \ ∪k[tk, tk + pk), πx ◦ T tkω ⊂ P+ for some
P ∩ Cδ = ∅.

(P3’) (Distortion estimate) There exists K2 such that the following hold for all i, n and
ω ⊂ li satisfying (i) all z ∈ ω have the same itinerary for n − 1 iterates and (ii) both ω and
T n(ω) are free. Then for all z, z′ ∈ ω,

|DT n
z (τ(z))|

|DT n
z′(τ(z′))| < K2.

A proof of Proposition 9.2 is given in Appendix A.22.

9.3 Distribution of free segments of length > δ

For definiteness, assume l0 is such that either (i) πx(l0) = Iµ0j0 where Iµ0j0 is one of the
outermost Iµj or (ii) l0 ∩ C(1) = ∅ and has length > K−1δ. Following the procedure in Sect.
2.3, we introduce on l0 an increasing sequence of partitions Q0 < Q1 < Q2 < · · · with Qi

representing a canonical subdivision by itinerary. This means in particular that Q0 = {l0}, and
each ω ∈ Qi−1 has the property that all z ∈ ω have the same itinerary through step i− 1 in the
sense of Sect. 9.2C. We are particularly interested in those ω ∈ Qi−1 for which T iω is free and
|T iω| > δ. These are the segments that will be used in our constructions in Sect. 9.1. Observe
that (P3’) holds for T i|ω.

As in Sect. 2.3, let S be the stopping time on l0 defined by S(z) = i if and only if T i(Qi−1(z))
is free and has length > δ. We introduce a sequence of stopping times S0 < S1 < S2 < · · · on
l0 as follows: Let S0 = 0 and S1 = S. On ω ∈ Qi−1 such that Sk|ω = i, we define Sk+1(z) to be
the smallest j > i such that T j(Qj−1(z)) is free and has length > δ.

Lemma 9.2 There exists K3 such that the following hold for all k ≥ 0 and n > K3 log 1
δ
: If

ω ∈ Qi−1 is such that Sk|ω = i, then

m0(ω ∩ {(Sk+1 − Sk) > n}) < e−K
−1
3 n m0(ω).

47



Proof: We claim that results corresponding to those in Sect. 2.3 are valid in the present setting:
the proofs in Sect. 2.3 depend only on (P1)–(P3), and they continue to hold as (P1)–(P3) are
replaced by (P1’)–(P3’). Partitioning T i(ω) into segments of length between δ and 3δ, we appeal
to Corollary 2.1 and (P3’). �

The next lemma locates sites suitable for the construction of N .

Lemma 9.3 There exist an interval L̃ ⊂ I, a number c̃ > 0, a sequence of integers n1 < n2 <

· · · , and a collection of segments {ω̃(i)
j } of l0 such that

(i) πx(T i(ω̃
(i)
j ) = L̃;

(ii) 1
nk

∑nk−1
i=0 m0(∪jω̃

(i)
j ) ≥ c̃ m0(l0).

Proof: (1) Estimate from below of the total measure of ω ∈ Qi−1 with |T i(ω)| > δ. Let
Rik = {ω ∈ Qi−1 : Sk|ω = i}. By Lemma 9.2, there exists K ′′ such that

∫

ω

(Sk+1 − Sk)dm0 ≤ K ′′m0(ω) for all ω ∈ Rik.

Writing Sn =
∑n−1

k=0 (Sk+1 − Sk) and summing over all ω ∈ ∪iRik for each k, we obtain

∫

l0

Sndm0 ≤ K ′′n ·m0(l0). (11)

Let N be a large integer. Applying Chebychev’s Inequality to (11), we obtain

m0{S[ 1
2K′′ N ] > N} ≤ 1

N

∫

S[ 1
2K′′ N ]dm0 ≤ 1

N
(K ′′ 1

2K ′′N) m0(l0) =
1

2
m0(l0).

This implies
∑

i≤N

m0(∪{ω ∈ ∪kRik}) ≥ 1

4K ′′N m0(l0). (12)

(2) Selection of L̃. We partition I into intervals L1, L2, · · · , L 3
δ

of length 1
3δ each. For ω ∈ Rik,

since |T i(ω)| > δ, there exists q = ψ(ω) such that πx(T i(ω)) ⊃ Lq. Let ω̂ = ω ∩ T−iπ−1
x Lq. By

(P3’), there exists K ′′′ independent of ω such that m0(ω̂) > K ′′′−1m0(ω). Together with (12),
this implies that for each N , there exists q(N) such that

1

N

∑

i≤N

m0(∪{ω̂ : ω ∈ ∪kRik, ψ(ω) = q}) ≥ δ

12K ′′K ′′′ m0(l0).

Let L̃ = Lq where q = q(N) for infinitely many N . For each i, then, the collection {ω̃(i)
j } is

{ω̂ : ω ∈ ∪kRik, ψ(ω) = q}. �

9.4 Completing the proof of Proposition 9.1

As explained in Sect. 9.1, it suffices to verify Condition (S). Let l0 be as in Sect. 9.2. Using
the notation in Lemma 9.3, we let L be the middle 9

10 of L̃, and let

N := closure
{(

∪i,j>0 T
i(ω̃

(i)
j )
)

∩ (L×Dm−1)
}

.

It remains is to show that N is a continuous family of unstable curves.
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Lemma 9.4 Let M ∈ Tn be such that M ∩ N 6= ∅. Then

(i) there exists ω̃
(i)
j such that T i(ω̃

(i)
j ) ⊂M◦;

(ii) M ∩ (L×Dm−1) is a horizontal section.

Proof: (i) Since N ⊂ Ω ⊂ int(Rn), M ∩ N 6= ∅ =⇒ M ∩ γ 6= ∅ for some γ = T i(ω̃
(i)
j ). It

remains to show that γ cannot meet E ∪E′, the ends of M . This is because all points in E ∪E′

are in bound state, while γ is free. (We need to know ξi ∈ γ is free viewing the orbit as starting
from ξi−n. For n > i, this is true because for ξ0 ∈ l0, dC(ξj) >

1
2δ for all j < 0.) (ii) By Lemma

8.1, there is, through each ξ ∈ γ, a codimension one stable manifold V (ξ) := T n(W s
n(T−nξ)).

Each V (ξ) has diameter < Kb
n
5 and spans the cross-section of M , i.e. ∪ξ∈γV (ξ) is a section

of Rn. All points in this section are free, so it is a horizontal section of length ≈ 1
3δ, of which

roughly the middle 9
10 is occupied by M ∩ (L×Dm−1). �

Verification of Condition (S)

Construction of {Ei}. Let An = {M ∩ (L × Dm−1) : M ∈ Tn, M ∩ N 6= ∅}. By Lemma
9.4, elements of An are horizontal sections. We give an algorithm below that selects, for each
n, a cover E ′

n of N by a finite number of pairwise disjoint elements of ∪j≥nAj . We then let
En = {E ∩ N : E ∈ E ′

n}.
Let E ′

1 = A1, and assume E ′
i−1 is constructed. To construct E ′

i, we first put all E ∈ E ′
i−1

of generation ≥ i in E ′
i . Each E ∈ E ′

i−1 of generation i − 1 is then replaced systematically by
elements of {A ∈ Aj , j ≥ i, A ⊂ E} as follows: first pick all F ∈ Ai, then pick all F ∈ Ai+1 that
cover some points in N ∩ E not yet covered, then pick all F ∈ Ai+2 covering some points not
covered before, and so on. Notice at each stage that the branches chosen are pairwise disjoint.
Moreover, the process stops in finite time, for every z ∈ N lies in some M ∈ T .

Properties of E∞ =
∨

n>0 En. First we show that the elements of E∞ form a continuous family
of C1 curves. Since every E ∈ E∞ is the nested intersection of a sequence of horizontal sections
whose cross-sectional diameters tend to zero, it is the graph of a function ϕ : L → Dm−1. By
Lemma 9.4, ϕ is the pointwise limit of a sequence of functions ϕk the graph of each one of which

is contained in T i(ω̃
(i)
j ) for some ω̃

(i)
j . Since T i(ω̃

(i)
j ) is a C2(b) curve, |ϕ′′

k | is uniformly bounded

for all k; therefore a subsequence ϕki
converges to ϕ in the C1 norm.

To see that the curves in E∞ are unstable curves, we use the fact that T i(ω̃
(i)
j ) are unstable

curves (Lemma 5.5). The uniform derivative estimates along these curves in backward time are
passed to the graph of ϕ, and the distortion estimate in (S)(ii) is verified similarly.

Finally, (S)(iii) is given by Lemma 9.3. This completes the verification of Condition (S) and
the proof of Proposition 9.1. �

PART III PARAMETER ISSUES

Let G = ∩n≥0Gn. The purpose of Part III is to prove the existence and abundance of maps
in G. More specifically, we will prove that for 1-parameter families Ta : X → X satisfying the
Standing Hypotheses in Section 1, the set {a : Ta ∈ G} has positive Lebesgue measure. Our
plan is to construct a set ∆ ⊂ {a : Ta ∈ G} with a generalized Cantor structure in which the
gap ratios tend to zero exponentially fast.

We cannot overemphasize the dependence of Part III on earlier sections. Results from Part
II on properties of individual T ∈ G are clearly relevant as we now seek to identify such maps
from a given 1-parameter family. Since the criteria for belonging in G reside with the behavior of
critical orbits, a major focus of the present study is on the evolution of critical curves, i.e. curves
of the form a 7→ zi(a), i = 0, 1, 2, · · · , where z0 is a critical point. We will show that a 7→ zi(a)
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define processes that have a great deal in common with the 1D maps studied in Section 2. Part
of the analysis involves adapting the results of Section 2 to the present context.

Each of the first three sections of Part III discusses one important aspect of the problem.
These ideas culminate in Section 13, which contains the actual construction of ∆.

Hypotheses for Part III: We assume
(1) {Ta, a ∈ [a0, a1]} satisfies the Standing Hypotheses in Section 1;
(2) [a0, a1] is in a sufficiently small neighborhood of a∗ that Ta satisfies the hypotheses

at the beginning of Part II for all a ∈ [a0, a1].
The generic constant K here depends on the family Ta as well as our choice of λ.

10 Dependence of Dynamical Structures on Parameter

Notation such as Tk(a) and C(k)(a) are used to indicate dependence on the map Ta.

10.1 Continuation of critical regions and critical points

Definition 10.1 Let J ⊂ [a0, a1] be an interval, and assume that for some â ∈ J , Tâ ∈ Gn. We
say {Ta, a ∈ J} is a continuation of Tâ in Gn if the following hold:

(1) For all a ∈ J , Ta ∈ Gn, and there is a choice of Γθn(a) with the following properties:

(2) The monotone branches of Tâ of generation ≤ θn deform continuously on J , i.e. for each
k ≤ θn, there is a map Φk defined on J × Tk(â) such that

(i) for each fixed a, M 7→ Φk(a,M) is a bijection between Tk(â) and Tk(a);

(ii) for each fixed M , a 7→ Φk(a,M) is continuous (in the Hausdorff metric).

(3) The critical regions of Tâ of generation ≤ θn deform continuously on J , i.e. for each
k ≤ θn, there is a map Ψk defined on J × {Q(k)(â)} such that

(i) for each fixed a, Q 7→ Ψk(a,Q) is a bijection between {Q(k)(â)} and {Q(k)(a)};
(ii) for each fixed Q, a 7→ Ψk(a,Q) is continuous.

(4) The critical points of Tâ of generation ≤ θn continue smoothly to all of J , i.e. for each
z0(â) = z∗0(Q(k)(â)), k ≤ θn, a 7→ z0(a) is a C2 curve satisfying

(i) z0(a) = z∗0(Q(k)(a)) where Q(k)(a) = Ψ(a,Q(k)(â));

(ii) if ξ1(â) = T
−(k−1)
â z0(â) and l is the F1-leaf containing ξ1(â),

12 then there is a C2-
function ξ1 : J → l such that z0(a) = T k−1

a (ξ1(a)).

We refer to a 7→ Γθn(a) with property (4) as a coherent choice of Γθn(a).13

Observe that if {Ta, a ∈ J} is a continuation of Tâ, then (i) {Φk} “commutes” with the
actions of Ta, i.e. if M ∈ Tk(â) is such that TâM = ∪s

i=1Mi, Mi ∈ Tk+1(â), then TaΦk(a,M) =
∪s

i=1Φk(a,Mi); and (ii) the partial order on {Q(k), k ≤ θn} is respected by {Ψk}. The validity
of these statements is easily seen by comparing two nearby a.

Our first goal is to give sufficient conditions for the existence of continuations. To ensure
that a nontrivial continuation exists, we choose Tâ in the “interior” of GN . Let

G#
N = {T ∈ GN : T satisfies (A2)# and (A4)#}

12We assume F1 is independent of a.
13For Ta ∈ Gn, Γθn(a) is determined only up to a finite precision; the exact location of Γθn(a) depends on

choices of Fk-leaves on which critical points are constructed.
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where (A2)# and (A4)# below require that for all z0 ∈ ΓθN of generation k, the following hold
for all i ≤ kθ−1:

(A2)# dC(zi) > min(δ, 2e−αi);

(A4)# |w∗
i | > c2e

λ∗i where λ∗ = λ+ 1
100λ0.

Clearly, G#
N ⊂ GN .

Proposition 10.1 (Dynamical continuation) There exists ρ > 0 depending only on ‖Ta‖C3

and c2 for which the following holds: Assume Tâ ∈ G#
N . For n ≤ N , let Jn = [â − ρn, â+ ρn].

Then {Ta, a ∈ Jn ∩ [a0, a1]} is a continuation of Tâ in Gn.

Proof: We assume the following hold for n < N and prove it for n+ 1:
(i) {Ta, a ∈ Jn} is a continuation of Tâ in Gn;
(ii) (a priori estimate on | d

da
z0(a)|) there is a constant K > 0 independent of ρ such

that for all a ∈ Jn, if z0(a) ∈ Γ[θn](a) is of generation j, then

∣

∣

∣

∣

d

da
z0(a)

∣

∣

∣

∣

< Kj .

There is nothing to do if kθ−1 < n + 1 < (k + 1)θ−1: no new monotone branches or critical
regions are constructed, and all critical points of generation ≤ k are treated in the previous step.
We assume therefore that n+ 1 = (k + 1)θ−1 for some k.

1. Coherent choice of Γk+1(a), construction of C(k+1)(a) and Tk+1(a), and verification of (2)
and (3) in Definition 10.1 for objects of generation k + 1:

For each individual a ∈ Jn, since T = Ta ∈ Gn, we know by Proposition 8.1 that C(k+1) and
Tk+1 can be constructed. Moreover, for each M ∈ T (k) and Q = Q(j), (k+1)(1+2θ)−1 ≤ j ≤ k,
there is the following dichotomy: either TM ∩ Q = ∅, or a horizontal section of TM pierces
through the entire length of Q .

Now let a vary over Jn. For M ∈ Tk(â), we know by inductive assumption that M(a) :=
Φk(a,M) varies continuously with a, as does Q(a) := Ψj(Q). Since the dichotomy above holds
for all a – and there is no way to go from one scenario to the other in a continuous manner – it
follows that exactly one of the two scenarios must prevail for all a ∈ Jn. Indeed, the number of
times TaM(a) goes through Q(a) is constant for all a. This proves properties (2)(i) and (3)(i)
in Definition 10.1.

Suppose for M and Q as above, Tâ has a critical point ẑ0(a) ∈ TâM(â)∩Q(â). Let lk(â) be
the connected component of Fk-leave in M(â) on which T−1

â z0(â) is located. Let l = T−k+1
â lk.

Then l is a leaf of F1, and F1 does not depend on a. From the last paragraph, we know that T k
a (l)

pierces through Q(a) for all a. Let z0(a) be constructed on T k
a (l). This construction guarantees

the continuity of a 7→ z0(a) for all critical points of generation k+1 and consequently properties
(2)(ii) and (3)(ii) in Definition 10.1.

2. Smoothness of a 7→ z0(a) and estimate on | d
da
z0(a)| for z0 of generation k + 1:

Continuing to use notation from the last paragraph, we let x 7→ γ(x, a) = (x, ψ(x, a)) be
the curve T k

a l in Q(k+1)(a), and let z0(a) = (x̄(a), ȳ(a)). For each (x, a), we consider in Xγ(x,a)

the 2D plane S = S(∂xγ(x, a),v) with orthonormal basis {u, v} where u = ∂xγ/|∂xγ| and v
points in roughly the same direction as v. Let ek+1 be the most contracted direction of DT k+1

a

in S. As in Sect. 3.6, we write ek+1 as a linear combination of u and v, and let ηk+1 denote
its v-component. Then x̄(a) is defined implicitly by ηk+1(x̄(a), a) = 0, and therefore is C2 as a
function of a. Likewise, ȳ(a) = ψ(x̄(a), a) is a C2 function of a.

The following lemma is proved in Appendix A.23.
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Lemma 10.1 As functions of x and a,
(a) ‖u‖C2, ‖v‖C2 < Kk+1;
(b) ‖ηk+1‖C2 < Kk+1.

Corollary 10.1
∣

∣

∣

∣

dz0(a)

da

∣

∣

∣

∣

,

∣

∣

∣

∣

d2z0(a)

da2

∣

∣

∣

∣

≤ Kk+1. (13)

Proof of Corollary 10.1: Differentiating ηk+1(x̄(a), a) = 0, we obtain

dx̄(a)

da
= −∂aηk+1

∂xηk+1
(x̄(a), a). (14)

Observe that |∂xηk+1| > K−1: This follows from Lemma 3.7 and the fact that derivative growth
along the orbit of z∗0(Q(k)(a)) is passed on to that of z0(a) via Lemma 3.2. Our claim on the
first derivative follows directly from Lemma 10.1(b) and the fact that dȳ

da
= ∂xψ

dx̄
da

+ ∂aψ. To
estimate the second derivative we differentiate (14) one more time with respect to a, and use
again Lemma 10.1. �

3. Proofs of (A2)(n+1) and (A4)(n+1): Let z0 be a critical point of generation k+1. We give
details only for step n+ 1: By Corollary 10.1, |z0(a) − z0(â)| ≤ Kk+1(2ρn+1) for all a ∈ Jn+1,
so that

|zn+1(a) − zn+1(â)| < K‖DT ‖n+1|z0(a) − z0(â)| << e−α(n+1) (15)

provided ρ is sufficiently small relative to ‖DT ‖−1 and K−1. To finish, we need to deal with the
differences between dC(a)(·) and dC(â)(·). Suppose zn+1(â) ∈ C(1), and φ(zn+1(â)) = z∗0(Q(j)(â)).

Then j ≤ α∗(n + 1)θ, zn+1(â) ∈ Q(j)(â), and Tâ has a horizontal section H(â) extending
considerably beyond Q(j)(â) on both sides. We conclude from the continuous deformation of
structures of generation j, the estimate |z∗0(Q(j)(â)) − z∗0(Q(j)(a))| ≤ Kj |â− a| and (15) above
that zn+1(a) is either in Q(j)(a) or it is in H(a) and just outside of Q(j)(a), and dCa

(zn+1(a)) >
1
2dCâ

(zn+1(â)) > e−α(n+1).

To prove (A4)(n+1), we first convert the problem to one involving |wi|, thereby picking up
some factors of eαi. The comparability of |wi(a)| and |wi(â)| is given by the following lemma,
the proof of which follows closely that of Lemma 3.2 and is omitted.

Lemma 10.2 Let z0(â) be of generation j ≤ θ(n+ 1). For i ≤ n+ 1, let wi(â) = (DT i
â)z0(â)v,

and wi(a) = (DT i
a)z0(a)v, a ∈ Jn+1. Then |wi(a)| ≥ 1

2 |wi(â)|.
This completes the proof of (i) and (ii) for step n+ 1. �

10.2 Properties of a 7→ z0(a), z0 ∈ ∪Γj

Unlike the situation in 1D, ∪j≥1Γj is an infinite set, and the domains of definition of a 7→ z0(a)

decrease as the generation of z0 increases. For Tâ ∈ G#
N and z0 ∈ ΓθN(â) of generation θn, n ≤

N , we guarantee the continuation of z0(â) only to the interval Jn = [â− ρn, â+ ρn]. We claim,
however, that there is a uniform bound on d

da
z0(a) that is valid on for all z0 (independent of

generation) on their respective intervals of continuation.

Lemma 10.3 Let â, Jn and Γθn be as in Proposition 10.1, and let a 7→ z
(k)
0 (a), a ∈ Jn, be a

curve of critical points of generation k ≤ [θn]. Then there is z
(k′)
0 of generation k′, k′ < k ≤

k′(1 + 2θ), with z
(k)
0 ∈ Q(k′)(z

(k′)
0 ) such that
∣

∣

∣

∣

d

da
(z

(k)
0 (a) − z

(k′)
0 (a))

∣

∣

∣

∣

< b
k′

9 .
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A proof of Lemma 10.3 is given in Appendix A.23.

Corollary 10.2 Under the hypotheses of Lemma 10.3, there exists K1 such that for every curve

of critical points a 7→ z
(k)
0 (a), k ≤ θn, if z

(k)
0 = (x0, y0), then

| d
da
x0(a)| ≤ K1, | d

da
y0(a)| ≤ b

1
10 .

Proof: Let z0 = z∗0(Q(k)), and suppose Q(k) = Q(k0) ⊂ Q(k1) ⊂ · · · ⊂ Q(1) are consecutive crit-

ical regions. We obtain, by comparing a 7→ z
(ki)
0 and a 7→ z

(ki−1)
0 , that | d

da
(z

(k)
0 (a) − z

(1)
0 (a))| <

b
k′

10 . The assertions in this corollary now follow immediately from properties of the finitely many

critical points z
(1)
0 = (x

(1)
0 , y

(1)
0 ) of generation one, namely d

da
y
(1)
0 = 0 and | d

da
x

(1)
0 | < 1

2K1 for
some K1. �

Remark Lemma 10.3 and Corollary 10.2 together imply the following: (1) The speeds of
movement of all critical points are uniformly bounded. (2) While Γn as a whole moves with
speed O(1), the relative speed of motion of z′0 and z0 for z′0 ∈ Q(k)(z0) decreases exponentially
very fast with k.

10.3 Setting for the analysis to follow

Recall that for a single map T ∈ GN , whether or not T is in G 1
α∗ N is determined by whether (A2)

and (A4) are satisfied up to time 1
α∗N . We now consider a family {Ta, a ∈ J} where Ta ∈ GN

for all a. In addition to asking whether Ta ∈ G 1
α∗ N for each individual a, we will also want to

know for what fraction of a ∈ J is Ta ∈ G 1
α∗ N .

This leads us to study the evolution of ζi : a 7→ zi(a) where ζ0 is a coherent choice of
z0 ∈ Γ 1

α∗ θN . The analysis is highly inductive: For each Ta, critical points are defined inductively,
and the presence of certain structures is needed to track their orbits. We wish now to track not
single orbits but entire curves. Precise conditions under which this analysis will be carried out
are as follows:

Assumptions in the inductive analysis of critical curves

Let J ⊂ [a0, a1] be a parameter interval.

(C1) {Ta, a ∈ J} is a continuation (of some Tâ) in GN .

(C2) A coherent choice of Γ 1
α∗ θN(a), a ∈ J , has been made.

Clarification 1. (C1) and (C2) are related as follows: If, in addition to (C1), we have Tâ ∈ G#
N

for some â ∈ J , then steps 1 and 2 in Proposition 10.1 can be carried out for critical points
of generation k for all k ≤ 1

α∗ θN . In Sections 11 and 12 we are not concerned with how (C2)
comes about, but note that once a coherent choice of Γ 1

α∗ θN(a) is made, the estimates in Lemma
10.3 and Corollary 10.2 are valid for the critical points in question. Justifications for this claim
follow verbatim those in Sects. 10.1 and 10.2.

2. Nothing is assumed or claimed at this point about the behavior of critical orbits beyond time
N . That is the objective of the investigation in the pages to follow. More precisely, we will be
concerned with the evolution of

ζi : a 7→ zi(a) for a ∈ J, z0 ∈ Γ 1
α∗ θN \ ΓθN , i ≤ 1

α∗N

with particular interest in the time range N < i ≤ 1
α∗N .

3. As we will see, this analysis requires that all critical structures of generation ≤ θN exist and
vary with parameter in a certain way. This is provided by (C1) and Corollary 10.2. We remark
also that critical structures beyond generation θN are not relevant for this analysis.
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11 Dynamics of Curves of Critical Points

The aim of this section is to bring to light a certain resemblance between the evolution of ζi and
that of certain “horizontal” curves under the iteration of Ta for a fixed a. The reason behind
this resemblance is that | d

da
ζi| is comparable to |DT i(v)|. We will show that for as long as

Ta ∈ GN , this comparability self-perpetuates once we get it going, and the start-up mechanism
is provided by the parameter transversality condition in the Standing Hypotheses in Section 1.
This is discussed in Sect. 11.1. Basic properties in the evolution of ζi, such as bound and free
periods, are discussed in Sect. 11.2.

Conditions (C1) and (C2) in Sect. 10.3 are assumed throughout.

11.1 Equivalence of space- and a-derivatives

We use the notation zi(a) = T i
a(z0(a)), wi(a) = (DT i

a)z0(a)(v) and τi(a) = d
da
zi(a).

Proposition 11.1 There exist K̂ > 0 and i0 ∈ Z
+ (both depending only on {Fa}), such that

the following holds for all (a, b) sufficiently close to (a∗, 0): Fix z0 ∈ Γ 1
α∗ θN \ ΓθN . We assume

that for some n ≤ 1
α∗N , dC(zi(a)) ≥ min(δ, e−αi) for all a ∈ J and i < n. Then

K̂−1 ≤ |τi|
|wi|

≤ K̂ for all i0 < i ≤ n.

We remark that the required proximity of (a, b) to (a∗, 0) depends also on i0, and that under
the conditions above, the pair (z0, w0) is controlled by ΓθN up to time n (see Proposition 6.2).

Proposition 11.1 is a consequence of Standing Hypothesis (b) in Section 1 and can be viewed
as the higher dimensional analog of Proposition 2.3 in Sect. 2.4. Recall from Proposition 2.3
that

lim
k→∞

k
∑

s=1

d
da

(fa(xs−1))(a
∗)

(fs−1)′(x1(a∗))
=

[

d

da
fa(x̂(a)) − d

da
q(a)

]

a=a∗

:= ĉ. (16)

The constant K̂ in Proposition 11.1 is derived from ĉ together with angle and other considera-
tions.

Proof: Letting ψ(z) = ∂
∂a

(Taz), we write

τi = DTzi−1τi−1 + ψ(zi−1) = DT i
z0
τ0 +

i
∑

s=1

DT i−s
zs

ψ(zs−1) := I + II

where

I = DT i
z0
τ0 +

i0
∑

s=1

DT i−s
zs

ψ(zs−1) and II =

i
∑

s=i0+1

DT i−s
zs

ψ(zs−1),

i0 being a number to be determined. We will show there exist K0 (depending only on {Ta})
and i0 such that if (a, b) is sufficiently near (a∗, 0), then for i0 < i ≤ n,

- K−1
0 |ĉ| < |I|

|wi| < K0|ĉ| and

- |II|
|wi| is as small as we wish.

These estimates together give the desired result.

Estimate on |II|
|wi| : Since |ψ(·)| < K, it follows from Lemma 5.6 that

|II| ≤ K

i
∑

s=i0+1

‖DT i−s
zs

‖ ≤ K

i
∑

s=i0+1

Ke−λ̂s|wi|.
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Choosing i0 large enough, we can make K2
∑∞

s=i0+1 e
−λ̂s << K−1

0 |ĉ|.

Estimate on |I|
|wi| : Increase i0 if necessary so that with k = i0, the sum on the left side of (16)

is < 1
2 ĉ from its limit; i0 is fixed from here on. Let V be such that I = DT i−i0

zi0
V , i.e.

V = DT i0
z0
τ0 +

i0
∑

s=1

DT i0−s
zs

ψ(zs−1).

The verification of Lemma 11.1 is given in Appendix A.24.

Lemma 11.1 As (a, b) → (a∗, 0),

|w1|
|wi0 |

V →
(

±
i0
∑

s=1

d
da

(fa(xs−1))(a
∗)

(fs−1)′(x1(a∗))
, 0

)

.

It is important to note that the convergence above is uniform among all critical curves. This
is evident from the uniform bound on d

da
z0 and the proof of Lemma 11.1.

To finish, we write

|I|
|wi|

=
|DT i−i0

zi0
(V )|

|DT i−i0
zi0

(wi0 )|
=

|DT i−i0
zi0

( V
|V |)|

|DT i−i0
zi0

(
wi0

|wi0 |
)|

· |V |
|wi0 |

.

Notice first that by Lemma 11.1, 1
3

ĉ
|w1| <

|V |
|wi0 |

< 2 ĉ
|w1| . We claim that

K−1 <
|DT i−i0( V

|V | )|
|DT i−i0(

wi0

|wi0 |
)| < K (17)

provided (a, b) is sufficiently near (a∗, 0). Assume ∠(V,wi0 ) 6= 0, and let ej−i0 = ej−i0 (S) be the
most contracted vector of order j − i0 where S = S(V,wi0 ). To prove (17), it suffices to show
that ej−i0 is well-defined, ∠(ej−i0 , wi0 ) > K−1, and ∠(V,wi0) = O(b). With (a, b) sufficiently
near (a∗, 0), we may assume for some s0 >> i0 that dC(zs) >

1
2δ0 for all s < s0 (δ0 is as in

Definition 1.1). This together with our assumption that dC(zj) ≥ min(δ, e−αj) implies that for

all j > i0, |wj |/|wi0 | > K−1e(λ
′−2α)(j−i0), proving ej−i0 is well-defined. Since wi0 is b-horizontal,

we have ∠(e1, wi0) > K−1 by Lemma 3.7. This together with ∠(e1, ej−i0) < (Kb)j−i0 (Lemma
3.1) gives ∠(ej−i0 , wi0 ) > K−1. As for V , Lemma 11.1 tells us its slope is small as we wish.
Hence ∠(V,wi0 ) = O(b). �

We remark that all the estimates in the proof above – and hence the constants in the
statement of the proposition – are independent of N . For as long as both τi and wi grow in
magnitude, the angles between them must shrink by rank one arguments. The assumptions in
the next lemma are as in Proposition 11.1. A detailed proof is given in Appendix A.24

Lemma 11.2 If zi is a free return, then ∠(τi, wi) <
K
|τi| .

The following are assumed for the rest of this paper: (i) i0 is sufficiently large, (ii)
(a, b) is sufficiently close to (a∗, 0), and (iii) all critical points stay at distances > 1

2δ0 away from
C for >> i0 iterates – where “sufficiently large”, “sufficiently close” and “>>” are as required
in the proof of Proposition 11.1.
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11.2 Resemblance to phase-space dynamics

In addition to (C1) and (C2), we now fix z0 ∈ Γ 1
α∗ θN \ ΓθN and impose on it

(C3) For some i0 < n ≤ 1
α∗N , dC(zi) > min(δ, e−αi) for all i ≤ n.

We discuss below 4 aspects of the dynamics of ζi : a 7→ zi(a), i = 0, 1, 2, · · · . The notation
is as in Sect. 11.1; in particular, wi(a) = (DT i

a)z0(a)(v) and τi(a) = d
da
zi(a). Recall also that

s(u) =
|uy|
|ux| where u = (ux, uy) is a vector in R

m = R × R
m−1.

A. Outside of C(1)

For the first i0 iterates, we do not have a great deal of information on τi. Let ε̂ :=
K̂c2e

− 1
4λ0i0 + O(b) where K̂ is as in Proposition 11.1. We may assume ε̂ << δ.

Lemma 11.3 The following hold for every a:
(a) If zn is free, then s(τn) < ε̂.
(b) If zn is free, and zn+j 6∈ C(1) ∀ 0 ≤ j < j0, then

(i) |τn+j | > K−1δe
1
4λ0j |τn| for j ≤ j0; and

(ii) if in addition γn+j0 ∈ C(1), then |τn+j0 | > K−1e
1
4λ0j0 |τn|.

Proof: (a) follows from Lemma 11.2 and the b-horizontal property of wn. As for (b), since
|τn+j | >> 1, we have |τn+j+1|/|τn+j | ≈ |f ′(xn+j)|, zi = (xi, yi). The assertions follow by a
proof similar to that of Lemma 3.5. �

Remark We do not claim that free segments of ζi are C2(b), only that they are roughly
horizontal (because ε̂ << 1). No effort will be made to control (z0, τ0). Information on τi is
obtained instead through comparisons with wi via Proposition 11.1 and Lemma 11.2.

B. Geometry of critical curves inside Q(1)

Let ω be a subinterval of J . We assume ζn(ω) is free (meaning zn(a) is free for each a),
and ζn(ω) ⊂ Q(1). For each individual a, we have seen in Part II how zn(a) is related to the
critical structure of Ta. We now describe the geometric relationship between the curve ζn and
the 1-parameter family of critical structures.

By Lemma 11.3(a), ζn is roughly horizontal. Consider an arbitrary point â ∈ ω, and assume
that ζn(â) lies in the interior of Q(j)(â) for some j ≤ n. We assume, for definiteness, that as a
increases, we move right along ζn. By continuity, for all a in a neighborhood of â, ζn(a) also lies
in the interior of Q(j)(a). Let ā be the first a for which the last statement is not valid. Then
ζn(ā) ∈ ∂Q(j)(ā). Since it cannot be in ∂Rj (because n ≥ j), it has to lie in the right (vertical)
boundary of Q(j)(ā).

We claim that as a increases, ζn crosses Q(j)(a) in exactly one point, i.e. for all a > ā,
ζn(a) 6∈ Q(j)(a). This is because for a ∈ ω, | d

da
ζn| > K̂−1|wn| > K−1eλn (Proposition 11.1

and Lemma 5.2), while | d
da
z∗0(Q(j))| < K1 (Corollary 10.2). Since z∗0(Q(j)) and the “vertical”

boundaries of Q(j) move in the horizontal direction at the same speed, and we may assume n
is large enough that K−1eλn >> K1, a 7→ ζn(a) crosses ∪a∂Q

(j)(a) transversally in R1 × J in
exactly one point.

The picture can therefore be summarized as follows. Let j0 be the largest j ≤ 1
α∗ θn such

that ζn meets Q(j), and assume ζn(â) lies in the interior of Q(j0). Let Q(j0) ⊂ Q(j1) ⊂ Q(j2) · · ·
be consecutive critical regions starting from Q(j0) for Tâ. This structure, as we know, is identical
for all the Ta. As a increases (or decreases), this nested structure moves with speed O(1), which
is very slow relative to the speed of a 7→ ζn(a). Thus from the point of view of ζn, the critical
structure appears stationary, and the picture resembles that of a single map.
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C. Bound period and recovery

The setting is as in B above. For each a, we have defined for the map Ta the notion of φ(z)
for z = ζn(a), dC(z) := |φ(z) − z|, and p(z). To emphasize their dependence on the map Ta,
we now write φa(z), dC(a)(z) and pa(z). For purposes of studying the evolution of ζn, we can,
if we so choose, use the definitions associated with each individual a for ζn(a). For aesthetic as
well as practical reasons (to become clear in the next section), we prefer to have some coherence
along ζn, even if this involves some small modifications in the definitions above. We explain how
this can be done:

Step 1. Choosing a common guiding critical point φ(ω). The choice is quite arbitrary. Let
j0 be the largest j ≤ 1

α∗ θn such that ζn meets Q(j), and pick â with ζn(â) ∈ Q(j0). Let

φ(ω) := z∗0(Q(j0))(â), and define dC(z) = |z − φ(ω)| for z ∈ ζn(a).

Lemma 11.4 For z = ζn(a), let j be the generation of φa(z). Then

|dC(a)(z) − dC(z)| ≤ b
j
4 +K1|a− â|.

Proof: Let j0 > j1 > · · · be as in B. Then z ∈ Q(ji)(a) for some i ≥ 0. By definition, j ≤ ji,
and so Q(j0) ⊂ Q(j). We then have

|dC(a)(z) − dC(z)| = |z∗0(Q(j))(a) − z∗0(Q(j0))(â)|
≤ (|z∗0(Q(j))(a) − z∗0(Q(j0))(a)|) + (|z∗0(Q(j0))(a) − z∗0(Q(j0))(â)|)
≤ b

j
4 +K1|a− â|,

the first term in the last inequality is by Lemma 4.1 and the second by Corollary 10.2. �

The first term in the error above is innocuous. Since |a − â| < K̂e−λn|ζn(a) − ζn(â)|, the
second term is negligible if dC(a)(z) is >> K1K̂e

−λnδ. In particular, for z with dC(a)(z) > e−αn,
we have dC(a)(z) ≈ dC(z).

Step 2. Definition of a new bound period p(·). Let Pω be the partition P in Sect. 2.2 centered
at πx(φ(ω)), and let ω̂ be such that πx(ζn(ω̂)) ≈ Iµj . We define

p(ω̂) = min
a∈ω̂

pa(ζn(a)).

For this definition to be meaningful, we must verify that it has the properties of bound periods
in the sense of pa(·) for a single map. The next lemma, the proof of which is given in Appendix
A.25, assures us this is the case.

Lemma 11.5 Let ω̂ be as above, and let p = p(ω̂). Then
(a) K−1µ < p < Kµ;
(b) for a, a′ ∈ ω̂ and j < p, |ζn+j(a) − ζn+j(a

′)| < 2e−βj;
(c) |τn+p(a)| > K−1e

p
4 |τn(a)| for all a ∈ ω̂;

(d) ζn+p(a) is out of all splitting periods, s(τn+p(a)) < ε̂;
(e) |ζn+p(ω̂)| ≥ 1

µ2 e
−Kαµ.

D. Decomposition into bound and free states

With bound periods defined, we may now assign a bound or free state to each ζi(a) in the
evolution of ζi, namely that ζi(a) is free if it is not in a bound period as defined in C. We remark
that this notion is not necessarily consistent with the one for a single map Ta. Indeed, we must
now go back to rectify the following statements: In Lemma 11.3, and in the setting of B and
C, the word “free” as stated refers to “free” in the sense of individual maps. We leave it to the
reader to check that these statements are, in fact, valid if “free” is given the meaning in this
paragraph.
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12 Derivative growth via Statistics

This section is about how to deal with (A4) (see Sect. 4.1). We focus on one critical point at
a time, and discuss (i) what it takes to maintain regular derivative growth along its orbit, and
(ii) why one should expect the conditions guaranteeing this growth to be satisfied by a positive
measure set of parameters.

12.1 Estimating |w∗
i | in terms of itinerary

We return in this subsection to the dynamics of a single map to motivate a few ideas. As
explained earlier, (A4) is not a self-perpetuating property. We now give a condition in terms of
the itinerary of zi that guarantees sustained exponential growth of |w∗

i (z0)|.
Consider for definiteness T ∈ GN , and assume that for some z0 ∈ Γ 1

α∗ θN \ΓθN , dC(zi) > e−αi

for all i ≤ n, n ≤ 1
α∗N . We know from Corollary 6.1 that for w0 = v ∈ Xz0 , |w∗

i | > K−1e(
1
3 λ−2α)i

for all i ≤ n. Let us examine more closely how this growth comes about. Let t1 < t1 + p1 ≤
t2 < t2 + p2 ≤ t3 < t3 + p3 ≤ · · · be such that ti are the consecutive free return times up to
time n and pi the lengths of the ensuing bound periods. Then we have

(i)
|w∗

ti+1
|

|w∗
ti+pi

| ≥ c2e
λ(ti+1−(ti+pi)), (ii)

|w∗
ti+pi

|
|w∗

ti
| ≥ K−1e

1
3λpi .

Observe that in (i), the exponent is, in reality, the “outside exponent” 1
4λ0, which is strictly

> λ. As for (ii), the guaranteed growth rate of 1
3λ does not contribute much to maintaining

a Lyapunov exponent of λ. It is no significant loss if we replace it by the weaker estimate
|w∗

ti+pi
|

|w∗
ti
| ≥ c−1

2 , which is what we will do.

We continue to reason as follows: If the fraction of time zi spends in bound periods between
time 0 and n is < σ, and zn is not in a bound period, then |w∗

n| > const e(1−σ) 1
4λ0n. This

number is > eλn if σ is sufficiently small. Since the “outside exponent” does not decrease as
δ decreases (Lemma 2.1), it is logical to attempt to decrease σ by decreasing δ, the idea being
that some of the time intervals that are bound periods for the original δ would no longer be
counted as bound periods for a smaller δ. We summarize the conclusion of this reasoning in the
following lemma:

Let B(δ̂; 0, n) be the total time between 0 and n during which zi spends in bound periods

initiated from visits to the region dC(·) < δ̂.

Lemma 12.1 Let z0 be as above, and let σ > 0 and 0 < δ̂ ≤ δ. If B(δ̂; 0, n) < σn, then

|w∗
n| > K−1δ̂e[(1−σ) 1

4λ0−3α]n.

Proof: Consider first the case where zn is free. Let t̂1 < t̂1+p̂1 ≤ t̂2 < t̂2+p̂2 ≤ · · · ≤ t̂k+p̂k ≤ n
be such that t̂1, · · · , t̂k are the consecutive free return times to {dC(·) < δ̂}. Then

|wn| =
|wn|

|wt̂k+p̂k
| · · · |wt̂2

|
|wt̂1+p̂1

|
|wt̂1+p̂1

|
|wt̂1

| |wt̂1
|.

We have |wn|
|wt̂k+p̂k

| > c2δ̂e
1
4λ0(n−t̂k−p̂k) by Lemma 3.5(i) with δ̂ in the place of δ, and

|wt̂i+1
|

|wt̂i+p̂i
| >

c2e
1
4λ0(t̂i+1−t̂i−p̂i) by Lemma 3.5(ii). To cancel c2 we use

|wt̂i+p̂i
|

|wt̂i
| > c−1

2 , which is a trivial

consequence of (P2’)(ii). This gives |w∗
n| > K−1δ̂e[(1−σ) 1

4λ0]n since p̂1 + · · · + p̂k ≤ σn by
assumption. The factor −3αn is needed if n is not free; see Lemma 5.4. �
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In this lemma, we think of δ̂ as possibly << δ, and the factor δ̂ as the price to pay due to the
greater nonuniformness in growth properties “outside” – where “outside” now means dC(·) > δ̂.
As we will see, this factor will be absorbed into the initial growth if the critical orbit remains
outside of C(1) for a long time.

We point out that a quantity similar to Bn(δ̂; 0, n) has already appeared in the context of
1D maps; see Proposition 2.2. Our next step is to make a connection to this proposition.

12.2 Processes defined by curves of critical points

In Sect. 9.3, we borrowed some results from Sect. 2.3 for the dynamics of T ∈ G on unstable
manifolds – after establishing a strong resemblance between T k|W u and iterated 1D maps. Sect.
11.2 suggests that this similarity can perhaps be extended to ζi : a 7→ zi(a). But the relation
between the “dynamics” of critical curves and iterated 1D maps is a little more tenuous. For one
thing, there is no reasonable description of global geometry for critical curves: even though ζ0
is defined on an interval, it is inevitable that one will lose control of ζn on parts of this interval
as n increases.

We claim, nevertheless, that the statistical results in Sect. 2.3 are valid. To see that, we
return to Section 2 to examine the situation more closely:

Observations 1. In order to apply the results in Sect. 2.3 to critical curves, we must verify for
them estimates analogous to (P1)–(P3) in Sect. 2.2 and fix a definition of canonical subdivision
by itinerary with properties identical to that in Sect. 2.3.

2. Once that is done, we may proceed letting γi = ζi wherever it makes sense. It is not important
in Sect. 2.3 for γi to be = f i or the ith iterate of any map; {γi} could have been a process,
meaning a sequence of maps from J to I.

3. Finally, as noted at the end of Sect. 2.3, the stated results are entirely unaffected if we choose
to stop considering any element of Qi at any time by simply setting ζj = ∗ for all j ≥ i. Here,
the symbol ∗ will correspond to deleted parameters.

Definition of a process {γi} associated with ζi : a 7→ zi(a)

We assume (C1) and (C2) on an interval J , and fix z0 ∈ Γ 1
α∗ θN \ ΓθN . Associated with z0,

we seek to define a sequence of maps

γi : J → R1 ∪ {∗} for 0 ≤ i ≤ 1

α∗N

with the property that γi(a) = ζi(a) = zi(a) whenever γi(a) 6= ∗. Here as in Sect. 2.3, ∗ is the
“garbage symbol”: once γi(a) = ∗ for some i, γj(a) = ∗ for all j > i; that is to say, we stop
considering a ∈ J from that point on. To facilitate the description of γi, we first introduce the
following language:

Let γ : ω → R1 be such that d
da
γ is nonzero and roughly horizontal. We introduce on ω

a partition that will be referred to as the “canonical partition defined by γ”. This partition
is the pullback of the following partition on γ(ω): First we divide γ(ω) \ C(1) into intervals of
length ≈ δ each (except possibly for the end interval(s), which may be shorter), and partition
each component of γ(ω) ∩ C(1) into {π−1

x Iµj} using the guiding critical orbit φ(ω) to center the
partition P as is done in Sect. 11.2C. The final partition on γ(ω) is obtained by adjoining the
end intervals in the partition above to their neighbors. We say a canonical partition is nontrivial
if at least one partition point is introduced. Note that in a nontrivial partition, each element
ω′ has the property that either γ(ω′) ∩ C(1) = ∅ and δ ≤ |γ(ω′)| ≤ 3δ, or γ(ω′) ⊂ C(1) and
πx(γ(ω′)) ≈ Iµj for some Iµj .

14

14Some fuzziness is allowed in boundary situations due to the adjoining of end intervals.
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The canonical subdivision by itinerary for γi proceeds as follows. We ignore the first i0
iterates as they are not particularly meaningful. In general, for ω ∈ Qi, we use the language
“delete ω” and “set γi|ω = ∗” interchangeably. Let Qi0 be the canonical partition on J defined
by γi0 . Here is how we go from one step to the next:

Case 1. Consider ω ∈ Qi where ζi(ω) is free and outside of C(1). We take the canonical
partition defined by ζi+1 on ω, and set ζi+1|ω′ = ∗ for elements ω′ of this partition for which
dC(ζi+1(ω

′)) < e−α(i+1). On the part of ω not deleted, we set γi+1 = ζi+1, and call the restriction
of the canonical partition on it Qi+1.

Case 2. Consider ω ∈ Qi for which γi(ω) is free and inside C(1). It follows from the previous
step that πx(γi(ω)) ⊂ I+

µj . A bound period p(ω) is set as in Sect. 11.2C. We put ω ∈ Qi+j for
all j < p, and at step i + p, we do as in Case 1, i.e. consider the canonical partition defined
by ζi+p, delete those elements with dC(·) < e−α(i+p), set γi+p = ζi+p on the rest and call the
resulting partition Qi+p.

This completes the definition of the canonical subdivision by itinerary. We remark that by
virtue of (C1), dC(zi(a)) > e−αi for all i ≤ N and a ∈ J , so that no deletions take place before
time N . For N < n ≤ 1

α∗N , the construction above is designed to guarantee that if γn(a) 6= ∗,
then (C3) is satisfied for z0 up to time n on the parameter interval ω ∈ Qn containing a.

Verification of estimates analogous to (P1)–(P3) for γn. Letting τn = d
da
γn, Lemmas

11.3 and 11.5 play the role of (P1) and (P2). (P3) at i0 follows from (a) the corresponding result
for wi0 , (b) the fact that all ζn(a), a ∈ J , remain very close to each other for all n ≤ i0, and (c)
Proposition 11.1. The following distortion estimate for parameters is needed to take the place
of (P3) for n > i0. Its proof is given in Appendix A.26.

Lemma 12.2 There exists K > 0 such that for any ω ∈ Qn−1 such that γn(ω) is free,

K−1 <
|τn(a)|
|τn(a′)| < K for all a, a′ ∈ ω.

12.3 Large deviation estimate

Having established the resemblance between γi and iterated 1D maps, we now state the analog
of Proposition 2.2 for parameters. For i1 < i2, let B(a, δ̂; i1, i2) denote the number of i ∈ (i1, i2]

such that γi(a) is in a bound period initiated at a previous time j where dC(zj(a)) < δ̂. Built

into this definition is the implication that if i is one of the times counted in B(a, δ̂; i1, i2), then
γi(a) 6= ∗. The proof of Corollary 12.1 follows closely that of Proposition 2.2.

Corollary 12.1 Assume (C1) and (C2), and let z0 ∈ Γ 1
α∗ θN \ΓθN . Then Proposition 2.2 holds

for {γi, i ≤ 1
α∗N}, where {γi} is the process associated with a 7→ zi(a) defined above. More

precisely, given any σ > 0, there exists ε̂1 > 0 such that the following holds for all sufficiently
small δ̂ > 0: Let t0 and ω ∈ Qt0 be such that γt0(ω) is free and ≈ Iµ0j0 (in particular, γt0 |ω 6= ∗),
and let n be such that (i) t0 + n ≤ 1

α∗ θN and (ii) n > Kσ−1 log |µ0|. Then

|{a ∈ ω : B(a, δ̂; t0, t0 + n) > σn}| < e−ε̂1n|ω|.

This result holds also if γt0(ω) is outside of C(1), free and has length ≥ δ. In this case condition
(ii) for n is replaced by n > Kσ−1 log 1

δ
.
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12.4 In preparation for the selection of good parameters

The main ingredients for dealing with (A4) are treated in the last 3 subsections. The results as
stated, however, are not quite in a form that can be applied directly. This subsection contains the
adjustments needed to render Lemma 12.1 and Corollary 12.1 ready for use in the construction
in Section 13. We also specify the desired relations between σ, δ̂ etc. and constants chosen
earlier.

Setting We assume (C1) and (C2), and continue to focus on a single critical point z0 ∈ Γ 1
α∗ θN \

ΓθN . Let γi, i ≤ 1
α∗ θN , be the process associated with z0. In what follows, we may assume also

that dC(zi) > δ0 for all i ≤ n0 where n0 is as large as we need, and that at least one subdivision
of the parameter interval takes place before γi(J) meets C(1).

(1) Measure of parameters deleted in connection with (A4)

The procedure in Section 13 requires that we work with time intervals of the type [n, 2n].

Corollary 12.2 Assume σ >> α, and let ε̂1 = ε̂1(
1
2σ) be given by Corollary 12.1 (with 1

2σ in

the place of σ). Let δ̂ be small enough to satisfy the requirement in Corollary 12.1. Then for all
ω ∈ Qn with γn|ω 6= ∗,

|{a ∈ ω : B(a, δ̂;n, 2n) > σn}| < e−ε̂1n|ω|.

Proof: We explain the modifications necessary to apply Corollary 12.1. If γn(ω) is free and
is either ≈ Iµj or is outside and has length ≥ δ, then we apply Corollary 12.1 directly with
t0 = n. Note that the lower bound on n in Corollary 12.1 is satisfied: if γn(ω) ≈ Iµj , then
µ ≤ αn, so that n ≥ 1

α
µ >> σ−1µ; we may assume n > Kσ−1 log 1

δ
since n0 can be arbitrarily

large. If γn(ω) is not free or is shorter than required, we back up to step n1 when ω was first
created as an element of some Qn1 . Notice first that there is such an n1, for by assumption a
subdivision occurred before time n. Moreover, γn1(ω) is free, and it is either ≈ Iµj or is outside
and has length ≥ δ. By the parameter version of Lemma 2.3, n ≤ (1 +Kα)n1. We may then
apply Corollary 12.1 with t0 = n1 and 1

2σ in the place of σ. Since σ >> α, a parameter a with

B(a, δ̂;n1, 2n) > σ(2n− n1) clearly satisfies B(a, δ̂;n, 2n) > 1
2σn. �

(2) Growth of |w∗
i (z0)| for good parameters

Let n = 2j1n0, and consider the following procedure repeated on time intervals [n0, 2n0], · · · ,
[2jn0, 2

j+1n0], · · · , [2j1−1n0, n]: On each time interval [2jn0, 2
j+1n0], in addition to the deletions

corresponding to (C3) (see Sect. 11.2), we delete at time 2j+1n0 all ω ∈ Q2j+1n0
on which

B(a, δ̂; 2jn0, 2
j+1n0) > σ2jn0. The following corollary gives a lower bound on |w∗

i (z0)| for
T = Ta where a survives these deletions up to time n.

Corollary 12.3 Assume (a) dC(zi) > min(δ, e−αi) for all i ≤ n;

(b) B(δ̂; 2jn0, 2
j+1n0) < σ2jn0 for all j < j1.

Then for all i ≤ n, |w∗
i (z0)| > c2e

[ 14 (1−2σ)λ0−3α]i.

Proof: Assumptions (a) and (b) together with Lemma 12.1 imply that at times 2jn0, |w∗
i | >

K−1δ̂e[
1
4 (1−σ)λ0−3α]i. Between times i and 2i, the worst-case scenario is that all the close returns

(i.e. returns to {dC(·) < δ̂}) occur at the beginning of this time block. Even so, we guarantee

easily that for all k < i, |w∗
i+k| > K−1δ̂e[

1
4 (1−2σ)λ0−3α](i+k). Observe finally that the factor

K−1δ̂ can be replaced by c2, i.e. it is absorbed into the initial stretch if n0 is sufficiently large
depending on δ̂. �
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(3) Choice of constants

The exponents directly related to derivative growth are λ0, λ, λ
∗ and α. We review briefly

what they represent. First, outside of C(1), b-horizontal vectors grow at rate 1
4λ0; see Lemma

3.5. The first constant chosen in this paper, λ < 1
5λ0, is the minimum growth rate along critical

orbits guaranteed by (A4); see Sect. 6.1. This growth rate is lowered by up to −3α during
bound periods; see Lemma 5.4. Recall also the relationship α << min{λ, 1}. Finally, because
more stringent estimates are needed for reasons to be explained, we fix a slightly larger target
Lyapunov exponent λ∗ = λ+ 1

100λ0; see Sect. 10.1.
Next we come to σ, which is chosen so that 1

4 (1 − 2σ)λ0 − 3α, the exponent in Corollary
12.3, is > λ∗. For example, σ = 1

100 will work. We may assume this is in agreement with the

relation σ >> α as required in Corollary 12.2. Once σ is fixed, we choose δ̂ small enough to
satisfy Corollary 12.1.

Summary: If σ and δ̂ are as in the last paragraph, and the hypotheses of Corollary 12.3 are
satisfied, then |w∗

i (z0)| > c2e
λ∗i for all i ≤ n. Moreover, between times 2jn0 and 2j+1n0, the

measure of parameters in violation of Corollary 12.3(b) is, by Corollary 12.2, < e−ε̂2jn0 |J |.

13 Positive Measure Sets of Good Parameters

The purpose of this section is to construct, for a given family {Ta} satisfying the Standing
Hypotheses in Section 1 and with b sufficiently small, a sequence of sets

∆0 ⊃ ∆n0 ⊃ ∆2n0 ⊃ ∆22n0
⊃ · · ·

in parameter space with the properties that

(i) {Ta, a ∈ ∆2jn0
} ⊂ G#

2jn0
(where G#

n is as defined in Sect. 10.1) and

(ii) ∆ := ∩j≥0∆2jn0
has positive Lebesgue measure.

Together with the material in Section 9, this construction brings to completion the proof of our
Main Theorem.

We remark that the construction in this section requires more stringent conditions on the
global constants in Sect. 6.1 than are imposed in Part II. See the end of Sect. 11.1 and Sect.
12.4(3).

13.1 Getting Started

The two properties required of the start-up interval ∆0 are:

(1) For all a ∈ ∆0 and z0 ∈ Γ1, dC(zi) > δ0 for all i ≤ n0 where n0 is a very large number
to be prescribed.

(2) For each z0 ∈ Γ1, a subdivision occurs in the process a 7→ zi(a) before γi(∆0) meets C(1).

Here δ0 is as in Definition 1.1; recall that d(f i
a∗(x̂), C) > 2δ0 for all i > 0. Lower bounds have

been placed on n0 a finite number of times in previous sections: among the more important
places where this condition appeared are (i) to provide time for hyperbolicity of Ta to build
up initially (see Part II); (ii) to allow the comparability of space and a-derivatives to take hold

(see Proposition 11.1); and (iii) to absorb the small constant δ̂ from Lemma 12.1 (see Corollary
12.3). A few more conditions on n0 will be imposed in this section. The process referred to in
(2) is the one in Sect. 12.2. The purpose of (2) is to ensure that the entire parameter interval
is not lost in the first deletion: Let n1 be the first time ∆0 is subdivided. Then |γn1(ω)| ≥ δ for
every ω ∈ Qn1 , and if ω ∈ Qj is such that γi(ω)∩C(1) = ∅ for all i < j and γj(ω)∩C(1) 6= ∅, then
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|γj(ω)| > K̂−1c2δ. Thus assuming n0 is large enough that e−αn0 << K̂−1c2δ, we are guaranteed
that only a small fraction of the measure is deleted.

We claim that for any ∆0 containing a∗ short enough for (1) to be satisfied, (2) is automati-
cally satisfied if b is sufficiently small. To see this, let {x̂k

0} be the critical points of the 1D maps
fa, and let a 7→ x̂k

i (a), i = 0, 1, · · · , be the critical curves defined by the 1D maps. For each k,
let n̂k

1 ≥ n0 be the first time |x̂k
i (∆0)| > 3δ, and let n̂1 be the maximum of the n̂k

1 . Now let
ζk
i : a 7→ zk

i (a) where zk
0 is the critical point of Ta near (x̂k

0 , 0). We choose b small enough that
|x̂k

i (a) − πx(zk
i (a))| << δ for i ≤ n̂1 for all a ∈ ∆0. Then for i < n̂k

1 , ζ
k
i (∆0) ∩ C(1) = ∅, and

|ζk
n̂k

1
(∆0)| > 2δ, so a subdivision occurs at or before time n̂k

1 in the process associated with zk
0 .

In the rest of this section, let λ∗ and G#
n be as defined in Sect. 10.1. For clarity of presen-

tation, we first describe the construction up to time θ−1 (where the situation is simpler) before
giving it in full generality.

13.2 Construction of ∆N for N ≤ θ−1

A. Outline of scheme

This time period is characterized by the fact that the only relevant critical points are those
in Γ1 := {z1

0 , · · · , zq
0}. Associated with each zk

0 , we construct a sequence of parameter sets
∆0 = ∆k

0 ⊃ ∆k
1 ⊃ ∆k

2 ⊃ · · · ⊃ ∆k
θ−1 with the property that for a ∈ ∆k

i , zk
j (a) has the desired

properties for all j ≤ i. The parameter sets ∆i := ∩1≤k≤q∆
k
i consist, therefore, of parameters

for which all the critical orbits have the desired properties up to time i.
The sets {∆k

i } are constructed in the following order. First, we set ∆k
i = ∆0 for all i ≤ n0

and all k. Then we proceed with an N -to-2N scheme, i.e. we go from step n0 to step 2n0, 2n0 to
4n0, 4n0 to 8n0, and so on, until θ−1, which we may assume is = 2ℓ0n0, is reached. Within each
stage, i.e. from N = 2ℓn0 to 2N , we construct for each k the parameter sets ∆k

i , N < i ≤ 2N .
Which k goes first is immaterial, but it is important that all the critical orbits be treated up to
time 2N before we go to the next stage.

Remark. The number 2 in our N -to-2N scheme is somewhat arbitrary; the idea of updating
all the critical orbits to order ∼ N simultaneously (as opposed to treating one to an arbitrarily
large time before beginning on a second) is not. This is because the derivative estimate (A4) for
the q critical orbits cannot be developed independently of each other: when zk

i visits Q(1)(zk′

0 ),

it relies on the orbit of zk′

0 to guide it through its derivative recovery, and parameters that are
favorable for zk

0 may have been deleted for zk′

0 . As we will see, the times 2ℓn0, ℓ = 1, 2, · · · ,
are designated times for different critical orbits to communicate to each other their selected
parameter sets.

B. Processes {γk
i } defined on ∆0

In Sect. 12.2, we considered a parameter interval J on which all Ta are assumed to be in
GN , and introduced for each critical point a process γi defined up to time 1

α∗N . In a similar
manner, we now wish to define for each zk

0 a process

γk
i : ∆0 → R1 ∪ {∗}, i = 0, 1, 2, · · · , θ−1.

Sect. 12.2 does not guarantee that such a process is well defined, for it is not likely that
Ta ∈ Gα∗θ−1 for all a ∈ ∆0. Here is how we circumvent the problem: we use the procedure in
Sect. 12.2 to extend γk

i from step N = 2ℓn0 to step 2N whenever it is feasible, and to set γi = ∗
whenever it is not. More precisely, for fixed k and N , we assume γk

i is defined on ∆0 for all
i ≤ N . Associated with γi is its canonical subdivision by itinerary Qi. For each ω ∈ QN , we set
γN+1|ω = ∗ unless Ta ∈ G2α∗N for all a ∈ ω. Thus when γN+1|ω 6= ∗, the construction in Sect.
12.2 can legitimately be carried out on ω up to time 2N .
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There is one other difference between the construction here and that in Sect. 12.2: In Sect.
12.2, γi = ∗ is set only to achieve dC(zi) > e−αi. Here we permit the setting of γi|ω = ∗, ω ∈ Qi,
for a wider range of reasons as we will see in paragraph C.

C. Formal procedure from step N = 2ℓn0 to step 2N

At time N , assume we are handed the following objects: For each k = 1, 2, · · · , q, there is a
process γk

i : ∆0 → R1 ∪ {∗} well defined up to time N . The set ∆k
N := {γk

N 6= ∗} has the
property that for all a ∈ ∆k

N ,
(i) dC(zk

i (a)) > 3e−αi for all i ≤ N ;

(ii) B(a, δ̂; 2jn0, 2
j+1n0) < σ2jn0 for all j < ℓ.

Observe, by Corollary 12.3, that ∆N := ∩k∆k
N ⊂ G#

N .

How to go from step N to step 2N : The following steps are taken for each k.

(1) First we set γk
N+1|ω̂ = ∗ on those ω̂ ∈ Qk

N with ω̂ ∩ ∆N = ∅.
(2) On the rest of the ω̂ ∈ Qk

N , we extend the process γk
i to 2N (see justification below),

deleting all ω ∈ Qi|ω with dC(γi(ω)) < 3e−αi.

(3) Set γk
2N |ω = ∗ on those ω ∈ Qk

2N with the property that B(a, δ̂;N, 2N) > σN for a ∈ ω.

Step (1) stipulates that unless some a ∈ ω̂ is good for all q critical points, the entire parameter
interval will be abandoned.

Justification for step (2): We need to show that Ta ∈ G2α∗N for all a ∈ ω̂. By assumption,

there exists â ∈ ω̂ such that Tâ ∈ G#
N . It follows from Proposition 10.1 that Tâ has a continuation

in G2α∗N on the interval [â − ρ−2α∗N , â + ρ−2α∗N ]. On the other hand, Proposition 11.1 gives

|ω̂| < K̂e−λ̂N , which is << ρ−2α∗N .
Note that steps (2) and (3) lead directly to (i) and (ii) above at time 2N .

D. Measure deleted from step N to step 2N

Consider one zk
0 at a time. We wish to estimate the contribution to ∆N \ ∆2N by the orbit

of zk
0 (this is not to be confused with ∆k

N \ ∆k
2N ).

Deletions in Step (1): We have no control on the total measure of all the ω̂ ∈ Qk
N removed

in this step, but all the ω̂ removed have the property that ω̂ ∩ ∆N = ∅: the very fact that
ω̂ ∩ ∆N = ∅ means that all the parameters in ω̂ have been deleted earlier due to violations on
the part of critical orbits other than that of zk

0 . Thus from the point of view of ∆N \ ∆2N , no
measure is deleted in this step.

Deletions in Step (2): For i with N < i ≤ 2N , we consider ω ∈ Qk
i−1, and give an upper bound

on the fraction of ω that may be deleted at the ith iterate. Let i0 be the smallest j < i such that
ω ∈ Qk

j , i.e. i0 is the time when the partition interval ω is created. There are two possibilities:

(i) γk
i0

(ω) is outside of C(1) and δ < |γk
i0

(ω)| < 3δ. In this case, |γk
i (ω)| > K−1δ, and not

knowing the location of γk
i (ω), we assume the worst-case scenario, i.e. γk

i (ω) crosses
entirely a forbidden region dC(·) < 3e−αi. The fraction of ω deleted is then < Kδ−16e−αi

< Ke−
1
2αi. Here K is the distortion constant (Lemma 12.2) as one transfers the length

ratio on γk
i (ω) back to ω.

(ii) πx(γk
i0

(ω)) ≈ Iµj . Let p be the bound period initiated at time i0. Then p ≤ K|µ|, so

that |γk
i (ω)| > K−1|γk

i0+p(ω)| > K−1

µ2 e−Kα|µ| > e−2Kα|µ|. For the first inequality above,

we use first Proposition 11.1, then |wi| ≥ c2|wi0+p|. For the second inequality, we use

Lemma 11.5(e). Thus the fraction of ω deleted is < K6e−αie2Kα2n < Ke−
1
2αi. (We note

here the significance of the rule that in canonical subdivisions no partition point is
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introduced that would result in an element ω with πx(γk
i0

(ω)) ⊂ Iµj and |γk
i0

(ω)| << |Iµj |.
For such an element, we would not be able to control the fraction of parameters deleted.)

We conclude that between times N and 2N , the total measure deleted in the course of executing
step (2) on the orbit of each zk

0 is <
∑

N<i≤2N Ke−
1
2αi|∆0|.

Deletions in Step (3): By Corollary 12.2, on each ω̂ ∈ Qk
N , the total measure deleted is <

e−ε̂1N |ω̂|. Thus the total measure deleted at time 2N on account of executing step (3) on the
orbit of zk

0 is < e−ε̂1N |∆0|.

Summary: Let Dk
N,2N denote the set of a ∈ ∆N deleted on account of the orbit of zk

0 as we
carry out our procedure from time N to time 2N . Then

|Dk
N,2N | <



K
∑

N<i≤2N

e−
1
2αi + e−ε̂1N



 |∆0|.

Writing the quantity in parenthesis as K ′e−ε′N , and letting DN,2N denote the set of all param-
eters deleted between time N and time 2N , we have the estimate

|DN,2N | ≤ q Ke−ε′N |∆0|.

13.3 Construction of ∆N for N > θ−1

A. Outline of scheme

Our basic strategy is as before, i.e. we work with cycles that go from time N to time 2N ,
treating all relevant critical orbits in each cycle before going to the next and making deletions
with the aid of processes of the type in the last subsection. There are two new aspects in
the situation: the number of distinguishable critical orbits grows with time, and the critical
structures of the maps Ta are not uniform for all a ∈ ∆0. The processes we consider must reflect
this reality; they are discussed in part B below.

Parts C and D follow their counterparts in Sect. 13.2. Except for treating the new complex-
ities brought to light in part B, they do not differ substantially from before.

B. Processes defined by critical orbits: two new aspects

(1) Processes associated with critical blobs

Relabeling the processes {γk
i } in Sect. 13.2B as {γzk

0

i }, we seek to explain what is meant by
a process {γz0

i } where z0 is an arbitrary critical point. Questions surrounding the domains of
definition of {γz0

i } are treated in item (2) below. We discuss here the more basic question of
whether to set γz0

i = zi when it is 6= ∗.
Setting γz0

i = zi for all i is only natural, but it has the following drawback: Let z′0 ∈ B(j)(z0).
Even though the orbits of z0 and z′0 stay together for a long time, if treated independently, the
canonical subdivisions accompanying a 7→ zi(a) and a 7→ z′i(a) are likely to produce slightly
different partitions, and rules of deletion such as those in Sect. 13.2C may yield slightly different
results. However inconsequential, these differences are a technical nuisance.

To avoid this technical nuisance, we have elected to view {γz0

i } as associated with critical
blobs. More precisely, let z0 be a critical point of generation j. We let B(j1) ⊃ B(j2) ⊃ · · · ⊃
B(jn) be the complete chain of critical blobs containing B(j)(z0), i.e. j1 = 1, jn = j, and for
each i, there is no B(k), ji < k < ji+1, such that B(ji) ⊃ B(k) ⊃ B(ji+1). (See Sect. 7.3 for
the geometry of critical regions.) We say B(ji) is visible on the time interval (ji−1θ

−1, jiθ
−1],

thinking of it as “hidden” inside lower-generation critical blobs before time ji−1θ
−1 and no

longer active after time jiθ
−1. During the time period when B(ji) is visible, we set γz0

ℓ = z
(ji)
ℓ
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or ∗ where z
(ji)
0 = z∗0(B(ji)). That is to say, B(1)(z0) is visible in the first θ−1 iterates, and for

ℓ ≤ θ−1, γz0

ℓ = z
(1)
ℓ or ∗. Since z

(1)
0 = zk

0 for some k, {γz0

i } is identical to one of the processes
defined in the last subsection for i ≤ θ−1. At time θ−1, the critical blob B(1) retires, and B(2)

becomes visible. We have γz0

ℓ = z
(2)
ℓ or ∗ for θ−1 < ℓ ≤ 2θ−1, and so on. (Note that some of

the orbit segments are visible for more than θ−1 steps due to the “skipping of generations”; see
Sect. 7.3).

Assuming for the moment that all definitions are legitimate and all rules for deletion are

as in Sect. 13.2C, we make the following observation: During the period when γz0

ℓ = z
(ji)
ℓ or

∗, dC(z
(ji)
ℓ ) > 3e−αℓ implies that dC(ξℓ) > 2e−αℓ for all ξ0 ∈ B(ji). This follows from earlier

estimates on the sizes of critical blobs; see Sect. 4.2. Moreover, if dC(γz0

ℓ ) > 3e−αℓ for all
ℓ ≤ jθ−1, then all ξ0 ∈ B(j)(z0) satisfy dC(ξℓ) > 2e−αℓ. In particular, all critical points inside
B(j)(z0) obey (A2)# up to time jθ−1. The same conclusion is valid for (A4)# since up to time
jθ−1, all ξ0 ∈ B(j)(z0) can be regarded as having the same itinerary. Hence they have the same

fraction of “bad iterates” in the sense of B(·, δ̂;n, 2n).

(2) Stabilization of critical structures and extending the processes {γz0

i }
In Sect. 13.2, we considered processes defined by z0 ∈ Γ1, which has a continuation on all of

∆0. Critical structures of higher generations do not have such continuations. To stabilize these
structures, we introduce an increasing sequence of partitions Jθ−1 < J2θ−1 < J4θ−1 < · · · on
∆0 with the following properties: Jθ−1 = {∆0}; for each N = 2ℓθ−1, ℓ ≥ 1, JN is a refinement
of J 1

2N and partitions ∆0 into intervals of length ≈ ρα∗N . Leaving precise rules of deletion to

part C, we explain here the relation between these partitions and the processes defined in (1).

For N = 2ℓθ−1, ℓ = 1, 2, · · · , the picture is as follows:

(i) There is a decreasing sequence of “good sets” ∆N with the property that Ta ∈ G#
N for all

a ∈ ∆N . (This is not the definition of ∆N , however.)

(ii) There are subcollections of “good” intervals J ∗
N ⊂ JN . For each JN ∈ J ∗

N ,
- JN ⊂ J 1

2 N for some J 1
2N ∈ J ∗

1
2N

,

- JN ∩ ∆ 1
2N 6= ∅.

(iii) For each JN ∈ J ∗
N , let ΓN (JN ) be the set of critical points of Ta, a ∈ JN , of generations

between 1
2θN and θN . Then for each z0 ∈ ΓN (JN ) of generation k, there is a well defined

process {γz0

i , i ≤ min(kθ−1, N)}, the domains of definition of which are as follows:
Let ∆0 = Jθ−1 ⊃ J2θ−1 ⊃ · · · ⊃ JN be the elements of J2ℓθ−1 containing JN . Then

- γz0

i , i ≤ θ−1, is defined on ∆0 = Jθ−1 (this is what is constructed in Sect. 13.2);
- the process above is extended from i = θ−1 to i = 2θ−1 on J2θ−1 ,

then from i = 2θ−1 to i = 4θ−1 on J4θ−1 , and so on, up to i = 1
2N ;

- the product of this last extension is extended from i = 1
2N to i = min(kθ−1, N) on JN

where k, as we recall, is the generation of z0.

We explain how to go from step N to step 2N , clarifying along the way what exactly is
meant by some of the statements in (iii) and how they can be achieved:

Elements of JN not in J ∗
N are discarded since all parameters in them have been deleted in

a previous step (second property of JN in assumption (ii) above). Let JN ∈ J ∗
N be fixed. We

consider J2N |JN
, and put into J ∗

2N those elements of J2N that meet ∆N (as required by (ii)).

Consider a (fixed) J ⊂ JN such that J ∈ J ∗
2N . Since there exists â ∈ J such that Tâ ∈ G#

N

(assumption (ii)), Ta ∈ G2α∗N for all a ∈ J (Proposition 10.1). Thus on J there is a coherent
choice of Γ2θN whose orbits can be treated up to time min(kθ−1, 2N) where k is the generation
of the critical point.

Fix z0 ∈ Γ2N(J). Since k, the generation of z0, is ≥ θN , γz0

i is defined for all i ≤ N in the
sense of (iii). As mandated by (iii), we now seek to extend this process to all i ≤ min(kθ−1, 2N)
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on the interval J . Such an extension is carried out on one ω ∈ Qz0

N at a time. Fix ω such
that γz0

N |ω 6= ∗. If ω ⊂ J , then we consider γz0

i for i = N + 1, N + 2, · · · starting from ω as
explained in Sect. 13.2B. If ω ∩ J = ∅, then ω is not our concern. It remains to consider the
case ω ∩ ∂J 6= ∅.

Observation: If for all a ∈ ω, z0(a) satisfies the hypotheses of Proposition 11.1 up to time
N , then |ω| << |J |.

Indeed, ω ∈ Qz0

N and J ∈ JN have exponentially different length scales. This is because by

Proposition 11.1, |ω| < K̂e−λ̂N , which is << ρα∗N = |J |, and our rules of deletion, which are
stated precisely in part C below, are built to ensure that the hypotheses of Proposition 11.1 are
satisfied for z0(a) for every a ∈ {γz0

N 6= ∗}. To deal with those ω that intersect some J ∈ J ∗
N

but are not completely contained in it, we let J+ be, say, 10% longer than J , and treat all
ω ∈ Qz0

N that are completely contained in J+. The properties of J continue to be valid in J+,
and these overlapping intervals lead to an overcount by a factor of at most 2. This completes
the qualitative description of the extension of (iii).

We finish with the inductive definition of ∆N , even though the following acquires meaning
only after the deletion rules are specified. We let

∆z0

2N := {γz0

min(kθ−1,2N) 6= ∗}, ∆2N (J) := ∩z0∈Γ2N (J) ∆z0

2N

and
∆2N := ∆N ∩

(

∪J∈J ∗
2N

∆2N (J)
)

.

Our deletion rules are designed to ensure that ∆N as defined above has the property in assump-
tion (i), and that ∩N∆N has positive measure.

Remarks (1) The intersection with ∆N in the definition of ∆2N may seem redundant, for on
J ∈ J ∗

2N , all critical blobs corresponding to z0 ∈ Γ2N (J) have already been treated up to time

min{k−1θ, 2N}. Consequently, it is tempting to claim that Ta ∈ G#
2N for all a ∈ ∪J∈J ∗

2N
∆2N (J).

This is not true in general, for not every critical blob has offsprings (meaning smaller critical
blobs inside), and the definition of ∪J∈J ∗

2N
∆2N (J) does not take into consideration the behavior

of critical blobs that expired without reproducing before time N . To ensure that Ta ∈ G#
2N for

all a ∈ ∆2N , we require that ∆2N ⊂ ∆N , and use the inductively obtained fact that for all
a ∈ ∆N , all z0 ∈ ΓN(J) are well behaved.

(2) To deal with the phenomenon called “skipping of generations”, we need to work with
slightly overlapping intervals of generations to ensure that all critical behaviors are represented.
For example, we should have included in the definition of ΓN(J) all critical points from gener-
ation θN to generation 2θN(1 + 2θ), and the elements of JN should have been taken to be of
length ≈ 1

2ρ
α∗N(1+2θ), and so on. We have omitted – and will continue to omit – all of these

factors of (1+2θ) to simplify slightly the discussion. The problem is easy to rectify (and should
probably ignored on first pass).

C. Formal procedure from step N = 2ℓθ−1 to step 2N

We now give the formal procedure at a generic step N . The following should not be thought
of as induction hypotheses, but rather as a summary of the situation as we arrive at step N
following the procedure described in part B.

At time N we assume we have the following:

(a) A subcollection J ∗
N of JN with the property that on each J ∈ J ∗

N , there is a coherent
choice of ΓθN ; ΓN(J) and ∆N (J) are as defined above.
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(b) On each J ∈ J ∗
N , associated with each z0 ∈ ΓN (J) of generation k is a process

γz0

i : J → R1 ∪ {∗} for which the following hold: For all a ∈ ∆z0

N and i ≤ min(kθ−1, N),
(i) dC(γz0

i (a)) > 3e−αi;

(ii) B(a, δ̂; 2jθ−1, 2j+1θ−1) < σ2jθ−1.

(c) A subset of ∪J∈J ∗
N

∆N (J) in {a : Ta ∈ G#
N} called ∆N .

As noted in B(1) above, all z0 ∈ ΓN (J) of generation k obey (A2)# and (A4)# up to time

min(kθ−1, N). Step (c) is needed because ∪J∈J ∗
N

∆N (J) is not necessarily in {a : Ta ∈ G#
N} (see

Remark (1) in B(2) above).

What is done from time N to time 2N :

(0) First we introduce the partition J2N , and let J ∗
2N ⊂ J2N be the collection of J with

J ∩ ∆N 6= ∅. Elements of J2N \ J ∗
2N are excluded from further consideration.

We then treat one J ∈ J ∗
2N at a time, carrying out for it steps (1)–(4) below. Steps (1)–(3) are

carried out for each z0 ∈ Γ2N (J), beginning with the z0 of the lowest generations.

(1) Set γz0

N+1|ω = ∗ on those ω ∈ Qz0

N with ω ∩ ∆N = ∅.
(2) On the rest of the ω ∈ Qz0

N , we continue the process to time 2N in the manner described
above, deleting along the way all ω′ ∈ Qz0

i with dC(γz0

i (ω′)) < 3e−αi.

(3) Set γz0

2N |ω = ∗ on those ω ∈ Qz0

2N with the property that B(a, δ̂, N, 2N) > σN for a ∈ ω.

(4) Define ∆z0

2N = {γz0

min(kθ−1,2N) 6= ∗} and ∆2N (J) = ∩z0∈Γ2N (J)∆
z0

2N as in Part B.

Finally, after all the J ∈ J ∗
2N are treated, we set ∆2N = ∆N ∩ (∪J∈J ∗

2N
∆2N (J)).

Step (0) is to ensure the existence of a coherent choice of Γ2θN on each selected J . Step (1)
is to ensure that the process can legitimately be extended on those ω on which γz0

N+1 6= ∗. Note
also that every z0 has an ancestor, so all γz0

i are extensions of previously constructed processes.
Since many of the z0 ∈ Γ2N (J) are related to each other via ancestry, the steps above in fact
contain many duplications.

It is evident that the steps above lead to (a)–(c) at the beginning of Part B for time 2N .

D. Measure deleted from time N to time 2N

First we estimate the measure deleted on account of a fixed J ∈ J ∗
2N and a fixed z0 ∈ Γ2N (J):

Step (0) does not contribute to ∆N \ ∆2N since no a ∈ ∪J ∗
N \ ∪J ∗

2N belongs in ∆N . The same
remark holds for step (4). Explanations and estimates for steps (1)–(3) are exactly as before,
except that |∆0| should be replaced by |J+|. Thus we have

|Dz0

N,2N | ≤ K ′e−ε′N · 2|J |.

Since the cardinality of Γ2N is ≤ 2NθK
2θN(1+2θ)
1 (Corollary 7.1), we have

|DN,2N | ≤
∑

J∈J ∗
2N

∑

z0∈Γ2N

|Dz0

N,2N | ≤ 2NθK
2θN(1+2θ)
1 ·K ′e−ε′N · 2|∆0|.

13.4 The final count

From Sects. 13.1, 13.2C and 13.3D, we see that the total measure deleted at the end of the
procedure is

≤



Kδ−1
0 e−αn0 + qK ′ ∑

N=2ℓn0,ℓ∈Z+

NθK
2θN(1+2θ)
1 · e−ε′N ·



 |∆0|.
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As (a, b) → (a∗, 0), n0 → ∞ and θ → 0, but none of the other constants is affected. Thus with
(a, b) sufficiently near (a∗, 0), the quantity in parenthesis can be made arbitrarily small. In other
words, |∆| can be made as large a fraction of |∆0| as we wish. This completes the proof of our
main result.

APPENDICES

A.1 Properties of “good” 1D maps (Sects. 2.1 and 2.2)

Proof of Lemma 2.1: Let x be such that f i(x) 6∈ Cδ for i ∈ [0, n). We divide [0, n] into
maximal time intervals [i, i+k] such that f i+j(x) 6∈ Cδ0 for 0 < j < k, and estimate |(fk)′(f ix)|
as follows:

Case 1. f i(x), f i+k(x) ∈ Cδ0 . Definition 1.1(b)(ii) and (c)(ii) together guarantee that

|(fk)′(f ix)| ≥ e
1
3 λ0k.

Case 2. f i(x) 6∈ Cδ0 , f
i+k(x) ∈ Cδ0 . Same as Definition 1.1(b)(ii).

Case 3. f i(x), f i+k(x) 6∈ Cδ0 . If k ≥ M0, then |(fk)′(f ix)| > eλ0k from Definition 1.1(b)(i).

If k < M0, we let k̂ be the smallest integer > k such that f i+k̂(x) ∈ Cδ0 . Using Definition

1.1(b)(i) for k̂ ≥ M0 and Definition 1.1(b)(ii) for k̂ < M0, we conclude that |(fk)′(f ix)| >
c0K

−M0
0 eλ0k where K0 = max |f ′(x)|.
Case 4. f i(x) ∈ Cδ0 , f

i+k(x) 6∈ Cδ0 . Same as Case 3, with an extra factor ≥ (miny∈Cδ0
|f ′′(y)|) δ.

Cases 3 and 4 are relevant only for part (a). �

Proof of Lemma 2.2: Proceed as in the proof of Lemma 2.1. From Definition 1.1(b)(i) and
(c)(ii), we see that for f , the estimates in all 4 cases are determined by |(f j)′(y)| for y 6∈ Cδ

and j ≤ N := max(M0,K log 1
δ
). Choose g sufficiently near f that |gj(y)− f j(y)| is sufficiently

small for all y 6∈ Cδ and j ≤ N . �

We will use the notation xi = f i(x).

Proof of Proposition 2.1: (P1) is Lemma 2.2. Let x ∈ Cδ(x̂).

Sublemma A.1.1 For all y ∈ [x̂, x] and k < p, we have

1

2
≤ (fk)′(y1)

(fk)′(x̂1)
≤ 2

provided that δ and ε are sufficiently small.

Proof: We write

log
(fk)′(y1)
(fk)′(x̂1)

≤
k
∑

j=1

|f ′(yj) − f ′(x̂j)|
|f ′(x̂j)|

≤ K
k
∑

j=1

|yj − x̂j |
d(x̂j , C)

.

We first choose h0 large enough that 1
δ0

∑∞
i=h0+1 e

−2αj << 1, followed by δ small enough that

δ
∑h0

j=1
1
δ0
Kj << 1. We then require ε to be sufficiently small so that d(x̂j , C) > δ0 ∀j < n0 for

some n0 satisfying e−αn0 < δ. These choices ensure that

k
∑

j=1

|yj − x̂j |
d(x̂j , C)

<

h0
∑

j=1

1

δ0
Kjδ +

n0
∑

j=h0+1

1

δ0
e−2αj +

k
∑

j=n0+1

e−(2α−α)j << 1.
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♦

Proof of (P2): Suppose |x − x̂| = e−h. Then (G2) together with the sublemma above imply
that |xp−x̂p| = |(fp−1)′(y1)||x1−x̂1| ≥ K−1eλ(p−1)(x−x̂)2. ¿From |xp−x̂p| < 1, we read off the
upper bound p < 3

λ
h for h sufficiently large. For the lower bound, we write |xp−x̂p| < Kp−1e−2h

and recall that p is defined such that |xp − x̂p| ≥ e−2αp. That p > constant·h follows directly
from Kp−1e−2h > e−2αp.

To prove (P2)(ii) we again write |xp − x̂p| < K|(fp−1)′(y1)|(x− x̂)2, so that

K|(fp−1)′(x̂1)|
1
2 |x− x̂| > e−αp. (18)

We also have |(fp)′(x)| = |(fp−1)′(x1)||f ′x| > (K−1|(fp−1)′)(x̂1)|) · (K−1|x − x̂|). Combined

with (18) this gives |(fp)′(x)| > K−3|(fp−1)′(x̂1)|
1
2 e−αp > ĉ

1
2
1 K

−3e
1
2λ(p−1)e−αp, which we may

assume is > e−
1
3λp if p is sufficiently large, or equivalently, δ is sufficiently small.

It remains to prove (P2)(iii). From (P2)(i), (ii) and Sublemma A.1.1, it follows that for
Iµj ∈ P|Cδ(x̂),

|fp(Iµj)| ≥ K−1 |f(Iµj)|
|f([x̂, x̂+ e−µ])| |f

p([x̂, x̂+ e−µ])| ≥ K−1 1

µ2
e−2αp > e−Kα|µ|.

�

Proof of (P3): We write σ0 = [x, y], σk = f tkσ0, and assume for definiteness that σ0 ⊂ Cδ

and n ≥ tq + pq. Then

log
(fn)′(x)
(fn)′(y)

≤
n−1
∑

j=0

|f ′(yj) − f ′(xj)|
|f ′(yj)|

≤ K

q
∑

k=1

(S′
k + S′′

k )

where

S′
k =

tk+pk−1
∑

j=tk

|yj − xj |
d(yj , C)

and S′′
k =

tk+1−1
∑

tk+pk

|yj − xj |
d(yj , C)

except for S′′
q which ends at index n− 1.

I. Bound on
∑q

k=1 S
′′
k

For k < q and tk + pk ≤ j < tk+1 − 1, we have, by (P1)(ii), |σk+1| ≥ c1e
λ(tk+1−j)|xj − yj |,

so S′′
k ≤ K |σk+1|

δ
. Also, by combining (P2)(ii) and (P1)(ii), we have |σk+1| ≥ e

1
3λ(tk+1−tk)|σk|

≥ τ |σk| for some τ > 1, so
∑q−1

t=0 S
′′
k ≤ K

|σq|
δ

.
The term S′′

q is treated differently because xn may not be a return. Observe the following:

(i) If [xn, yn] ⊂ Cδ0 , then (P1)(ii) gives, as before, S′′
q ≤ 1

δ
K|yn − xn| which is ≤ K since

|yn−1−xn−1| . δ by definition. (ii) If for tq +pq ≤ j < n, [xj , yj ]∩Cδ0 = ∅, then (P1)(i) with δ0
in the place of δ gives S′′

q ≤ 1
δ0

K
δ0
|yn −xn| ≤ Kδδ−2

0 ≤ K. In general, if there is n̂ ≥ tq + pq such

that n̂ is the last return to Cδ0 before time n, then we apply (i) to
∑n̂

tq+pq
and (ii) to

∑n−1
n̂+1.

II. Bound on
∑q

k=1 S
′
k

First we estimate S′
k. Suppose ytk

∈ Cδ(x̂). For tk < j < tk + pk we write

|yj − xj |
d(yj , C)

=
|yj − xj |

|yj − x̂j−tk
| ·

|yj − x̂j−tk
|

d(yj , C)
.

By Sublemma A.1.1 and the usual estimates near x̂, the first factor on the right is

< K
|ytk+1 − xtk+1|
|ytk+1 − x̂1|

< K
|f ′(xtk

)| |ytk
− xtk

|
|ytk

− x̂|2 < K
|σk|

d(ytk
, C)

.
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Thus

S′
k =

|ytk
− xtk

|
d(ytk

, C)
+

tk+pk−1
∑

j=tk+1

|yj − xj |
d(yj , C)

≤ K
|σk|

d(ytk
, C)



1 +

tk+pk−1
∑

j=tk+1

|yj − x̂j−tk
|

d(yj , C)



 < K
|σk|

d(ytk
, C)

.

Now let Kµ = {k ≤ q : σk ⊂ Iµ,j for some j}. Then

∑

k∈Kµ

S′
k <

∑

k∈Kµ

K
|σk|
e−|µ| < K

1

µ2
.

The first inequality is from above. The second follows from the following two facts: (i) |σk+1| ≥
τ |σk| for k < q, and (ii) the term with the largest index is bounded above by |I+

µ,j |, which is

< K 1
µ2 e

−µ. To finish, we sum over all µ to obtain
∑

S′
k < K. �

A.2 Growth estimates and large deviations (Sect. 2.3)

To avoid cumbersome notation, we write µ instead of |µ| in all estimates.

Proof of Lemma 2.3: Since points in ω are assumed to have the same itinerary up to
time n, [0, n] is divided into bound intervals (tk, tk + pk) and free intervals [tk + pk, tk+1].

From (P2)(ii), we have |γtk+pk
(ω)| > e

1
4λpk |γtk

(ω)| and from (P1)(ii), we have |γtk+1
(ω)| >

c1e
1
4λ0(tk+1−tk−pk)|γtk+pk

(ω)|. Thus for any time j such that γj(ω) is free, |γj(ω)| > e
1
5 λj |ω|.

Now |γn(ω)| < 1 forces n to be < Kµ0. �

Proof of Lemma 2.5: Let s ∈ ω be such that S(s) > n. We define the essential return times
t1 < t2 < · · · and corresponding return addresses Ii1

µ1j1
, Ii2

µ2j2
, · · · for s as follows: Let t1 be

the smallest i > 0 when either (a) γi(ω) is out of bound period and |γi(ω)| > δ or (b) i is the
extended bound period of γ0(ω), whichever happens first. If (a) happens first, then S|ω = t1,
and we stop iterating. If not, then we may assume γt1(ω) ⊂ Cδ, and the return address of s
at time t1 is Ii1

µ1j1
if γt1(Qt1(s)) ≈ Iµ1j1 ⊂ Cδ(x̂i1 ). Similarly, t2(s) is the first i > t1(s) when

either (a) γi(Qt1(s)) is out of bound period and |γi(Qt1(s))| > δ or (b) i is the extended bound
period of Qt1(s), whichever happens first. Again if (a) happens first, then S|Qt1 (s) = t2 and we
stop considering Qt1(s); otherwise γt2(Qt2(s)) ≈ Iµ2j2 ⊂ Cδ(x̂i2 ), and so on.

Let Aq = {s ∈ ω : S(s) > n, and γi(s) makes a total of exactly q essential returns before time
n}. Then |{S > n}| =

∑

q |Aq|. We write Aq = ∪RAq,R where Aq,R = {s ∈ Aq : if (µ1, · · · , µq)
are the µ-coordinates of its first q return addresses, then |µ1|+ |µ2|+ · · ·+ |µq| = R}. We further
decompose Aq,R into intervals σ consisting of points whose first q return addresses are identical.
For σ with return addresses (Iµ1j1 , · · · , Iµqjq

), we let Qti
= Qti

(s) for s ∈ σ. Then

|σ| =
|Qtq

|
|Qtq−1 |

|Qtq−1 |
|Qtq−2 |

· · · |Qt1 |
|ω| |ω| ≤ Kq

|γtq
(Qtq

)|
|γtq

(Qtq−1)|
· · · |γt1(Qt1)|

|γt1(ω)| |ω|

where K is the distortion constant in (P3). Now |γtq+1(Qtq
)| < 1, and by (P2)(iii) and (P1)(ii),

we have
|γtk

(Qtk
)|

|γtk+1
(Qtk)|

≤ K
|Iµkjk

|
|γtk+pk

(Qtk
)| ≤ Ke−(1−Kα)µk .

Thus
|σ| < Kqe−

Pq
k=1

9
10µk+Kαµ0 |ω| = Kqe−

9
10 R+Kαµ0 |ω| := |σ|R.

(For q = 0, this estimate presumes that γi(ω) has completed its initial bound period, i.e.
n > Kµ0.) We estimate |{S > n}| by

|{S > n}| =
∑

q,R

|Aq,R| ≤
∑

R

(number of σ in ∪q Aq,R) · |σ|R .
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There are

(

R− 1
q

)

ways of decomposing R into a sum of q+ 1 integers. For a fixed q-tuple

(µ1, · · · , µq), we claim there are ≤ 2qµ2
1µ

2
2 · · ·µ2

q possibilities for σ with these data. This is
because γtk

(Qtk
(σ)) is short enough that it can meet at most one Cδ(x̂), which contains ≤ 2µ2

k

intervals of the form Iµkj . Furthermore, for (µ1, · · · , µq) with µ1 + µ2 + · · · + µq = R, we have
µ2

1µ
2
2 · · ·µ2

q ≤ (R
q
)2q.

There is one other piece of information that is crucial to us, namely that all bound periods
are ≥ ∆ := K−1 log 1

δ
. This means that for a given R, the only feasible q are ≤ R

∆ . For a fixed
R, then, the number of σ in ∪qAq,R is

≤
∑

q

(

R− 1
q

)

· 2q

(

R

q

)2q

≤ R

∆
·
(

R
R
∆

)

· 2
R
∆ ∆2 R

∆ ,

which, by Sterling’s formula, is ∼ R
∆

(

eε( 1
∆ ) 2

1
∆ ∆

2
∆

)R

where ε
(

1
∆

)

→ 0 as δ → 0. Calling the

expression above (1 + η(δ))R, we have η(δ) → 0 as δ → 0. Observe also that n ≤ KR+Kµ0 by
Lemma 2.3, so R ≥ K−1n− µ0. Thus

|{S > n}| <
∑

R≥K−1n−µ0

Kq(1 + η(δ))Re−
9
10R+Kαµ0 |ω| < e−

4
5 K−1n+µ0 |ω| < e−

1
2K−1n|ω|

provided that n > 3Kµ0. �

Proof of Corollary 2.1: Let t1 ≥ 0 be the smallest i such that there are points s, s′ ∈ ω
with different itineraries in their first i iterates. Then either t1 = 0, or t1 < K log δ−1 and
|γt1(ω)| > K−1δ by (P1). Let n be an arbitrary integer > t1. We partition ω into {ω̂} ∪ {ωµj}
where s ∈ ω̂ if γt1(Qt1(s)) is outside of Cδ and γt1(ωµj) ≈ Iµj . Then S|ω̂ = t1. For µ with

n > 3Kµ, |ωµj ∩ {S > n + t1}| < Ke−
1
2K−1n|ωµj | by Lemma 2.4; K here is the distortion

constant in (P3). Note also that the total length of Iµj with n ≤ 3Kµ is ≤ 2e−
1
3K−1n. It follows

therefore that

|{s ∈ ω, S(s) > n+ t1}| < Ke−
1
2K−1n|ω| +K

(

2e−
1
3K−1n

K−1δ

)

|ω| < e−K̂−1(n+t1)|ω|

provided K̂ is sufficiently large and n > K̂ log δ−1. �

In the next proof, it is advantageous to take a probabilistic viewpoint, with (ω, P ), P being
normalized Lebesgue measure, as the underlying probability space.

Proof of Proposition 2.2: Let δ̂ > 0 be a small number to be determined, and let Bn be
as in the statement of the Proposition. The idea of this proof is to introduce random variables
X̂i, i = 0, 1, · · · , with the property that (i) Bn ≤∑i≤n X̂i and (ii) the conditional expectations

of X̂i are dominated by certain exponential random variables.

Step I. Reformulation of problem as one involving
∑

i≤n X̂i

Define a sequence of random variables t1 < t2 < · · · marking certain intersection times with
C

δ̂
as follows: If Iµ0j0 ⊂ C

δ̂
, let t1 = 0, and let S1 be the stopping time S defined in Sect. 2.3.

If Iµ0j0 ∩Cδ̂
= ∅, let t1 be the smallest i for which γi(Qi−1(s)) ∩Cδ̂

6= ∅, and define S1 on each
element of Qt1 as follows: If γt1(Qt1(s)) ∩ C

δ̂
= ∅, set S1(s) = 0. If γt1(Qt1(s)) ≈ Iµj ⊂ C

δ̂
,

let S1 be the stopping time S on Qt1(s) for the sequence γt1 , γt1+1, · · · (instead of γ0, γ1, · · · );
that is to say, S1(s) is the smallest i such that γt1+i(Qt1+i−1(s)) is not in a bound period and
|γt1+i(Qt1+i−1(s))| > δ. Then on each element of Qt1 , we define t2 to be the smallest i ≥ t1 +S1
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such that γi(Qi−1(s)) ∩ C
δ̂
6= ∅, and on each Qt2(s), define S2 to be either S or 0 as before

depending on whether γt2(Qt2(s)) ⊂ C
δ̂

or not, and so on.
Before proceeding further, we record the following lower estimate on |γti

(Qti−1(s))|. Let t
be the time Qti−1(s) is created. By definition, ti−1 + Si−1 ≤ t < ti, and γt(Qti−1(s)) ≈ P for
some P ∈ P . Moreover, there are only two possibilities: either P is outside and |P | ≥ δ, or it

is ≈ Iµj for some Iµj ⊂ Cδ \ C
δ̂
. By (P1) and (P2)(iii), |γti

(Qti−1(s))| > δ̂′ := min(c2δ, δ̂
K1α).

Note that if δ̂ << δ, then δ̂′ >> δ̂.
We now head toward the promised random variables. For i = 0, 1, 2, · · · , let Xi(s) = 1 for

i ∈ [tk, tk + Sk), any k, and = 0 otherwise. Then Bn ≤∑i≤nXi; in fact, this is likely to be an
overcount, for Sk goes beyond bound periods. It is thus sufficient to show that P{∑i≤n Xi > σn}
decreases exponentially with n.

As we will see, it simplifies the discussion slightly if we “speed up time” to skip over the
intervals [tk, tk + Sk). Let T−1 = −1. With Ti defined, we let Ti+1 = Ti + 1 except when
Ti + 1 = tk, in which case we let Ti+1 = Ti + 1 + Sk. We let X̂0 = S if ω ⊂ C

δ̂
, 0 otherwise, and

let X̂i+1 = Sk if Ti+1 = tk, 0 otherwise. Let QTi
be the partition defined by QTi

(s) = QTi(s)(s),

and note that X̂i is measurable with respect to QTi
. Since Xi ≤ X̂i, it is all the more true that

Bn ≤∑i≤n X̂i.

Step II. Conditional distribution of X̂i+1 given QTi

Let i ≥ 0, and consider Q ∈ QTi
. On most Q, X̂i+1 is identically equal to 0. The only time

when this is not the case is when γTi(Q)+1(Q) meets C
δ̂
. We note that

(1) for all s, s′ ∈ Q, γ′Ti(Q)+1(s)/γ
′
Ti(Q)+1(s

′) < K;

(2) |γTi(Q)+1(Q)| > δ̂′.

(1) follows from (P3); (2) is from Step I. From (1) and (2), we deduce that (i) P (X̂i+1 = 0 |
Q) ≥ 1 −Kδ̂δ̂′−1 and (ii) P (X̂i+1 > n | Q ∩ {γTi+1 ∈ Iµj}) < Ke−

1
2K−1n if n ≥ 3Kµ (Lemma

2.5); for n < 3Kµ, there is no information. It follows that for all n ≥ 0,

P (X̂i+1 > n | Q) < Kδ̂′−1 min(δ̂, e−(3K)−1n) +Kδ̂δ̂′−1e−
1
2 K−1n. (19)

A simple computation shows that if ε < 1
6K

−1 (where K is as in the exponents above), then

E[eεX̂i+1 |Q] < ∞. We note further that by decreasing δ̂ (keeping ε fixed), E[eεX̂i+1 |Q] can
be made arbitrarily close to 1. Let η > 0 be a number to be determined shortly, and choose

δ̂ = δ̂(η) sufficiently small that E[eεX̂i+1 |Q] < eη. Observing that the upper bound in (19) and

hence that for E[eεX̂i+1 |Q] do not depend on i or on Q, we conclude that with δ̂ = δ̂(η) as above,

E[eεX̂i+1 |QTi
] < eη for every i ≥ 0.

Step III. Large deviation estimate for
∑

i≤n X̂i

To finish, we write

E
[

eε
P

i≤n X̂i

]

= E
[

E[eε
P

i≤n X̂i |QTn−1 ]
]

= E
[

eε
P

i<n X̂i E[eεX̂n |QTn−1 ]
]

< eη E
[

eε
P

i<n X̂i

]

,

giving inductively E[eε
P

i≤n X̂i ] < enηE[eεX̂0 ]. Since E[eεX̂0 ] < eKεµ0 , we arrive at

P {Bn > σn} < P







∑

i≤n

X̂i > σn







< eηn−εσn+Kεµ0 .

This is < e−
1
2 εσn if η is chosen < 1

4εσ and n is > Kµ0σ
−1. �
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A.3 Parameter transversality (Sect. 2.4)

Proof of Lemma 2.6: First we show that ∪i≥0f
−iC is dense in I. If not, there would be an

interval ω with the property that φ(x) is identical for all x ∈ ω. Let ω be a maximal interval
of this type. Then either (i) fn+k(ω) ⊂ fn(ω) for some n, k, or (ii) fk(ω), k = 0, 1, · · · , are
pairwise disjoint. Case (i) cannot happen since it implies the presence of a periodic point x with
|(fk)′x| ≤ 1. Case (ii) is equally absurd, for it implies the existence of {ki} where fki(ω) are
arbitrarily short and arbitrarily close to C, a scenario not permitted by Definition 1.1 (c)(ii)
and Lemma 2.1.

For each n, let ln(x̂) and rn(x̂) be the two points in ∪0≤i≤nf
−iC closest to x̂ ∈ C. In the

case I = S1, let Λ(n) = {x ∈ I : f ix 6∈ ∪x̂∈C(ln(x̂), rn(x̂)) ∀i ≥ 0}. If I is an interval, we may
assume n is large enough that f(I) ⊂ (z1

n, z
2
n) where z1

n and z2
n are the two points in ∪0≤i≤nf

−iC
closest to the ends of I. We then define Λ(n) as in the circle case but with I replaced by [z1

n, z
2
n].

In both cases, Λ(n) is compact and f(Λ(n)) ⊂ Λ(n). Clearly, ∪Λ(n) is dense in I since ∪i≥0f
−iC

is dense in I and the gaps in Λ(n) decrease in size as n increases.
For part (a), it remains to show that f |Λ(n) is conjugate to a shift of finite type. Let J (n) =

{J (n)
i } be the partition of I by ∪0≤i≤nf

−iC. Observe that for Ji(n) 6= (ln(x̂), x̂) or (x̂, rn(x̂)),

f(J
(n)
i ) is equal to the union of a finite number of elements of J (n). Let Λ

(n)
i = Λ(n)∩J (n)

i . Then

the alphabet of the shift in question is {i : Λ
(n)
i 6= ∅}, and the transition i → j is admissible if

f(Λ
(n)
i ) ⊃ Λ

(n)
j .

Assertion (b) follows from our construction. �

Proof of Corollary 2.2: Fix n large enough that for all i ≥ 0, f i(q) 6∈ (ln(x̂), rn(x̂)) for all
x̂ ∈ C, and let Λ = Λ(n). Let B = ∪i∂Λ̄i where Λ̄i is the shortest interval containing Λi. Since B
is a finite set with f(B) ⊂ B, it consists of pre-periodic points. From Lemma 2.1, these periodic
points are repelling. Thus if g is sufficiently near f , there is a unique set Bg with g(Bg) ⊂ Bg

such that g|Bg
is conjugate to f |B. Using Bg, we recover a set Λg on which g is conjugate to

f |Λ. The uniqueness of qg follows from the expanding property of g away from C (Lemma 2.2).
�

Proof of Proposition 2.3: (i) We prove a 7→ q(a) is differentiable with

d

da
q(a) = −

∞
∑

i=1

∂afa(f i−1
a (q))

(f i
a)′(q)

. (20)

Here all objects depend on a, mention of which is often suppressed (e.g. f = fa, q = q(a)).
Continuing to use the notation in Corollary 2.2, we let Λi0,i1,··· ,in

= {x ∈ I : f j(x) ∈ Λij
, 0 ≤ j ≤

n}, and let Λi0,i1,··· ,in
(q) be the cylinder set containing q. For each n, choose qn ∈ ∂Λ̄i0,i1,··· ,in

(q).
We will show that as functions of a, d

da
qn converges uniformly to the right side of (20). This

requires in particular the uniform bound maxi0,i1,··· ,in
|Λ̄i0,i1,··· ,in

| < Ke−
1
4 λ0n for all n > 0 (see

Lemma 2.1).
Introduce G(x, a) = (fa(x), a), and let Gn(qn, a) = (pn, a). Then pn ∈ B. Differentiating,

we obtain d
da
pn =

∑n
i=1 ∂xf

n−i(f iqn)∂af(f i−1qn) + ∂xf
n(qn) d

da
qn. Hence we have

d

da
qn =

d
da
pn

∂xfn(qn)
−

n
∑

i=1

∂af(f i−1qn)

∂xf i(qn)
. (21)

Since B is a finite set, d
da
pn is uniformly bounded for all n. With |(fn)′(qn)| growing exponen-

tially, the first term on the right is exponentially small. It remains to check that the second
term converges uniformly to the right side of (20). In addition to the growth of fn, this uses our
estimates on max |Λ̄i0,i1,··· ,in

| above and a distortion estimate for f i. We leave it as an exercise.
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(ii) This is a direct application of (20) to q defined by q(a∗) = fa∗(x̂):

d
da
fn(x̂)

∂xfn−1(x̂1)
=

1

∂xfn−1(x̂1)

(

∂xf
n−1(x̂1)

dx̂1

da
+ ∂af

n−1(x̂1)

)

=
dx̂1

da
+
∂af

n−1(x̂1)

∂xfn−1(x̂1)
.

Thus the limit as n → ∞ at a = a∗ differs from dq
da

(a∗) by dx̂1

da
(a∗), which is also easily seen to

be the term corresponding to i = 0 in the sum in Proposition 2.3(ii). �

A.4 Most contracted directions: Preliminaries (Sect. 3.1)

We record in this Appendix some elementary estimates in preparation for the proof of Lemma
3.1.

I. Area growth

Let {E1, E2, · · · , Em} denote the usual basis of R
m. Recall that if u =

∑

uiEi and v =
∑

viEi, then u∧v =
∑

i<j IijEi ∧Ej where Iij = uivj − viuj, and the area of the parallelogram
spanned by u and v is equal to

|u ∧ v| =
√

|u|2|v|2 − 〈u, v〉2 =





∑

i<j

I2
ij





1
2

.

Sublemma A.4.1 Let M and M̃ have the properties in (H1) in Sect. 3.1. Then
(a) |Mu ∧Mv| < Kb |u ∧ v|;
(b) |Mu ∧ M̃v| ≤ Kb |u||v|.

Consider next linearly independent unit vectors u(0) and v(0) parameterized by s = (s1, s2).

For n = 1, 2, · · · , let u(n) = Mnu
(n−1) and v(n) = Mnv

(n−1), and let u(n)∧v(n) =
∑

I
(n)
ij Ei∧Ej .

Sublemma A.4.2 Assume Mi, u
(0) and v(0) satisfy (H2). Then for k = 0, 1, 2,

|∂k(u(n) ∧ v(n))| < (Kb)n.

It follows that if ∆n = |u(n) ∧ v(n)|, then |∂k∆2
n| < (Kb)2n.

II. Formulas for e and f

We fix M ∈ L(m,R) and S = S(u, v) where for simplicity we assume u and v are unit
vectors with u ⊥ v. The formulas below all pertain to M |S; mention of S is suppressed (e.g. we
write e = e(S)) except where ambiguity arises. The following formulas are results of elementary
computations:

First, we write down the squares of the singular values of M |S :

|Me|2 =
1

2
(B −

√

B2 − 4C) := λ, |Mf |2 =
1

2
(B +

√

B2 − 4C)

where B = |Mu|2 + |Mv|2, C = |Mu ∧Mv|2. (Note that the formulas above are in agreement
with |Mu ∧Mv| = |Me||Mf |.) We then write e = α0u+ β0v, and solve for |Me| =

√
λ subject

to α2
0 + β2

0 = 1. There are two solutions (a vector and its negative): either e = ±v, or the
solution with a positive u-component is given by

e =
1

Z
(αu + βv) (22)

with α = |Mv|2 − λ, β = −〈Mv,Mu〉 and Z =
√

α2 + β2. From this we deduce that a solution
for f is f = 1

Z
(−βu+ αv).
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A.5 Most contracted directions: Proof of Lemma 3.1 (Sect. 3.1)

I. Proof of Lemma 3.1(a)

We assume Mi satisfies (H1) and let S = S(u, v). As before, mention of S is suppressed.
Recall that ∆i := |M (i)u ∧M (i)v|.

Sublemma A.5.1 (i) ∆i < (Kb)i;

(ii) |M (i)ei| <
(

Kb
κ

)i
;

(iii) |M (i+1)fi| = |M (i+1)fi+1| ± O((Kb
κ

)i) & K−1
0 κi;

(iv) If we substitute u = ei, v = fi and M = M (i+1) into the formulas in Appendix A.4, part
II,

and let αi+1, βi+1 and Zi+1 be the resulting quantities, then Zi+1 ≈ |αi+1| ≈ |M (i+1)fi|2.

Proof: (i) is the k = 0 case of Sublemma A.4.2. For (ii), write |M (i)ei| = ∆i

|M(i)fi| ; the assertion

follows from (i) and our assumption on |M (i)fi|. Now make the substitution in (iv). From the
formula for |Mf |, we see that

|M (i+1)fi+1|2 = Bi+1 + O(Ci+1) = |M (i+1)fi|2 + |Mi+1M
(i)ei|2 + O(Ci+1);

estimates for the last two terms given by (ii) and (i). This proves (iii). (iv) is now obvious. ♦

We now prove Lemma 3.1(a). Continuing to substitute u = ei and v = fi in the formulas in
Appendix A.4, we have, from (22),

ei+1 − ei =
1

Zi+1

( −β2
i+1

αi+1 + Zi+1
ei + βi+1fi

)

. (23)

To estimate |ei+1 − ei|, then, we need to obtain a suitable upper bound for |βi+1| and lower
bounds for |αi+1| and Zi+1. Sublemma A.5.1 gives

|βi+1| ≤ |M (i+1)ei||M (i+1)fi| <
(

Kb

κ

)i
√

Zi+1 (24)

and |αi+1| ≈ Zi+1. These estimates together with Zi+1 > K−1
0 κ2i tell us |ei+1 − ei| ≈ |βi+1|

Zi+1
<

(

Kb
κ2

)i
. The second assertion follows easily from |M (i)en| ≤ |M (i)(en−en−1)|+ · · ·+ |M (i)(ei+1−

ei)| + |M (i)ei| <
(

Kb
κ2

)i
. �

II. Proof of Lemma 3.1(b): First derivative estimates

For this part we assume Mi and S satisfy (H2) with C2 norms replaced by C1 norms. Let
∂ denote a fixed partial derivative.

Sublemma A.5.2 |∂e1|, |∂f1| < K1 for some K1.

Proof: Switching u and v in (H2) if necessary, we may assume |M1v| ≥ |M1u|. Then from
Appendix A.4.II we have Z1 > α ≥ |M1v|2−Kb > 1

2B−Kb > 1
4K

−2
0 . Differentiating (22) gives

the desired result. ♦

Our plan of proof is as follows: For k = 1, 2, · · · , we assume for all i ≤ k

(*) |∂ei|, |∂fi| < 2K1 where K1 as in Sublemma A.5.2,

and prove for all i ≤ k:
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(A) |∂(M (i)fi)| < Ki, |∂(M (i)ei)| <
(

Kb
κ2

)i
;

(B) |∂(ei+1 − ei)|, |∂(fi+1 − fi)| < (Kb
κ3 )i.

Observe that for i = 1, (*) is given by Sublemma A.5.2. It is easy to see that (B) above
implies (*) with i = k + 1, namely |∂fk+1| ≤ |∂(fk+1 − fk)| + · · · + |∂(f2 − f1)| + |∂f1|. ¿From

(B), we have |∂(fi+1 − fi)| <
(

Kb
κ3

)i
, and from Sublemma A.5.2, we have |∂f1| < K1. Hence

|∂fk+1| < Kb
κ3 + K1, which, for b sufficiently small, is < 2K1. The computation for ek+1 is

identical.

Proof of (*) =⇒ (A): First we prove the estimate for ∂(M (i)fi). Writing ∂(M (i)fi) =
∑i

j=1Mi · · · (∂Mj) · · ·M1fi+M
(i)∂fi, we obtain easily |∂(M (i)fi)| ≤

∑i
j=1 |Mi · · · (∂Mj) · · ·M1fi|+

‖M (i)‖|∂fi| ≤ iKi +Ki(2K1).
This estimate is used to estimate ∂(M (i)ei).

15 Write ∂(M (i)ei) = (I) + (II) where (I) is its
component in the direction of M (i)fi and (II) is its component orthogonal to M (i)fi. Recall
that ∂〈M (i)ei,M

(i)fi〉 = 0. We have

|(I)| =

∣

∣

∣

∣

〈∂(M (i)ei),
M (i)fi

|M (i)fi|
〉
∣

∣

∣

∣

=
1

|M (i)fi|
|〈M (i)ei, ∂(M (i)fi)〉| <

1

κi

(

Kb

κ

)i

Ki ;

|(II)| |M (i)fi| = |∂(M (i)ei) ∧M (i)fi| ≤ |∂(M (i)ei ∧M (i)fi)| + |M (i)ei ∧ ∂(M (i)fi)|.
The first term in the last line is < (Kb)i by Sublemma A.4.2, noting that we have established
|∂ei|, |∂fi| < 2K1; the second term is < (Kb

κ
)i ·Ki. This completes the proof of (A). ♦

To prove (B), we first compute some quantities associated with the next iterate. Substitute
u = ei, v = fi,M = M (i+1) into the formulas in Appendix A.4, and let Bi+1, Ci+1, λi+1 etc. be
the resulting quantities. The following is a straightforward computation.

Sublemma A.5.3 Assume (*) and (A). Then for all i ≤ k:

(a) |∂λi+1| <
(

Kb
κ2

)2(i+1)
;

(b) |∂βi+1| < (Kb
κ2 )i

√

Zi+1;

(c) |∂αi+1|, |∂Zi+1| < Ki
√

Zi+1.

Proof of (*), (A) =⇒ (B): We work with ei; the computation for fi is similar. From (23) we
have ∂(ei+1 − ei) = (III) + (IV ) + (V ) where

|(III)| = | 1

Zi+1
(ei+1 − ei)∂1Zi+1| <

Ki
√

Zi+1

Zi+1
·
(

Kb

κ2

)i

<

(

Kb

κ3

)i

;

|(IV )| = | 1

Zi+1
∂(βi+1fi)| <

1

Zi+1
(|∂βi+1| + |βi+1||∂fi|) <

(

Kb

κ3

)i

;

|(V )| = | 1

Zi+1
∂

(

β2
i+1

αi+1 + Zi+1
ei

)

| <<
(

Kb

κ3

)i

.

To estimate (III), we have used Sublemmas A.5.1, A.5.3(c) and part (a) of Lemma 3.1. To
estimate (IV), we have used Sublemma A.5.3(b), (*) and |βi+1| < (Kb

κ
)i. The estimate for (V)

is easy. ♦

This completes the proofs of the first derivative estimates in Lemma 3.1(b). �

15We thank O. Lanford for showing us this argument.

77



III. Proof of Lemma 3.1(b): Second derivative estimates

We now assume the full force of (H2). The proof proceeds in a manner entirely analogous to
that for first derivatives: We first prove |∂2e1|, |∂2f1| < K ′

1 for some K ′
1. Then for k = 1, 2, · · · ,

we assume for all i ≤ k

(*’) |∂2ei|, |∂2fi| < 2K ′
1,

and prove for all i ≤ k:

(A’) |∂2(M (i)fi)| < Ki, |∂2(M (i)ei)| <
(

Kb
κ3

)i
;

(B’) |∂2(ei+1 − ei)|, |∂2(fi+1 − fi)| < (Kb
κ4 )i.

Details are left to the reader. �

A.6 A perturbation lemma (Sect. 3.2)

Proof of Lemma 3.2: Assume inductively that ∠(wi, w
′
i) < η

i+1
4 for all i < n. Let n = 2j

(or 2j ± 1). Let uj =
wj

|wj | , A = DT j
zj

, and let u′j and A′ be the corresponding quantities for

(z′0, w
′
0). Since |wj | < Kj and |w2j | > K−1

0 κ2j−1 by hypothesis, we have

|Auj | =
|w2j |
|wj |

>

(

κ2

K

)j

. (25)

We observe first that |A′u′j| & (κ2

K
)j : Clearly, |A′u′j| ≥ |Auj |−‖A‖|uj −u′j|−‖A−A′‖|u′j|. The

desired estimate follows from the fact that ‖A‖|uj − u′j| ≈ ‖A‖∠(uj, u
′
j) ≤ Kjη

j+1
4 , ‖A−A′‖ =

|DT j
zj

−DT j
z′

j
| ≤ jKjηj+1, and both of these quantities are << (κ2

K
)j by the relation imposed

on η and κ.
We estimate ∠(u2j , u

′
2j) ≈ |u2j ∧ u′2j | by

|u2j ∧ u′2j | ≤
|Auj ∧Au′j |
|Auj| · |A′

ju
′
j|

+
|Auj ∧ (A−A′)u′j |

|Auj | · |A′
ju

′
j |

.

The first term is< (Kb)jη
j+1
4 ( K

κ2 )2j . The second term is< Kj(Kη)j+1( K
κ2 )2j . Both are< 1

2η
n+1

4

by the relations we imposed on b, η and κ with K1 appropriately chosen. This completes the
proof of (b) for n = 2j.

To prove (a), we write

|w′
2j |

|w′
j |

≥ |w2j |
|wj |

(

1 − |wj |
|w2j |

(‖A′ −A‖ + ‖A‖|u′j − uj |)
)

.

Using the same bounds as before, we see that the factor inside parentheses is> 1−[(κ2

K
)j((Kη)j+1+

Kjη
j+1
4 )] > 1 − (1

4 )j . This proves |w′
2j | ≥ |w2j |(

∑

1≤i≤j
1
4i ). �

A.7 Temporary stable curves (Sect. 3.3)

Proof of Proposition 3.1: Let B0 be the ball of radius η in S centered at z0. Then on B0

we have, by Lemma 3.2, ‖DT |S‖ ≥ 1
2K

−1
0 , so that e1(S) is well defined. Let γ1 be the integral

curve to e1(S) defined for s ∈ (−η, η) with γ1(0) = z0. Note that |DT (e1)| < Kb.

To construct γ2, let B1 be the η2

2K0
-neighborhood of γ1 in S where K0 is a constant related

to ‖T ‖C2. For ξ ∈ B1, let ξ′ be a point in γ1 with |ξ − ξ′| < η2

2K0
. Then |Tξ − Tz0| ≤

|Tξ − Tξ′| + |Tξ′ − Tz0| ≤ η2

2 + Kb
κ2 η < η2. Thus by Lemma 3.2, ||DT 2

ξ |S‖ ≥ 1
2K

−1
0 κ. This
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ensures that e2(S) is defined on all of B1. Let γ2 be the integral curve to e2(S) with γ2(0) = z0.
We verify that γ2 is defined on (−η, η) and runs alongside γ1. More precisely,

| d
ds

(γ2(s) − γ1(s))| ≤ |e2(γ2(s)) − e1(γ2(s))| + |e1(γ2(s)) − e1(γ1(s))|

≤ |e2 − e1| + | d
ds
e1||γ2(s) − γ1(s)| ≤ Kb

κ2
+
K

κ3
|γ2(s) − γ1(s)|

by Lemma 3.1. By Gronwall’s inequality, |γ2(s) − γ1(s)| ≤ Kb
κ2 |s|e

K

κ3 |s|, which is << η2

2K0
for

|s| < η. This ensures that γ2 remains in B1 and hence is well defined for all s < η.

In general, we inductively construct γi by letting Bi−1 be the ηi

2K
i−1
0

-neighborhood of γi−1

in S. Then for all ξ ∈ Bi−1, |T jξ − T jz0| < ηj+1 for k < i. Thus by Lemma 3.2, ‖DT i
ξ |S‖ ≥

1
2K

−1
0 κi−1, and so ei is well defined. Integrating and arguing as above, we obtain γi with

|γi(s) − γi−1(s)| < K(Kb
κ2 )i−1|s| << ηi

2K
i−1
0

for all s with |s| < η. �

A.8 A curvature estimate (Sect. 3.4)

Proof of Lemma 3.3: Recall that

ki(s) =
|γ′i(s) ∧ γ′′i (s)|

|γ′(s)|3 .

Since γ′i = DTγi−1(γ
′
i−1), we have γ′′i = ( d

ds
DTγi−1)(γ

′
i−1)+DTγi−1(γ

′′
i−1). Thus ki ≤ 1

|γ′
i|3

(I+II)

where

I = |DT (γ′i−1) ∧DT (γ′′i−1)|, II = |DT (γ′i−1) ∧ (
d

ds
DTγi−1)(γ

′
i−1)|.

Since DT = DTγi−1 has the form in (H1) in Sect. 3.1, we have I < Kb|γ′i−1 ∧ γ′′i−1| (see

Sublemma A.4.1). Observe that d
ds
DTγi−1 has the same form with K0 replaced by K0|γ′i−1|, i.e.

if d
ds
DTγi−1 = M = (M̂1, · · · , M̂m), then ‖M̂1‖ < K0|γ′i−1| and ‖M̂ j‖ < K0|γ′i−1|b for j ≥ 2.

Thus II < Kb|γ′i−1|3, and so

ki ≤ (Kb · ki−1 +Kb)
|γ′i−1|3
|γ′i|3

=

i−1
∑

j=1

(Kb)j
|γ′i−j |3
|γ′i|3

+ (Kb)i |γ′0|3
|γ′i|3

κ0 ≤ Kb

κ3
.

�

A.9 Properties of e1 in C(1) (Sect. 3.6)

Proof of Lemma 3.7: Consider T0 = (T̂ 1, 0, · · · , 0) acting at (x, 0), x ∈ Cδ, and let
e1 = e1(T0, (x, 0);S( ∂

∂x
,v)) be the most contracted direction of DT0 at (x, 0) on the plane

indicated. Since det(DT0(e1)) = 0, it is easy to see that

〈e1,v〉 = ± f ′(x)
√

|DT0(v)|2 + (f ′(x))2
,

the sign depending on the orientation of DT0(v). Using the facts that |f ′′| > K−1 and
|DT0(v)| > K−1, one verifies readily that | d

dx
e1(T0, (x, 0);S( ∂

∂x
,v))| > K−1.

Observe that if b is sufficiently small, then by continuity, e1(T, γ(x);S(γ′(x),v)) is defined
everywhere on γ. We compare it to e1(T0, (x, 0);S( ∂

∂x
,v)):

First, we continue to focus on (x, 0) and S = S( ∂
∂x
,v), and interpolate between T0 and

T by introducing Ts := (T̂ 1, s√
b
T̂ 2, · · · , s√

b
T̂m), s ∈ [0,

√
b]. More precisely, we consider the
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2-parameter family M(s, x) := (DTs)(x,0). Observing that M satisfies (H2) in Sect. 3.1 with√
b in the place of b, we obtain, by Lemma 3.1, | ∂2

∂x∂s
e1| < K. From this we conclude

| d
dx
e1(T, (x, 0);S(

∂

∂x
,v)) − d

dx
e1(T0, (x, 0);S(

∂

∂x
,v))| = O(

√
b).

Next we consider T and interpolate between the x-axis and γ. Write γ(x) = (x, γy(x)).
For s ∈ [0, b], let z(s, x) = (x, s

b
γy(x)), and let M(s, x) = DTz(s,x), S = S(u(s, x),v) where

u(s, x) = (1, s
b
γ′y(x)). Another application of Lemma 3.1 gives

| d
dx
e1(T, γ(x);S(γ′(x),v)) − d

dx
e1(T, (x, 0);S(

∂

∂x
,v))| = O(b).

The inequality in (3) now follows from | d
ds
e1| > K−1 and the fact that both | d

ds
γ′|, which is

equal to the curvature of γ, and | d
ds
S(γ′,v)| are << 1. �

A.10 Critical points on C2(b)-curves (Sect. 3.7)

Proof of Corollary 3.1: Let γ : [x̂ − δ, x̂ + δ] → R1 be the C2(b)-curve in question, with
x̂ ∈ C and γ(x) = (x, γy(x)). Let η = 〈e1(S), v〉 be as defined in Sect. 3.6. Since | dη

dx
| > K−1

1

(Lemma 3.7), there can be at most one x ∈ [x̂ − δ, x̂ + δ] with η(x) = 0. Observe that if we
show η(x̂) = O(b), that will force η(x) = 0 for some x with |x − x̂| < K1|η(x̂)|. The claim on
η(x̂) follows by interpolating between (T0, (x, 0), S( ∂

∂x
,v)) and (T, γ(x), S(γ′(x),v)) as detailed

in Appendix A.9. �

Proof of Lemma 3.8: We obtain by using Lemma 3.2 that for all i < n, DT i
z(v) > K̂−1

0 for
all z with |z − γ(0)| < 2b

n
5 . This guarantees that en(S) with S = S(γ̂′,v) is defined at γ̂(s) for

all s ∈ [−bn
5 , b

n
5 ].

Let ηn be defined by using en instead of e1 in the definition of η in Sect. 3.6. We have
| d
ds
ηn| = | d

ds
η1|+O(b) > 1

2K
−1
1 from Lemmas 3.1 and 3.7. This shows that there is at most one

point at which ηn = 0, i.e. a critical point of order n. To see there exists one such point, we first
interpolate between (γ(0), S(γ′(0),v)) and (γ̂(0), S(γ̂′(0),v)). By Lemma 3.1 and assumption
(b) in this lemma,

|en(γ̂(0)) − en(γ(0))| < Kb
n
4 . (26)

We have

|ηn(0)| ≤ |en(γ̂(0)) − en(γ(0))| + |en(γ(0)) − γ′(0)| + |γ′(0) − γ̂′(0)| < Kb
n
4

because |en(γ(0))−γ′(0)| = 0, and |γ′(0)− γ̂′(0)| < b
n
4 from assumption (b) of this lemma. This

estimate on ηn(0) forces ηn(s) = 0 for some s with |s| < Kb
n
4 . �

Proof of Lemma 3.9: Since en+1 is defined on a neighborhood of γ(0) of radius >> (Kb)n,
and |ηn+1(0)| < (Kb)n by Lemma 3.1(a), we proceed as in the proof of Lemma 3.8 to obtain
a critical point of order n + 1. This argument is then repeated to obtain successively critical
points of order n + 2, n + 3, and so on. The distances between critical points of consecutive
orders decrease geometrically. (It is not necessary to increase the order by 1 each time, but we
may not be able to construct a critical point of order n+m in a single step: for m large, en+m

may not be defined in a neighborhood of order (Kb)n.) �
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A.11 Splitting algorithm (Sect. 3.8)

Proof of Lemma 3.10: Consider first Ij with the property that Ij 6⊃ Ij′ for any j′. We
observe that (i) for i = tj + 1, · · · , tj + ℓtj

− 1, w∗
i is b-horizontal by Lemma 3.4, and (ii) w∗

tj+ℓtj

is b-horizontal by assumption (a) in the lemma and the the single-return argument in Sect. 3.8.
We emphasize that the preceding discussion is entirely independent of what happens before time
tj , for assumption (a) guarantees that whatever happens before, w∗

tj
splits in a desirable manner.

Consider next Ij with the property that all Ij′ ⊂ Ij are of the type in the last paragraph.
For definiteness, we label these inner intervals as Ij1 , · · · , Ijk

with j1 < · · · < jk. Then applying
the observations in the last paragraph to each of the inner intervals and Lemma 3.4 to the times
in between, we see that the only time i we need to be concerned with is i = tj + ℓtj

. There are
two cases: tjk

+ ℓtk
< i, and = i.

If tjk
+ ℓtk

< i, the b-horizontal property of w∗
i follows from an argument identical to that

of the single-return case applied to the time interval Ij ; note that when making this argument,
one is entirely oblivious to whether or not ŵtj

is split and recombined between times tj and i.

If tjk
+ ℓtk

= i, we argue first that the rejoining of DT tjk (Êjtk
) increases the slope of

DTzi−1(w
∗
i−1)) by at most (Kb)

1
2 ℓtjk . Then we apply the single-return argument to Ij (ignoring

the splitting and re-combinations that occurred in between), and note that with the rejoining

of DT ℓtj Êtj
, the slope deteriorates by an additional (Kb)

1
2 ℓtj . Since s(DTzi−1(w

∗
i−1)) <

3K0

2δ
b,

the resulting vector w∗
i is still b-horizontal.

Inducting on the number of layers inside an Ij , we see that the only question that remains
to be treated is the following: Suppose there exist j1 < · · · < jk such that j1 + ℓj1 = · · · =
jk + ℓjk

= i. Can we be assured of the b-horizontal property of w∗
i for arbitrary k? We answer in

the affirmative, on the grounds that the deterioration in slope caused by recombining DT ℓjt (Êjt
)

is a geometric series of the form
∑

(Kb)q. To see this, one must start from the rejoining of the
vector that is split off last, and work backwards one step at a time in the estimation of additional
deterioration in slope. �

A.12 Estimates on B(k) and Fk (Sect. 4.2)

Sublemma A.12.1 For ε, a > 0, let J be an interval containing [0, ε
a
], and let ψ : J → R be a

C2 function with |ψ′′| ≤ a and |ψ( ε
a
) − ψ(0)| ≤ 1

2
ε2

a
. Then |ψ′(0)| ≤ ε.

Proof: Suppose |ψ′(0)| = ε′ > ε. Then |ψ( ε
a
) − ψ(0)| ≥ ε′ ε

a
− 1

2a(
ε
a
)2 > 1

2
ε2

a
. ♦

Proof of Lemma 4.2: Between Q(k) and Q(k̂) we have Q(k) ⊃ Q(k+1) ⊃ · · · ⊃ Q(k+n) = Q(k̂).
Let ẑ = zk+n, and for 0 ≤ i < n, choose zk+i so that

– zk+i ∈ Q(k+i),
– zk+i has the same x-coordinates as ẑ, and
– zk lies on the Fk-leaf containing z.

Let γk+i be the Fk+i-leaf containing zk+i and let τk+i be the tangent to γk+i at zk+i. We

claim that ∠(τk+i, τk+i+1) ≤ Kδ−
3
2 b

k+i
4 + 1

2 . To see this, regard γk+i and γk+i+1 as graphs of
functions defined on the x-axis, fix l with 1 ≤ l < m (where m = dim(X)), and let ψ(x) =

yl coordinate of γk+i+1(x) − yl coordinate of γk+i(x). Since the diameter of Q(k+i) is < b
k+i
2

by (A1)(ii), and the γj are C2(b)-curves, we wish to use Sublemma A.12.1 with a = Kb
δ3 and

1
2

ε2

a
= b

k+i
2 to conclude that |ψ′| ≤ ε = Kδ−

3
2 b

k+i
4 + 1

2 . To do this, we need to first verify that
ε
a
<< the length of Q(k+i+1), i.e. Kδ

3
2 b

k+i
4 − 1

2 << min{δ, e−λ(k+i+1)}. This is true for k+ i > 1.

The claim is also valid when k + i = 1, for |ψ′| < Kb
δ

by the C2(b)-property of the curves in
question.
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Thus we have

∠(τ, τ̂ ) ≤ ∠(τ, τk) +

n−1
∑

i=0

∠(τi+k, τi+k+1) < Kδ−3b · |z − ẑ|h + b
k
4 ,

the first term in the last inequality following again from the fact that γk is C2(b). �

Proof of Lemma 4.1: It suffices for us to prove |z∗0(Q(k)) − z∗0(Q(k+1))| < Kb
k
4 . The rest

follows immediately. To prove the estimate on z∗0 , let γ and γ̂ be the leaves of Fk and Fk+1

containing z∗0(Q(k)) and z∗0(Q(k+1)) respectively, parametrized so that γ(0) = z∗0(Q(k)) and γ̂(0)
has the same x-coordinate as γ(0). We apply Lemma 3.8 to obtain a critical point ẑ of order k
on γ̂: the bound for |γ(0) − γ̂(0)| comes from the diameter bound for Q(k) given by (A1); the

one for |γ′(0) − γ̂′(0)| comes from Lemma 4.2. Lemma 3.8 tells us also that |ẑ − γ̂(0)| < Kb
k
4 .

Lemma 3.9 says that |z∗0(Q(k+1)) − ẑ| < (Kb)k. �

A.13 Correct alignment implies correct splitting (Sect. 4.4)

Proof of Lemma 4.7: Assume that φ(zi) = z∗0(Q(j)), and let γ and γ̂ be the Fj-leaves
parameterized by arc-length through φ(zi) and zi respectively. Both γ and γ̂ are C2(b)-curves
by (A1)(ii). Let ℓi be the splitting period of zi.

¿From Lemma 4.3 and Lemma 3.8, there exists a critical point ẑ of order j on γ̂ with

|ẑ − φ(zi)| < Kb
j
4 << dC(zi). From Lemma 3.2, the most contracted direction of order ℓi in S

is well defined on γ̂ from ẑ to zi where S = S(γ̂′,v). By Lemma 3.7, | d
ds
e1| > K−1

1 . By Lemma

3.1, | d
ds

(eℓi
− e1)| < Kb. Together we have

∠(eℓi
(S), γ̂′)(zi) > K−1

1 |ẑ − zi| − |ej(ẑ) − eℓi
(ẑ)| > 3

4
K−1

1 dC(zi). (27)

For the last inequality we used |ej(ẑ) − eℓi
(ẑ)| < min((Kb)

1
4 j , (Kb)ℓi) << dC(zi).

Next we pass from eℓi
(S) to eℓi

(S∗) at zi where S∗ = S(w∗
i ,v). This is a straightforward

interpolation between u = γ̂′ and u = w∗
i using Lemma 3.1. Since the difference in u is ≤ ε0dC(zi)

by the assumption of correct alignment, we obtain

|∠(eℓi
(S), eℓi

(S∗))| < Kε0dC(zi) (28)

where K is the constant in Lemma 3.1. Finally, |Bi|/|Ai| in Lemma 4.7 is ≈ |∠(eℓi
(S∗), w∗

i )|,
and from (27) and (28), we have the following estimates at zi:

|∠(eℓi
(S∗), w∗

i )| > |∠(eℓi
(S), γ̂′)| − |∠(eℓi

(S), eℓi
(S∗))| − |∠(w∗

i , γ̂
′)|

>
3

4
K−1

1 dC(zi) −Kε0dC(zi) − ε0dC(zi) >
1

2
K−1

1 dC(zi).

�

A.14 Comparison of derivatives during bound periods (Sect. 5.1)

The following sublemma is used in a number of places. Its proof is easy and left to the reader:

Sublemma A.14.1 Let z0 ∈ ΓθN be of generation k. Then for all i ≤ θ−1k, the size of the
longest splitting period zi is in is < Kθαi.
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Proof of Proposition 5.1: The proof proceeds by induction. Let i < N be the inductive
index. We assume that (6) and (7) hold for all triples (z0, ξ0, ξ

′
0) in the same component of C(1)

and all j ≤ min(p(z0; ξ0, ξ
′
0), i− 1). We then fix a specific triple (z0, ξ0, ξ

′
0) and prove for it step

i of these two assertions assuming i ≤ p(z0; ξ0, ξ
′
0). Note that K1, the constant in the statement

of the proposition, must not be allowed to increase from step to step. It is larger than any other
generic constant K that appears in the proof. In particular, K does not depend on K1.

Let Mi = |w∗
i (ξ0)|, M ′

i = |w∗
i (ξ′0)|, and θi(ξ0, ξ

′
0) = ∠(w∗

i (ξ0), w
∗
i (ξ′0)).

Case 1 No splitting period expires at zi and i−1 is not a return time. In this case w∗
i = DTw∗

i−1.

Writing C = DTξi−1 , C
′ = DTξ′

i−1
, u =

w∗
i−1(ξ0)

|w∗
i−1(ξ0)| and u′ =

ŵ∗
i−1(ξ

′
0)

|ŵ∗
i−1(ξ

′
0)| , we have

θi(ξ0, ξ
′
0) ≈

|Cu ∧ C′u′|
|Cu||C′u′| ≤ K−1δ−2 (|Cu ∧ Cu′| + |Cu ∧ (C′ − C)u′|) .

By Sublemma A.4.1, |Cu∧Cu′| < Kbθi−1. This together with |Cu∧(C′−C)u′| < Kb|ξi−1−ξ′i−1|
gives θi ≤ Kb

δ2 (|ξi−1 − ξ′i−1| + θi−1) < b
1
2 ∆i−1(ξ0, ξ

′
0), proving (7) for step i.

To compare magnitudes, we have

M ′
i

Mi

=
M ′

i−1

Mi−1
· |C

′u′|
|Cu| ≤ M ′

i−1

Mi−1

(

1 +
|C′u′ − Cu|

|Cu|

)

≤ M ′
i−1

Mi−1

(

1 +
‖C′ − C‖

|Cu| +
|C(u− u′)|

|Cu|

)

.

Since |Cu| > K−1dC(zi−1), ‖C−C′‖ < K|ξi−1−ξ′i−1| and |u−u′| ≈ θi−1(ξ0, ξ
′
0) < b

1
2 ∆i−2(ξ0, ξ

′
0),

we have
M ′

i

Mi

≤ M ′
i−1

Mi−1

(

1 +K
∆i−1(ξ0, ξ

′
0)

dC(zi−1)

)

≤ exp

{

K1

i−1
∑

n=1

∆n(ξ0, ξ
′
0)

dC(zn)

}

, (29)

the last inequality following from (6) for step i− 1 and the fact that K < K1.

Case 2 i − 1 is a return time. In this case the angle estimate is trivial since θi(ξ0, ξ
′
0) =

∠(Cv, C′v). To compare magnitudes, we first recall that

w∗
i−1(ξ0) = A(ξi−1) · e(ξi−1) +B(ξi−1) · v

where e = e(ξi−1) = eℓ(zi−1)(ξi−1, S(w∗
i−1(ξ0),v)); w∗

i−1(ξ
′
0) and e′ = e(ξ′i−1) are defined simi-

larly. From Lemma 3.1, we have

|e− e′| ≤ K(|ξi−1 − ξ′i−1| + θi−1(ξ0, ξ
′
0)). (30)

Let B0 = B(ξi−1)
|w∗

i−1(ξ0)| . Since w∗
i (ξ0) = B(ξi−1) · Cv, we have

M ′
i

Mi

=
M ′

i−1

Mi−1
· |B

′
0|

|B0|
· |C

′v|
|Cv| . (31)

To estimate
B′

0

B0
, we let u = wi−1(ξ0)

|wi−1(ξ0)| , and let e⊥ denote the unit vector orthogonal to e in

S(u,v). Then a straightforward computation (using the fact that 〈v, e⊥〉 ≈ 1) gives

|B0 −B′
0| =

∣

∣

∣

∣

〈u, e⊥〉
〈v, e⊥〉 −

〈u′, e′⊥〉
〈v, e′⊥〉

∣

∣

∣

∣

≤ 2(|u− u′| + |e⊥ − e′⊥|) ≤ 2(|u− u′| + |e− e′|). (32)

This together with |B0| ∼ dC(zi−1) gives

∣

∣

∣

∣

B′
0

B0
− 1

∣

∣

∣

∣

<
1

|B0|
(

b
1
2 ∆i−2 +K|ξi−1 − ξ′i−1|

)

<
K∆i−1(ξ0, ξ

′
0)

dC(zi−1)
. (33)
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For the last ratio,
∣

∣

∣

∣

|C′v|
|Cv| − 1

∣

∣

∣

∣

≤ K|ξi−1 − ξ′i−1| <
K∆i−1(ξ0, ξ

′
0)

dC(zi−1)
. (34)

Thus (6) is proved for step i by substituting (33) and (34) into (31) and taking K1 > 2K.

Case 3 At least one splitting period initiated previously expires at time i. Among the splitting
periods expiring at this time, let j be the time when the first one is initiated. Then

w∗
i (ξ0) = B(ξj) ·DT i−j

ξj
w0 +A(ξj) ·DT i−j

ξj
e(ξj). (35)

Let

B0 =
B(ξj)

|w∗
j (ξ0)|

, A0 =
A(ξj)

|w∗
j (ξ0)|

, V = DT i−j
ξj

v, E = DT i−j
ξj

e(ξj).

As before, all corresponding quantities for ξ′0 carry a prime. We shall use θi(ξ0, ξ
′
0) ≤ (I) + (II)

where

(I) :=

∣

∣

∣

∣

V ′

|V ′| −
V

|V |

∣

∣

∣

∣

and (II) :=

∣

∣

∣

∣

A′
0E

′

B′
0|V ′| −

A0E

B0|V |

∣

∣

∣

∣

.

Assume that zj is bound to η0 ∈ ΓθN . We apply our inductive hypotheses to the triple

(η0, ξj , ξ
′
j) for time i− j. From (7), we get (I) < b

1
2 ∆̂i−j−1 where

∆̂n =

n
∑

s=1

b
s
4 2ℓ̂n−s |ξj+n−s − ξ′j+n−s| (36)

and ℓ̂n−s is the longest splitting period ηn−s finds itself in. Clearly we have ℓj+n−s ≥ ℓ̂n−s + n0

where n0 is the minimum number of iterations between returns to C(1). Set n0 = 2 if there is
no return to C(1) between time j + 1 to i. Then ∆̂n < 2−n0∆j+n and (I) < 1

2b
1
2 ∆i−1.

For (II), we first write

(II) ≤ |A0|
|B0|

· |E
′ − E|
|V | +

∣

∣

∣

∣

A0

B0|V | −
A′

0

B′
0|V ′|

∣

∣

∣

∣

|E′|. (37)

From |A0|
|B0| ∼ 1

dC(zj)
, |E′ − E| ≤ (Kb)i−j(|ξj − ξ′j | + θj(ξ0, ξ

′
0)) (Lemma 3.1), and |V | > 1, we

obtain
|A0|
|B0|

|E′ − E|
|V | < K(Kb)

2
3 (i−j)∆j << b

1
2 ∆i−1. (38)

For the second term on the right side of (37), we write

∣

∣

∣

∣

A0

B0|V | −
A′

0

B′
0|V ′|

∣

∣

∣

∣

|E′| ≤ (Kb)i−j |A′
0|

|B′
0|

· 1

|V | ·
(∣

∣

∣

∣

A0

A′
0

· B
′
0

B0
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

1 − |V |
|V ′|

∣

∣

∣

∣

)

≤ (Kb)i−j

dC(zj)

( |A0|
|A′

0|

∣

∣

∣

∣

B′
0

B0
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

A0

A′
0

− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

1 − |V |
|V ′|

∣

∣

∣

∣

)

.

This is estimated term by term: For the first term,

(Kb)i−j

dC(zj)
· |A0|
|A′

0|
·
∣

∣

∣

∣

B′
0

B0
− 1

∣

∣

∣

∣

≤ (Kb)i−j

dC(zj)
· ∆j

dC(zj)
< (Kb)

i−j
3 ∆j << b

1
2 ∆i−1 (39)

because b
i−j
3 ≈ dC(zj) by the definition of splitting period. For the second term,

(Kb)i−j

dC(zj)
·
∣

∣

∣

∣

A0 −A′
0

A′
0

∣

∣

∣

∣

≤ (Kb)i−j

dC(zj)
K∆j << b

1
2 ∆i−1 (40)
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because A′
0 ≈ 1 and |A0 −A′

0| ≤ K(|ξj − ξ′j | + θj(ξ0, ξ
′
0)). Finally, for the third term, we have

(Kb)i−j

dC(zj)

∣

∣

∣

∣

1 − |V ′|
|V |

∣

∣

∣

∣

≤ (Kb)i−j

dC(zj)

i−j−1
∑

k=1

K1∆̂k

dC(zk+j)
< K1(Kb)

2
3 (i−j)

i−1
∑

k=j

eα(k−j)∆k << b
1
2 ∆i−1.

(41)

Here we have used our inductive assumption (6) for |V ′|
|V | . Putting (38)-(41) together, we conclude

(II) << b
1
2 ∆i−1. Hence θi(ξ0, ξ

′
0) < (I) + (II) < b

1
2 ∆i−1.

To compare magnitudes, we write

M ′
i

Mi

=
M ′

j

Mj

· |B
′
0V

′ +A′
0E

′|
|B0V +A0E| ≤

M ′
j

Mj

· |V
′|

|V | · |B
′
0|

|B0|
·



1 +

∣

∣

∣

V ′

|V ′| − V
|V | +

A′
0E′

B′
0|V ′| − A0E

B0|V |

∣

∣

∣

∣

∣

∣

V
|V | + A0E

B0|V |

∣

∣

∣





Since |A0|
|B0| ∼

1
dC(zj)

and |E|
|V | ≤ d3

C(zj) (by the definition of the splitting period at zj) , it follows

that |A0E|
|B0V | << 1, giving

M ′
i

Mi

≤
M ′

j

Mj

· |V
′|

|V | · |B
′
0|

|B0|
·
(

1 + 2

∣

∣

∣

∣

V ′

|V ′| −
V

|V |

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

A′
0E

′

B′
0|V ′| −

A0E

B0|V |

∣

∣

∣

∣

)

. (42)

We estimate the contributions from the first three ratios on the right side. Applying our inductive

assumption (6) to the first ratio, we obtain an upper bound of exp{K1

∑j−1
n=1

∆n(ξ0,ξ′
0)

dC(zn) }. Let zj

be bound to η0 ∈ ΓθN . Applying inductive assumption (6) to (η0, ξj , ξ
′
j), we obtain

|V ′|
|V | ≤ 1 + 2−n0+1K1

i−j−1
∑

k=1

∆j+k

dC(zk+j)
= 1 +

K1

2n0−1

i−1
∑

k=j+1

∆k

dC(zk)
. (43)

Observe that without the factor 2−n0+1 in front of K1, there would be no room for contributions

from the remaining terms (unless we allow K1 to increase).
|B′

0|
|B0| is estimated as in (33), giving

∣

∣

∣

∣

B′
0

B0
− 1

∣

∣

∣

∣

<
K∆j

dC(zj)
. (44)

Since K is independent of K1, this term is easily absorbed. Finally the terms inside parentheses
in (42) sum up to

< 1 + 2θi(ξ0, ξ
′
0) < 1 + 2b

1
2 ∆i−1(ξ0, ξ

′
0). (45)

Substituting (43)-(45) into (42), we complete the proof of (6) for the triple (z0, ξ0, ξ
′
0) at step i.

�

Proof of Lemma 5.1: From Sublemm A.14.1, we have ℓn−s < Kαθ(n − s), from which it

follows that ∆n <
∑n

s=0 b
s
4 e−

1
2β(n−s) < 2e−

1
2βn. We now choose b small enough, and follow the

last part of the proof of Sublemma A.1.1 in Appendix A.1 to finish. �

A.15 Properties of w∗
i along controlled orbits (Sect. 5.3A,B)

Proof of Lemma 5.2: We may assume that ξi is in a splitting period, otherwise there is
nothing to prove. Let i1 < i ≤ i2 be the longest splitting period containing i. By Sublemma
A.14.1 we have i2 − i1 ≤ Kαθi. Let wi1 = Ae+Bv be the usual splitting. An upper bound for
|w∗

i | in terms of |wi| is then given by

|w∗
i | ≤ Ki−i1 |B| ≤ Ki−i1 |w∗

i2
| = Ki−i1 |wi2 | ≤ Ki−i1(Ki2−i|wi|) ≤ Kεi|wi|.
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The first “≤” uses the fact that
|w∗

j+1|
|w∗

j |
≤ some K, the second uses |w∗

i2
| > K−1|B|, and the third

‖DT ‖ ≤ K.
To obtain an upper bound for |wi| in terms of |w∗

i |, we let j1 < · · · < jn be the return times
between i1 and i with the property that the splitting period initiated at each jk extends beyond
i. Using the nested structure of splitting periods, and from the way w∗

i is defined, we have |wi| ≤
Ki−i1 |wi1 | ≤ Ki−i1 |ξi1−φ(ξi1 )|−1|ξj1−φ(ξj1 )|−1 · · · |ξjn

−φ(ξjn
)|−1|w∗

i |. From Sublemma A.14.1
and (A2), we have i− jk < Kαθ(i− jk−1) < · · · < (Kαθ)k+1i1 and |ξjk

− φ(ξjk
)| > e−α(i−jk−1).

Hence |wi| < Ki−i1eα(1+2Kαθ)i1 |w∗
i | < Kεie2αi|w∗

i |. �

Proof of Lemma 5.3: Observe first that if t is any return, and ℓt is its splitting period, then
by Corollary 5.1, w∗

i aligns correctly at all returns in the time interval (t, t+ ℓt) with 2ε0-error.
This is because before the rejoining of the vector split off at time t, the situation is identical to
that in Proposition 5.1.

To prove the lemma, we consider, in the notation of Proposition 5.2, one bound interval
[ni, ni + pi) at a time. At time ni, we have correct alignment by assumption. From the observa-
tion in the first paragraph, it suffices to consider returns at time t ∈ (ni, ni + pi) where ξt is not
in any splitting period. Write w∗

ni
= Bv +Aepi

. Then wt = B ·DT t−ni

ξni
v +A ·DT t−ni

ξni
epi
. The

first of these two vectors has length > K−1e−α(t−ni)eλ(t−ni) and aligns correctly with < 2ε0-
error at time t by Corollary 5.1. Addition of the second, which has length < (Kb)t−ni , changes
the angle of alignment by an insignificant amount relative to dC(ξt) > e−α(t−ni). Thus wt aligns
correctly with < 3ε0-error. �

A.16 Derivative growth along controlled orbits (Sect. 5.3C)

Proof of Lemma 5.4: We give a proof in the case where j exists; the other case is simpler.
Let k ≤ i1 < i1 + p1 ≤ i2 < i2 + p2 ≤ · · · ≤ ir = j < n be defined as follows: we let i1 be the
first return to C(1) at or after time k, p1 the bound period of zi1 , i2 the first return after i1 + p1,

and so on until ir = j. Writing k = i0 + p0, we have that
|w∗

n|
|w∗

k
| is a product of factors of the

following three types:

I :=
|w∗

is+1
|

|w∗
is+ps

| , II :=
|w∗

is+1+ps
|

|w∗
is+1

| and III :=
|w∗

n|
|w∗

j |
.

First we prove the lemma assuming that no splitting periods initiated before time k expires
between times k and n. By Lemma 3.5, I ≥ 1

2c2e
1
4λ0(is+1−(is+ps)). By Proposition 5.2(ii),

II ≥ K−1e
λ
3 ps+1 . Moreover, K−1 can be easily absorbed into the exponential estimate for

the bound period [is, is + ps]. For III, let ℓ be the splitting period initiated at time j. If
ℓ > n − j, then III ≥ K−1dC(ξj)e

λ(n−j). If not, we split w∗
j into w∗

j = Aen−j + Bv where
en−j is the most contracted direction of order n − j at ξj in S = S(v, w∗

j ). (Note that en−j

is well-defined.) Then III ≥ K−1dC(ξj)e
λ(n−j) − (Kb)n−j . The last term is negligible because

dC(ξj) ∼ b
ℓ
3 >> (Kb)n−j. Altogether, this gives

|w∗
n|

|w∗
k
| ≥ K−1dC(ξj)e

λ′(n−k) for some λ′ > 0 as

claimed.
To finish this proof, we view contributions from splitting periods initiated before time k as

perturbations of the estimates above, and verify that they are in fact inconsequential. �

Proof of Lemma 5.5: The case where ξk is not in a splitting period is contained in Lemma
5.4. Let j be the starting point of the largest splitting period covering ξk. We claim that its
length ℓ is < Kθ(n−j). If not, then we would have |ξj−z0| < bKθ(n−j) where z0 = φ(ξj), so that
for all m̂ with n− j < m̂ ≤ n, |ξm̂ − zm̂−j | < ‖DT ‖m̂−jbKθ(n−j) < e−β(m̂−j), contradicting our
assumption that ξn is free. Since n− j > p(ξj) >> ℓ(ξj) > k− j, it follows that ℓ < 2Kθ(n−k).
By Lemma 5.4, |wn| > K−1δeλ′(n−j)|wj | ≥ K−1δeλ′(n−k)K−ℓ|wk|. �
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A.17 ‖DT i−s
ξs

‖ and wi(ξ0) (Sect. 5.3C)

It suffices to show for any (fixed) unit vector u ∈ R
m that |DT i−s

ξs
u| ≤ Ke−λ̂s|wi|. Since this

involves only two vectors, the problem is a 2-dimensional one.
To understand the result, recall that in 2D, we have, by simple linear algebra,

‖DT i
ξ0
‖ = ‖DT s

ξ0
‖‖DT i−s

ξs
‖ · ∠(es(DT

−s
ξs

), ei−s(DT
i−s
ξs

)). (46)

Note that ‖DT i
ξ0
‖ ∼ |wi| and ‖DT s

ξ0
‖ ∼ |ws|. This is because |wj | > eλ′′j for j = 1, 2, · · ·

(Lemmas 5.2 and 5.4), so that Lemma 3.1 applies, and since w0 makes a definite angle with
e1 = e1(DT ), it makes a definite angle with ej = ej(DT

j) for all j. Plugging these estimates
into (46), we obtain

‖DT i−s
ξs

‖ ∼ |wi|
|ws|

· ∠(es(DT
−s
ξs

), ei−s(DT
i−s
ξs

)).

The key, therefore, is to understand the angle in the displayed formula above, and to compare it
to |ws|, which is > eλ′′s. This angle is clearly more delicate during or around splitting periods.

Sublemma A.17.1 Let t be a return time to C(1) for ξ0. We denote its splitting period by ℓt,
and let It := (t− 5ℓt, t+ ℓt). Then modifying It slightly to Ĩt = (t− (5± ε)ℓt, t+ (1± ε)ℓt), we
may assume {Ĩt} has a nested structure.

Proof: We consider t = 0, 1, 2, · · · in this order, and determine, if t is a return time, what Ĩt will
be. The right end point of Ĩt is determined by the following algorithm: Go to t+ ℓt, and look for
the largest t′ inside the bound period initiated at time t with the property that t′ − 5ℓt′ < t+ ℓt.
If no such t′ exists, then t+ ℓt is the right end point of Ĩt. If t′ exists, then the new candidate
end point is t′ + ℓt′ , and the search continues. For the same reasons as in the proof of Lemma
4.6, the increments in length are exponentially small and the process terminates.

As for the left end point of Ĩt, it is possible that t − 5ℓt ∈ Ĩt′ for some t′ the bound period
initiated at which time does not extend to time t. This means that ℓt′ << ℓt, and since we
assume a nested structure has been arranged for Ĩt′ for all t′ < t, we simply extend the left end
of Ĩt to include the largest Ĩt′ that it meets. ♦

Let us assume this nested structure and write It instead of Ĩt from here on.

Sublemma A.17.2 For s 6∈ ∪It, we have, for all j with 1 ≤ j < i− s, |ws+j | ≥ b
j
9 |ws|.

Proof: We fix j and let r be such that ξr makes the deepest return between times s and s+ j.
Let j′ be the smallest integer ≥ j such that ξs+j′ is outside of all splitting periods. Then, from
Lemma 5.4, it follows that

|ws+j | ≥ K−Kθ(j′−j)|ws+j′ | ≥ K−Kθ(j′−j)dC(zr)|ws| ≈ K−Kθ(j′−j)b
ℓr
3 |ws|. (47)

Case 1. s + j 6∈ Ir. In this case, 6ℓr < j since Ir is sandwiched between s and s + j,
and j′ − j ≤ ℓr because r is the deepest return. The rightmost quantity in (47) is therefore

> K−ℓrb
ℓr
3 |ws| > b

j
9 |ws|.

Case 2. s+ j ∈ Ir. The argument is as above, except we only have 5ℓr < j.
This completes the proof of the sublemma. ♦

Proof of Lemma 5.6: Consider the case s 6∈ ∪It, and assume for the moment that dC(ξs) ≥
δ0. Then by Sublemma A.17.2 ei−s(ξs) is well defined, and since ws is b-horizontal, we have
∠(ws, ei−s(ξs)) > K−1 by Lemma 3.6. Thus ‖DT i−s

ξs
‖ |ws| ≤ K|DT i−s(ξs)ws| = K|wi|, which

together with |ws| > eλ′′s gives the desired estimate. For s with s 6∈ ∪It and dC(ξs) < δ0,
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consider ξs+1. It remains to prove the lemma for s ∈ ∪It. Let Ir be the maximal It-interval
containing s. Observe that 6ℓr < Kαθs (recall that ξ0 obeys (A2)). If i ∈ Ir, then ‖DT i−s

ξs
‖ <

K6ℓr << e
1
2λ′′i < e−

1
2λ′′seλ′′i < e−

1
2λ′′s|wi|. If i 6∈ Ir, let s′ = r + ℓr. Then s′ 6∈ ∪It. This case

having been dealt with, we have

‖DT i−s
ξs

‖ ≤ ‖DT s′−s
ξs

‖ · ‖DT i−s′

ξs′
‖ ≤ K6ℓr ·Ke−λ̂s′ |wi|.

�

A.18 Quadratic turn estimates (Sect. 5.3D)

Proof of Proposition 5.3: We fix s1 > 0, and let p∗ = min0<s≤s1{p(ξ0(s), z0),M}. All
time indices i considered are ≤ p∗, and all s considered are in (0, s1), with further restrictions
indicated where necessary. For s ∈ (0, s1) and S = S(γ′,v), ep∗ = ep∗(S) is well defined by
Proposition 5.1. Let

γ′(s) = A0(s)ep∗(s) +B0(s)v. (48)

Then
γ′i(s) = A0(s)DT

iep∗(s) +B0(s)wi(s).

All splitting periods below are determined by the orbit of z0; we use them for all the ξ0(s) in
question. Writing

wi(s) = wi(0) + (w∗
i (s) − w∗

i (0)) + (Ei(s) − Ei(0))

where
Ei(s) =

∑

k∈Λi

Ak(s)DT i−keℓk

and Λi is the collection of k > 0 such that the splitting period begun at time k extends beyond
time i, we arrive at the formula

ξi(s) − zi =

∫ s

0

γ′(u)du = wi(0)

∫ s

0

B0(u)du + I + II + III (49)

where

I =

∫ s

0

A0(u)DT
i(u)ep∗(u)du, II =

∫ s

0

B0(u)(w
∗
i (u) − w∗

i (0))du,

III =

∫ s

0

B0(u)(Ei(u) − Ei(0))du.

Plan of proof: We will prove that for i and s satisfying i ∈ [ℓ(s), p∗], the first term on the right
side of (49) dominates, so that assuming s1 is sufficiently small,

ξi(s) − zi ≈ wi(0)

∫ s

0

B0(u)du ≈ 1

2
B′

0(0)s2 wi(0).

The following estimate then completes the proof: Differentiating (48), we obtain γ′′ = A′
0ep∗ +

A0
d
ds
ep∗ + B′

0v. On the left side, |γ′′| = O(b) since γ is C2(b). On the right side, |A0
d
ds
ep∗ | ≈

| d
ds
e1| > K−1 (Lemma 3.7) and 〈ep∗ , d

ds
ep∗〉 = 0. It follows therefore that B′

0v ≈ d
ds
e1.

We divide the main argument of the proof into the following two steps:

Step I. Estimates on |I|, |II| and |III|
We begin with |I|. We have A0(s) ≈ 1, so that |I| ≤ (Kb)is << s2 provided bi < bℓ(s) := s2.

This is where the lower bound on i is used for each s.
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By assumption, z0 is a critical point of order M . If p∗ = M , then B(0) = 0. For p∗ < M ,
B(0) may not be zero but we have |B(0)| < (Kb)p∗

. Since this error is negligible, we will write
B(0) = 0 in the computation that follows. For |II|, then, we have

|II| ≤ K|w∗
i (0)|

∫ s

0

u

∣

∣

∣

∣

|w∗
i (u)|

|w∗
i (0)| − 1

∣

∣

∣

∣

du ≤ K|w∗
i (0)|

∫ s

0

u





∑

j<i

∆j

dC(zj)



 du

≤ K|w∗
i (0)|

∫ s

0

u





∑

j<i

(2KαθjdC(zj))
−1



 sup
j<i

|zj − ξj(u)|du

≤ Ke2αi|w∗
i (0)|

∫ s

0

u sup
j<i

|zj − ξj(u)|du.

Here we have used Proposition 5.1 for the second inequality, and assumption (2) in Sect. 5.3D
and Sublemma A.14.1 for the next two.

To estimate |III|, we have, for each k ∈ Λi,

|AkDT
i−k
ξk

e(ξk) −Ak(0)DT i−k
zk

e(zk)|
≤ (Kb)i−k|Ak −Ak(0)| + |Ak(0)| |DT i−k

ξk
e(ξk) −DT i−k

zk
e(zk)|.

We claim that the first term can be estimated by

|Ak(u) −Ak(0)| < K|w∗
k(0)|e4αk sup

j<k

|zj − ξj | < K|w∗
i (0)|e5αi sup

j<i

|zj − ξj |.

For the first inequality, we use

∣

∣

∣

∣

Ak(u)

Ak(0)
− 1

∣

∣

∣

∣

≈
∣

∣

∣

∣

|w∗
k(s)|

|w∗
k(0)| (1 + O(|zk − ξk| + θk(ξ0(u), z0))) − 1

∣

∣

∣

∣

,

and |Ak(0)| ≤ K|w∗
k(0)|eαk because w∗

k(0) aligns correctly at time k. For the second inequality,
we use |w∗

k(0)| ≤ Keαk|w∗
i (0)| by virtue of Lemma 5.4 and assumption (2) in Sect. 5.3D.

Summing over all k ∈ Λi is not problematic because of the factor (Kb)i−k in front. For the
second term we use

|DT i−k
ξk

e(ξk) −DT i−k
zk

e(zk)| ≤ (Kb)i−k(|ξk − zk| + θk(ξ0(u), z0)).

This inequality is derived from Lemma 3.1. Altogether, we have proved

|II|, |III| < K|w∗
i (0)|e5αi

∫ s

0

u sup
j<i

|zj − ξj(u)|du. (50)

Step II. Proof of formula for |ξi(s) − zi|
Fix i0 so that e9αi0e−βi0 << 1. We define

Ui := Ke5αi sup
j≤i

|w∗
j (0)|

where K is the constant in the bound for |II| and |III| above. By choosing δ sufficiently small,
we may assume Ui0s

2 ≤ Ui0δ
2 << 1. We now prove inductively (and in tandem) the following

two statements:

(i) Ke2αiUjs
2 << 1,
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(ii) |ξj(s) − zj| ≈ 1
2 | d

ds
e1(0)||wj(0)|s2, or, equivalently, |II|, |III| << |wi(0)|s2.

The first n0 steps, where the entire action takes place away from C(1), are trivial. We assume
now that (i) and (ii) have been proved for all j < i, and prove (i) for step i. Using Lemmas 5.2
and 5.4, one has

sup
j≤i

|w∗
j (0)| < eαi|w∗

i (0)| ≤ e2αi|wi(0)| ≤ Ke2αi|wi−1(0)|.

This combined with (ii) for step i− 1 gives

Uis
2 ≤ Ke5αi (Ke2αi|wi−1(0)|)s2 ≈ K2e7αi| d

ds
e1(0)|−1|ξi−1(s) − zi−1|.

Thus

Ke2αiUis
2 ≤ K2e9αi| d

ds
e1(0)|−1e−β(i−1) << 1, (51)

proving (i). To prove (ii), first observe that from Lemmas 5.2 and 5.4 we have

|wj(0)| < e2αi|wi(0)| (52)

for all j < i. We claim that

|II| + |III| ≤ 2Ui

∫ s

0

u sup
j<i

|zj − ξj(u)| du ≤ KUi sup
j<i

|wj(0)|s4

≤ (Ke2αiUis
2)|wi(0)|s2 << |wi(0)|s2.

The first inequality above is the conclusion of Step I, the second is obtained by using (ii) for
j < i, the third is by (52), and the last is step i of (i). This completes the proof of Step II.

Step III. Monotonicity of s 7→ p(s):

To prove that the distance formula (Step II(ii)) holds for all i ∈ [ℓ(s), p(s1)] and 0 < s < s1,
it remains to show that p(s) is monotone in s so p∗ introduced at the beginning of this proof is
equal to min{p(ξ0(s1), z0),M}. To do this, we check that for s and i with i > ℓ(s),

∣

∣

∣

∣

d

ds
I

∣

∣

∣

∣

,

∣

∣

∣

∣

d

ds
II

∣

∣

∣

∣

,

∣

∣

∣

∣

d

ds
III

∣

∣

∣

∣

<< |B0(s)||wi(0)|.

Thus d
ds

(ξi(s) − zi) ≈ B0(s)wi(0) ≈ B′
0(0)s wi(0), i.e. |ξi(s) − zi| increases monotonically with

s. It follows by definition that p(s) is monotone in s. �

A.19 Sectional diameter of Q(k) (Sect. 6.3)

Proof of Lemma 6.2: Let ξk ∈ Q(k) be fixed. We argue as before that dC(ξi) > 2b
i
5 for

i = 1, · · · , k−1. Let S be a 2D subspace through ξ1 containing ξ1 and ξ1 + τ1. All constructions
are in S until the very end of the proof. There is clearly a stable curve γ1 of order one in S
passing through ξ1. Since dC(ξ1) > 2b

1
5 , γ1 makes an angle & b

1
5 with the x-axis by Lemma

3.7; thus it connects the two components of ∂(R1 ∩ S). We wish to borrow the argument in
Appendix A.7 to construct inductively stable curves γi of order i, i = 2, 3, · · · , k, through ξ1, but
are prevented from doing so due to the following technical problem: with κ = b

1
5 , Lemma 3.2 (a

general perturbative result) does not apply. We seek instead to use Lemma 5.4, which relies on
the control of (ξ1, τ1) for k iterates, to estimate the growth of τi. Details of the argument are
as follows:

90



Assume that γi = γi(S) with the following properties has been constructed: (i) γi is tangent
to ei, passes through ξ1 and connects the two components of ∂R1 ∩ S; and (ii) for ξ ∈ γi,

dC(T jξ) > 3
2 b

j
5 for 1 ≤ j ≤ i.

To construct γi+1 we let Ui be the b
i+1
4 -neighborhood of γi. Then the following hold for all

ξ ∈ Ui: First, dC(T jξ) > b
j
5 , so if τ1 is tangent to F1 at ξ, then (ξ, τ1) is provisionally controlled

by Γk for i iterates.

Claim: |τj | > (Kb)
j
5 for j ≤ i.

Proof: If T jξ is out of all splitting periods, then |τj | > (Kb)
j
5 by Lemma 5.4. If not, let

j1 < j be the time at which the longest splitting period extending beyond j is initiated. Since

dC(T j1ξ) > b
j1
5 , it follows that lj1 , the splitting period initiated at j1, is < 3j1

5 . Thus |τj | >
(‖DT ‖)−3

5 j1 |τj1+ℓj1
| > (‖DT ‖)− 3

5 j1b
j
5 ; the second inequality is obtained by applying Lemma

5.4 to τj1+lj1
. ♦

By Lemma 3.1, ei+1(ξ) is well-defined, |DT j
ξ (ei+1)| < (Kb

3
5 )j for all j ≤ i+ 1, |ei+1 − ei| <

(Kb
3
5 )i, and | d

ds
(ei+1 − ei)| < (Kb

2
5 )i. Let γi+1 be the integral curve of ei+1 through ξ1. We

verify following the computation in Appendix A.7 that |γi+1 − γi| < Kb
3
5 i, so γi+1 stays in Ui

until it meets ∂R1 ∩ S. Properties (i) and (ii) are again valid for γi+1.
To finish, we let W = T k−1W1 where W1 = ∪Sγk(S), the union being taken over all 2D

planes S containing ξ1 and ξ1 + τ1. �

A.20 Geometry of monotone branches (Sect. 7.3)

The proof of Lemma 7.1 uses material in Sects. 7.3, 8.1 and 8.2.

Proof of Lemma 7.1: Let T ∈ GN . For k ≤ θN , let R̂1,k = {ξ1 ∈ R1 : ξk ∈ ∪M∈Tk
M◦}. Then

for ξ1 ∈ R̂1,k and time indices ≤ k, bound periods p(ξi) for ξi ∈ C(1) are well defined and {p(ξi)}
has a nested structure, i.e., i+ p(ξi) ≥ j + p(ξj) for ξi, ξj ∈ C(1) satisfying i < j < i+ p(ξi). We

introduce a function bk(ξ1) on R̂1,k as follows:

– if ξk is free, then bk(ξ1) = 0;
– if ξk is bound to some point and the bound period lasts beyond time θN , then having no

knowledge of events beyond time θN , we set bk(ξ1) = ∞;
– if (j, j + p(ξj)) is the longest bound period ξk finds itself in, and j + p(ξj) ≤ θN , then we

set bk(ξ1) = j + p(ξj) − k.

That is to say, bk(ξ1) gives the number of iterates it takes for ξk to become free – without
knowledge of events after time θN . We observe immediately that due to the nested structure of
{p(ξi)}, if bk−1(ξ1) = i, 0 < i ≤ ∞, then bk(ξ1) = i− 1.

Let l be an arbitrary F1-leaf parametrized by s. Then bk is defined on lk := l ∩ R̂1,k, and
the T k−1-images of the connected components of lk are exactly the maximal Fk-segments in M◦

for M ∈ Tk. We say bk restricted to ω = l(s1, s2) ⊂ lk is a U -shaped function if there exists
s∗ ∈ (s1, s2) such that bk is non-creasing on l(s1, s

∗] and nondecreasing on l[s∗, s2). Lemma 7.1
is reduced to the following. We claim that on all connected components of lk, bk is a U -shaped
function, and leave the proof to the reader as an exercise. �

Proof of Corollary 7.1: Corollary 7.1 follows immediately from the arguments above. The
numbers K1 and K2 are determined from f0 as follows: Let x̂1 < x̂2 < · · · < x̂r = x̂0 be the
critical points of f0, and let Ii = (x̂i−1, x̂i). Then

K1 = max
1≤i≤r

Ni and K2 = max
1≤i≤r

∑

1≤j≤r

Lij
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where Ni is the number of Ij-intervals counted with multiplicity f0(Ii) intersects at least par-
tially, and Lij is the cardinality of f0(Ij) ∩ {x̂i}. �

A.21 Branch replacement (Sect. 8.3)

Proof of Lemma 8.2: Let 1
3H be the middle third of H . We will show T−iM◦ is inside 1

3H

so T−iM ⊂ H . To prove T−iM◦ ⊂ 1
3H , it suffices to show that if we start from B(k−i) ⊂ H

and move right along any Fk−i-segment γ, we will get out of T−iM◦ before we reach the end of
1
3H . Suppose, to derive a contradiction, that this is not true for some γ. Then every point in

γ, which we may assume runs from B(k−i) to the right end of 1
3H , is controlled for the next i

iterates. We will show if this is the case then there exists j < Kα(k − i) such that T jγ crosses
some Q(1). It follows that T jγ crosses some B(k−i+j).

Let γ0 be a segment of γ such that πx(γ0) = Iµj(x̂) for some Iµj(x̂) with µ ∼ 2α(k− i) (See
Sect. 2.2 for a formal definition of Iµj), and let γi = T iγ0. We follow the argument in Sect. 9.2
to conclude that γi obeys the rules (P1’) and (P2’) in Sect. 9.2C (leaving details as an exercise
to the reader). That T jγ crosses Q(1) for some j < Kα(k − i) is then proved by repeating the
proof of Lemma 2.4 using (P1’) and (P2’). �

Proof of Lemma 8.3: Let n1 be the smallest ℓ for which T−ℓSℓ ⊂ H .
First, we observe that if P1 is well defined and E′

1 remains active for at least n1 generations,
then all the offsprings of P1 survive, i.e. they are not discontinued, for at least n1 generations.
This is because the new ends created as the offsprings of P1 reproduce are younger than the
end originating from B̂(k−i), and so will last longer than it. It follows that Pj , j ≤ n1, are
well defined, and T n1−1P1 is a union of branches in Tk−i+n1 with adjacent ones overlapping in
critical blobs.

We prove next that Pn1 is subordinate to Sn1 .
Observe that since n1 is the smallest ℓ with the property that T−ℓSℓ ⊂ H , it follows that

Sn1−1 contains a B(k−i+n1−1) and Sn1 is the image of the subset of Sn1−1 between T n1−1B̂(k−i)

and this B(k−i+n1−1). We claim that T n1−2P1 meets the Q(k−i+n1−1) containing B(k−i+n1−1),
so that T n1−2P1 ∩ B(k−i+n1−1) contains a B(p+n1−1). To prove this, let z ∈ B(k−i+n1−1). By
Lemma 6.2, we know there exists a stable manifold W = W s

k−i+n1−1 whose T k−i+n1−1-image

contains z and along which T contracts at a rate ∼ b
1
2 . Since T k−i−1W meets every fiber in

H and has diameter < b
k−i−1

2 , the desired result follows from the relation between T−n1Sn1 , H
and P .

We explain why T n1−1P1 is a monotone branch: From the observation in the first paragraph
of this proof, we see that it suffices to show there are no critical blobs between T n1B̂(p) and
TB(p+n1−1): If there was one, look at when and where it was created, and argue that the
corresponding iterate of T−n1Sn1 also crosses some Q(j) containing it, leading to the existence
of a monotone branch of generation k − i+ n1 contained properly in Sn1 , which is absurd.

For n1 < j ≤ i, the arguments are as above, namely that if Sj subdivides, then so does Pj

in corresponding locations; and that no other subdivisions of Pj are possible. �

A.22 Dynamics on unstable manifolds (Sect. 9.2)

Proof of Lemma 9.1: As before, it suffices to prove correct alignment at free returns. In-
ducting on k, we let ξk be a free return, and let τ∗ denote the tangent to Fj at ξk where φ(ξk)
is of generation j. We need to show ∠(τk, τ

∗) < ε1dC(ξk), and our plan is to deduce that from
the control of foliations proved earlier.

Let n ≥ k be a sufficiently large number to be determined. We let ξk = ζn, so that τk is
a multiple of DT n

ζ0
τ , τ ∈ Xζ0 being a unit vector tangent to T k−nl0. Let τ̂1 ∈ Xζ0 be a unit
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vector tangent to F1. By the bound on | det(DT )|, we have

∠(DT n
ζ0
τ,DT n

ζ0
τ̂1) ≤ (Kb)n 1

|DT n
ζ0
τ |

1

|DT n
ζ0
τ̂1|

.

Observe that |DT n
ζ0
τ | > K−1eλ′′n: for the first n − k iterates, Lemma 3.5 applies since ζi is

essentially outside of C(1); for the next k iterates, use Lemma 5.4 and the fact that ξk is a free
return. The constraints on n are as follows: First, ζn must be in a monotone branch in Tn+1, so
that (ζ0, τ̂1) is controlled through this time, giving |DT n

ζ0
τ̂1| > K−1eλ′′n. This is not a problem

since ξ0 ∈ Ω. Second, we assume n ≥ j, so that our choice of φ(ζn) in the control of foliations
is compatible with the definition of φ(ξk). (A6) then guarantees ∠(DT n

ζ0
τ̂1, τ

∗) < ε1dC(ζn), and
the desired conclusion follows if n is large enough that ∠(DT n

ζ0
τ,DT n

ζ0
τ̂1) is negligible. �

Proof of Proposition 9.2: (P1’) is an easy exercise. (P2’)(iii) and (P3’) require the following
extensions of Proposition 5.1.

Sublemma A.22.1 The setting is as in Proposition 5.3. Let ξ0, ξ
′
0 ∈ γ be such that |ξ0 − ξ′0| <

1
10dC(ξ0), and let ℓ = ℓ(ξ0), p = p(ξ0). Then

(a) for ℓ < i ≤ p,
|ξi − ξ′i|
|ξi − zi|

< K6αi+1 |ξ0 − ξ′0|
dC(ξ0)

;

(b) with wi = DT iv, we have

|wp(ξ0)|
|wp(ξ′0)|

< exp

{

K
|ξ0 − ξ′0|
dC(ξ0)

}

, ∠(wp(ξ0), wp(ξ
′
0)) ≤ Kb

1
2
|ξ0 − ξ′0|
dC(ξ0)

.

Proof: (a) We remark that this is a rough a priori bound in which factors of Kαi are allowed
to accumulate. Let s 7→ ξ0(s) be the parametrization of the segment from ξ0 to ξ′0. We write
S = S(τ,v), ep = ep(S), and decompose τ into τ = Aep +Bv. For ℓ < i ≤ p, since |DT i(ep)| is
negligible, we have

|DT i
ξ0
τ | ≈ |B||wi(ξ0)| where |B| ≈ | d

ds
e1| dC(ξ0). (53)

The combined use of Proposition 5.1, Lemma 5.1 and Lemma 5.2 gives, on the other hand,

|wi(ξ0(s1))|
|wi(ξ0(s2))|

,
|wi(ξ0)|
|wi(z0)|

≤ K3αi (54)

where s1, s2 are any parameters and z0 is the guiding critical point. Clearly, |B(s1)|/|B(s2)| < K.
We have thus shown that

|DT i
ξ0(s1)

τ |
|DT i

ξ0(s2)
τ | ≈

|B(s1)|
|B(s2)|

|wi(ξ0(s1))|
|wi(ξ0(s2))|

< K1+3αi. (55)

Using “∼” to denote omitted factors of K3αi so the main terms show up more clearly, we then
have for ℓ < i ≤ p:

(i) |ξi − ξ′i| . |DT i
ξ0
τ | · |ξ0 − ξ′0|;

(ii) |ξi − zi| ∼ (|wi(z0)| dC(ξ0)) · dC(ξ0).

(i) comes from |ξi−ξ′i| ≤
∫

|DT i
ξ0(s)τ(ξ0(s))|ds together with (55); (ii) is (A5)(iii). The assertions

in this sublemma are immediate upon comparing (i) and (ii), substituting in (53), and using the
comparison of |wi(ξ0)| and |wi(z0)| in (54).
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(b) Proposition 5.1 can be written as |wp(ξ0)|/|wp(ξ
′
0)| < exp{∑p−1

i=1 KDi} where

Di = 2Kαθi|ξi − ξ′i|
(

1

dC(zi)
+

b
1
4

dC(zi+1)
+ · · · + b

p−i
4

dC(zp)

)

< 2e2αi|ξi − ξ′i|.

The upper bound for |ξi − ξ′i| in (a) is used in the estimates below.

Case 1: i ≥ ℓ. Using |ξi − zi| < e−βi, we obtain Di < Ke−(β−Kα)i · |ξ0−ξ′
0|

dC(ξ0) .

Case 2: i < ℓ. Using |ξi − zi| ≤ ‖DT ‖i dC(ξ0) and b3ℓ < dC(ξ0), we obtain

dC(ξ0)

|ξ0 − ξ′0|
∑

i<ℓ

Di <
∑

i<ℓ

KidC(ξ0) < KℓdC(ξ0) < (dC(ξ0))
1−Kθ.

The angle estimate is similar. ♦

Remark: For i = p, the inequality sign in (i) in the proof of (a) becomes ∼ because T pγ is
roughly horizontal. The same argument then gives

|ξp − ξ′p|
|ξp − zp|

> K−6αp−1 |ξ0 − ξ′0|
dC(ξ0)

. (56)

Sublemma A.22.2 Letting τ and τ ′ be unit tangent vectors to γ at ξ0 and ξ′0 respectively, we
have

|DT p
ξ0
τ |

|DT p

ξ′
0
τ ′| < exp

{

K
|ξ0 − ξ′0|
dC(ξ0)

}

.

Proof: Splitting τ = Aep + Bv where ep is the most contracted direction of DT p in S(τ,v),
and letting V = DT p

ξ0
v, V ′ = DT p

ξ′
0
v, E = DT p

ξ0
ep, and E′ = DT p

ξ′
0
e′p, we obtain

|DT p
ξ′
0
τ ′|

|DT p
ξ0
τ | <

|V ′|
|V | · |B

′|
|B| · (1 + 2(I) + 2(II)). (57)

where

(I) =

∣

∣

∣

∣

V

|V | −
V ′

|V ′|

∣

∣

∣

∣

, (II) =

∣

∣

∣

∣

A′E′

B′|V ′| −
AE

B|V |

∣

∣

∣

∣

.

To obtain (57), we have used |AE| << |BV | and |A′E′| << |B′V ′|. For |V ′|
|V | , see Sublemma

A.22.1(b). Since γ is C2(b), we have |τ − τ ′| ≤ Kb
δ3 |ξ0 − ξ′0|. Lemma 3.1 then gives |ep − e′p| ≤

K|ξ0 − ξ′0|. The remaining estimates resemble those in the proof of Proposition 5.1 in Appendix
A.14. As in (32), we have

|B −B′|, |A−A′| < K(|ξ0 − ξ′0| + |ep − e′p| + |τ ′ − τ |) < K|ξ0 − ξ′0|. (58)

This gives |B′|
|B| ≤ 1 + |B′−B|

|B| < 1 +
K|ξ0−ξ′

0|
dC(ξ0)

. (I) is the angle part of Sublemma A.22.1(b). As in

case 3 in the proof of Proposition 5.1, (II) is bounded by the sum of a collection of terms of the
form

(i) = K
|E − E′|
dC(ξ0)

(ii) =
|E|

dC(ξ0)

∣

∣

∣

∣

B′

B
− 1

∣

∣

∣

∣

(iii) =
|E|

dC(ξ0)

∣

∣

∣

∣

A′

A
− 1

∣

∣

∣

∣

(iv) =
|E|

dC(ξ0)

∣

∣

∣

∣

|V ′|
|V | − 1

∣

∣

∣

∣

.

For (i), Lemma 3.1 gives |E −E′| < (Kb)p|ξ0 − ξ′0|. Observing that |E| << dC(ξ0), we estimate

(ii) using the bound on |B′|
|B| above, (iii) is similar, and (iv) is given by Sublemma A.22.1(b). ♦
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Proof of (P2’): Extending ω as a C2(b) curve to B(j)(ẑ0) if necessary, we obtain (P2’)(i) from
(A5)(i). For (ii), the desired bound follows from (A5)(ii) and (54) above. For (iii), (56) gives

|T p(ω)| ≥ K−1e−6αp|ξp − ẑ0| ·
|Iµj |
e−µ

> K−1 1

µ2
e−(β+6α)p >

1

µ2
e−K1αµ.

Proof of (P3’): Follow the proof of (P3) in Appendix A.1 and use Sublemma A.22.2. �

A.23 Bounds for d
da

z0 (Sects. 10.1 and 10.2)

Proof of Lemma 10.1: (a) To bound the first derivatives of u, it suffices to estimate ∂aψ and
∂axψ; bounds for ∂xψ and ∂xxψ are known since x 7→ γ(x, a) is C2(b). To pass between γ and
l = T−k

a γ, we use the notation

t(x, a) := πx(T−k
a γ(x, a)) and (X(t, a), Y (t, a)) := T k

a (t, y0),

assuming l ⊂ {y = y0}. Differentiating ψ(x, a) = Y (t(x, a), a), we obtain

∂aψ = ∂tY (t, a)∂at(x, a) + ∂aY (t, a). (59)

Here and in the rest of the proof, we use the fact that all first and second partial derivatives of
Y are bounded above by Kkb, and corresponding partials of X are bounded by Kk. Partials in
t, however, are potentially problematic and must be treated with care. To bound ∂at(x, a), we
write it as

∂at(x, a) = −∂aX(t, a)

∂tX(t, a)
. (60)

Since T k
a |l is controlled, |∂tX(t, a)| > 1, and so this term is < Kk. Thus |∂aψ| < Kk.

To estimate ∂axψ, we take one more derivative to obtain

∂axψ = ∂ttY ∂xt∂at+ ∂tY ∂axt+ ∂atY ∂xt.

Since t = t(x, a) is implicitly defined by x = X(t, a), we have |∂xt(x, a)| = |∂tX(t, a)|−1 < 1,
and finally

|∂xat(x, a)| =
1

|∂tX(t, a)|2 |∂atX∂xt∂tX − ∂ttX∂xt∂aX | < Kk+1.

This completes the proof of |∂axψ| < Kk+1.
To bound the second derivatives of u, we need to bound the third derivatives of ψ. These

are estimated similarly and are left to the reader. Since v = (v− 〈u,v〉u)/|v− 〈u,v〉u|, bounds
for ‖v‖C2 follow from those of u. This completes the proof of (a).

For (b) we cannot appeal simply to Lemma 3.1 because the bound on the C2-norms of u
and v in Lemma 10.1 is not a single number depending on the family Ta; it increases with the
generation of the critical point. We go directly instead to the formulas for the most contracted
directions in Appendix A.4II. Since ηk+1 is the quantity β in Appendix A.4II with S = S(u, v)
andM = DT k+1

a (γ(x, a)), we have ηk+1 = 〈Mu,Mv〉. (b) follows now from (a) and the C2-norm
of M . �

Proof of Lemma 10.3: From Proposition 10.1, z
(k)
0 (a) is well-defined on Jn with n = kθ−1.

Let k′ < k be the largest integer such that Q(k′)(a) ⊃ Q(k)(a), and let z
(k′)
0 (a) = z∗0(Q(k′)(a)).

Then (1 + 2θ)−1k ≤ k′ (see (A1’)) and |z(k′)
0 (a) − z

(k)
0 (a)| < Kb

k′

4 (Lemma 4.1).
The following calculus estimate will be used: Let g be a real valued C2-function defined

on an interval of length L, and assume that |g| ≤ M0 and |g′′| < M2. If 4M0 < L2, then
|g′| ≤ √

M0(1 +M2).
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To apply this estimate, we write z
(k)
0 (a) = (x

(k)
0 (a), y

(k)
0 (a)), and let g(a) = x

(k)
0 (a)−x(k′)

0 (a).

Then g is defined on Jn, so L = 2ρn = 2ρkθ−1

. Here M0 = Kb
k′

4 , and M2 = Kk from Corollary
10.1. Assuming bθ < ρ5, 4M0 < L2 holds. Therefore

∣

∣

∣

∣

d

da
(x

(k)
0 (a) − x

(k′)
0 (a))

∣

∣

∣

∣

< b
k′

8 Kk < b
k′

9 .

A similar estimate holds for d
da
y
(k)
0 . �

A.24 Equivalence of τ- and a-derivatives (Sect. 11.1)

Proof of Lemma 11.1: In this proof we fix i0 and let (a, b) → (a∗, 0). Recall that if
τ0 = (τ0,x, τ0,y), then by Corollary 10.2, τ0,y → 0 as b → 0. The two terms of V are estimated
as follows:

(i) Writing T i0
a∗,0 = (T 1, 0), we have, as b→ 0,

(DT i0
a )z0τ0 →

(

∂T 1

∂x
(x0, 0)τ0,x +

∂T 1

∂y
(x0, 0)τ0,y, 0

)

= (0, 0).

(ii) Assume zs stays out of C(1) for > i0 iterates. Then as (a, b) → (a∗, 0),

∑i0
s=1DT

i0−s
zs

ψ(zs−1)

|wi0 |/|w1|
→

(

∑i0
s=1(f

i0−s)′(xs(a
∗)) d

da
(fa(xs−1))(a

∗)

±(f i0−1)′(x1(a∗))
, 0

)

=

(

±
i0
∑

s=1

d
da

(fa(xs−1))(a
∗)

(fs−1)′(x1(a∗))
, 0

)

.

�

Proof of Lemma 11.2:

|∠(wi, τi)| ≈ |wi ∧ τi|
|wi||τi|

≤ 1

|τi|

(

i
∑

s=1

1

|wi|
|wi ∧DT i−s

zs
ψ(zs−1)| +

|wi ∧DT i
z0
τ0|

|wi|

)

≤ 1

|τi|

(

i
∑

s=1

|ws|
|wi|

∣

∣

∣

∣

ws

|ws|
∧ ψ(zs−1)

∣

∣

∣

∣

bi−s +
|τ0|
|wi|

bi

)

≤ K

|τi|
∞
∑

s=0

bs.

The last inequality is valid if |ws| ≤ |wi| for all s ≤ i, which is the case at free returns. �

A.25 Bound period estimates for parameters (Sect. 11.2)

We begin with some estimates on derivative comparisons. Let a, a′ ∈ ω̂ be as in Lemma 11.5.
We let ξ0 = ζn(a), ξ′0 = ζn(a′), wi(ξ0) = (DT i

a)ξ0v, wi(ξ
′
0) = (DT i

a′)ξ′
0
v and p = p(ω̂). We wish

to compare wi(ξ0) and wi(ξ
′
0) for i ≤ p.

Sublemma A.25.1 (Parameter version of Proposition 5.1) There exists K > 0 such that

|wi(ξ0)|
|wi(ξ′0)|

,
|wi(ξ

′
0)|

|wi(ξ0)|
≤ K3αi · exp







i−1
∑

j=0

Ke2αj |ξj − ξ′j | +Ki|a− a′|







for i ≤ p; (61)

∠(wp(ξ0), wp(ξ
′
0)) < b

1
2

p−1
∑

j=0

(Kb)
j
4 |ξp−j − ξ′p−j | +Kp|a− a′|. (62)
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Remarks (i) The factor K3αi in (61) can be dropped if ξi is out of all splitting periods (see the
proof below). (ii) We may assume the quantity inside brackets in (61) is << 1 (cf. Lemma 5.1).
This is because p < Kαn and |a− a′| < K̂e−λ′n (Proposition 11.1).

Proof: Let ηj = T j
aξ

′
0, vj = (DT j

a )ξ′
0
v. Then |wi(ξ0)|

|wi(ξ′
0)| = |wi(ξ0)|

|vi|
|vi|

|wi(ξ′
0)|

. Since |ξj − ηj | ≤
|ξj − ξ′j | + |ξ′j − ηj | < |ξj − ξ′j | +Kj|a− a′|, we have, by Proposition 5.1,

|wi(ξ0)|
|vi|

≤ K3αi exp







i−1
∑

j=0

Ke2αj|ξj − ηj |







≤ K3αi exp







i−1
∑

j=0

Ke2αj|ξj − ξ′j | +Ki|a− a′|







,

(63)
the K3αi factor being there to account for the discrepancy between wi(ξ0) and w∗

i (ξ0). Since
|wi(ξ

′
0)| > K−1 and |vi − wi(ξ

′
0)| < Ki|a− a′|, we have

|vi|
|wi(ξ′0)|

< 1 +
|vi − wi(ξ

′
0)|

|wi(ξ′0)|
< 1 +Ki|a− a′|, (64)

completing the proof of (61).
For (62), we write ∠(wp(ξ0), wp(ξ

′
0)) ≤ ∠(wp(ξ0), vp) + ∠(vp, wp(ξ

′
0)). By Proposition 5.1,

∠(wp(ξ0), vp) < b
1
2

p−1
∑

j=0

(Kb)
j
4 |ξp−j − ηp−j | < b

1
2





p−1
∑

j=0

(Kb)
j
4 |ξp−j − ξ′p−j | +Kp|a− a′|



 . (65)

To estimate ∠(vp, wp(ξ
′
0)), note that by (64) and Remark (ii) above, |vi|

|wi(ξ′
0)| ≈ 1 for all i ≤ p.

Proceeding inductively, we let i ≤ p
2 , u = vi

|vi| , and û =
wi(ξ

′
0)

|wi(ξ′
0)| . Since |w2i(ξ

′
0)| > K−1, we have

∠(v2i, w2i(ξ
′
0)) < |(DT i

a)ηi
u ∧ (DT i

a′)ξ′
i
û| |vi|

|v2i|
|wi(ξ

′
0)|

|w2i(ξ′0)|
≤

(

|(DT i
a)ηi

u ∧ (DT i
a)ηi

û| + |(DT i
a)ηi

u ∧ ((DT i
a)ηi

− (DT i
a′)ξ′

i
)û|
)

K2i

≤ (Kb)i∠(vi, wi(ξ
′
0)) +K4i|a− a′|.

We conclude inductively that ∠(vp, wp(ξ
′
0)) < K2p|a− a′|, completing the proof of (62). ♦

Sublemma A.25.2 (Parameter version of Sublemma A.22.1 in Appendix A.22) Let
ẑ0 = φ(ξ0(a)). Then

(a) for ℓ < i < p where ℓ is the splitting period of ξ0, we have

|ξi − ξ′i|
|ξi − ẑi|

< K6αi+1 |ξ0 − ξ′0|
|ξ0 − ẑ0|

,
|ξp − ξ′p|
|ξp − ẑp|

> K−6αp−1 |ξ0 − ξ′0|
|ξ0 − ẑ0|

;

(b)
|wp(ξ0)|
|wp(ξ′0)|

< exp{K |ξ0 − ξ′0|
dC(a)(ξ0)

+Kp|a− a′|}.

Proof: The proof follows closely that of Sublemma A.22.1 with the following modifications: In
part (a), we consider the parametrization of the critical curve ζnk

from ξ0 to ξ′0 by arclength,
and split its tangent vectors τ . The correctness of this splitting is a consequence of Lemma 11.2
and the fact that wnk

splits correctly. (53) is a statement about individual parameters. To prove
(54), we use Sublemma A.25.1 instead of Proposition 5.1. The rest of the proof then proceeds
as before. The term Kp|a− a′| in (b) is from the corresponding term in (61). ♦
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Proof of Lemma 11.5: Let ã ∈ ω̂ be the parameter at which the minimum in the definition
of p(ω̂) is attained. Then (a) is an immediate consequence of (A5)(i) for Tã.

Let ẑ0(a) = φa(ζn(a)). (b) follows from the fact that for all a ∈ ω̂ and j < p(ω̂), |ẑj(a) −
ẑj(ã)| ≤ Kj|ω̂| ≤ KαnK̂e−λ′n << e−βj. In the second inequality we have used p(ω̂) ≤ αn and

|ω̂| ≤ K̂e−λ′n, which follows from |ζn(ω̂)| ≤ 1 and Proposition 11.1.
(c) is proved via the following string of inequalities:

|τn+p(a)|
|τn(a)| > K̂−2 |wn+p(a)|

|wn(a)| > K−1K̂−2 |wn+p(ã)|
|wn(ã)| > K−1K̂−2e

p
3 λ.

The first inequality above is based on Proposition 11.1. For the second inequality, first recall that
for both of the maps Ta and Tã, since wn splits correctly, we have |wn+p| ≈ 1

2
de1

ds
dC(zn)|DT p

zn
(v)|·

|wn|. We then use Sublemma A.25.1 and the remarks following it to compare |(DT p
a )zn(a)(v)|

and |(DT p
ã )zn(ã)(v)|, and note that the other factors are comparable up to a fixed constant. The

last inequality follows from Proposition 5.2(2) for Tã.
(d) is a simple consequence of the bound on ∠(τn+i, wn+i) (Lemma 11.2) and the fact that

∠(wn+i, DT
i
zn

(v)) << 1 outside of splitting periods.
(e) is an application of the second inequality in Sublemma A.25.2(a). �

A.26 Distortion estimates for parameters (Sect. 12.2)

We prove Lemma 12.2 in this appendix. Let ω ∈ Qn−1 be as in Lemma 12.2, and let a, a′ ∈ ω.
Where no ambiguity arises, we will omit mention of the parameters and write zi = zi(a), z

′
i =

zi(a
′), wi = wi(z0) = (DT i

a)z0(v), w′
i = wi(z

′
0) = (DT i

a′)z′
0
(v), and similarly for τi and τ ′i .

Plan of proof: Since the formula for the evolution of τi is more involved, we again invoke

Proposition 11.1 and prove |wn|
|w′

n| < K. Let 0 < n1 < n1 + p1 ≤ n2 < n2 + p2 ≤ n3 < · · · <
nq + pq ≤ n be such that nk is a free return, pk is the ensuing bound period, and nk+1 is the
first return following nk + pk. We write

|wn| = |wn1 | ·
|wn1+p1 |
|wn1 |

· |wn2 |
|wn1+p1 |

· |wn2+p2 |
|wn2 |

· |wn3 |
|wn2+p2 |

· · · (66)

and estimate the factors in (66) separately. These factors are of two types, the more complicated

of which being
|wnk+pk

|
|wnk

| . In the proof of Lemma 11.5(c) in Appendix A.25, we reduced the

comparison of
|wnk+pk

|
|wnk

| to that of |DT pk
znk

(v)| with bounded error. A more refined estimate is

needed here to control the cumulative effect of these errors over time intervals that may contain
arbitrarily large numbers of bound periods. Such a comparison involves the difference in slopes
between wnk

and w′
nk

. Let θi := ∠(wi, w
′
i).

Sublemma A.26.1 (i) Let i0 be as in Proposition 11.1. Then θi0 < Ki0 |a− a′|.
(ii) For all k ≥ 1,

(a) θnk
< Kb

1
2 |znk

− z′nk
| + 2b

1
2 |a− a′| + b

1
2 (nk−(nk−1+pk−1))θnk−1+pk−1

,
with “ n0 + p0” in the inequality above replaced by “ i0” in the case k = 1;

(b) θnk+pk
≤ 2b

1
2

∑pk−1
j=0 (Kb)

j
4 |znk+pk−j − z′nk+pk−j | +Kpk |a− a′| + b

pk
4 θnk

.

Proof: (i) is straightforward using |z0 − z′0| < K|a − a′| from Corollary 10.2. (ii) follows from
estimates very similar to those in the proof of Proposition 5.1 (Appendix A.14). More precisely:

(a) Let Θj = ∠((DT j
a )znk+pk

wnk+pk
, (DT j

a′)z′
nk+pk

w′
nk+pk

). The assertion is proved induc-

tively by showing, as in case 1 of Proposition 5.1,

Θj ≤ b
1
2 (Θj−1 + |a− a′| + |znk+pk+j−1 − z′nk+pk+j−1|). (67)
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(b) Let p = pk, and write u =
wnk

(ξ0)

|wnk
(ξ0)| . Let e = ep(S) where S = S(u,v). As usual, we

split u into u = Bv + Ae. Following the computation in the proof of Proposition 5.1, Case 2,
we obtain

|B′ −B|, |A′ −A| < K(θnk
+ |znk

− z′nk
| + |a− a′|). (68)

Here |u−u′| = θnk
, and by Lemma 3.1, |e− e′| ≤ K(θnk

+ |a− a′|+ |znk
− z′nk

|). The rest of the
proof follows Case 3 in the same proof. As usual, we write V = (DT p

a )zn
v, V ′ = (DT p

a′)z′
n
v, E =

(DT p
a )zn

e, E′ = (DT p
a′)z′

n
e′. Then we have θnk+pk

≤ (I) + (II) where (I) = ∠(V, V ′), (II) =
∣

∣

∣

A′E′

B′|V ′| − AE
B|V |

∣

∣

∣. For (I) we use the angle part of Sublemma A.25.1. The other estimates involve

the same terms as in the proof of Proposition 5.1, case 3, and are carried out similarly. ♦

Corollary A.1 (i) θnk
≤ b

1
2 |znk

− z′nk
| +KKαn|a− a′|.

(ii) Letting u =
wnk

|wnk
| and p = pk, we have

|(DT p
a )znk

u|
|(DT p

a′)z′
nk
u′| < exp{K |znk

− z′nk
|

dC(a)(znk
)

+KKαn|a− a′|}.

Proof: (i) follows inductively from Sublemma A.26.1(ii). We use Kαn to dominate pk, and

assume n is sufficiently large that b
1
4 (n−i0)Ki0 < KKαn. For (ii), we split u as in part (ii)

of Sublemma A.26.1, obtaining
|(DT p

a )znk
u|

|(DT
p

a′ )z′
nk

u′| <
|B|
|B′|

|V |
|V ′|(1 + 2(I) + 2(II)). From the estimates

in Sublemma A.26.1(ii) and the bound on θnk
in (i) above, we see that the right side of this

inequality is bounded by terms of the form as claimed. ♦

Proof of Lemma 12.2 This proof follows that of (P3) in Appendix A.1. Letting ui = wi

|wi| ,

we write log |wn|
|w′

n| ≤ K
∑q

k=1(S
′
k + S′′

k ) where

S′
k = log

|(DT pk
a )znk

unk
|

|(DT pk

a′ )z′
nk
u′nk

| and S′′
k = log

|(DT nk+1−(nk+pk)
a )znk+pk

unk+pk
|

|(DT nk+1−(nk+pk)
a′ )z′

nk+pk

u′nk+pk
|

except for S′′
q which ends at index n− 1.

To estimate S′
k, we let σk = |znk

− z′nk
|. Then Corollary A.1(ii) gives S′

k < K |σk|
dC(znk

) +

KKαn|a − a′|. The sum
∑

k K
|σk|

dC(znk
) is estimated as in Appendix A.1. The additional term

representing parameter contributions sums to < nKKαn|a − a′| < nKKαne−λ′n, which is uni-
formly bounded in n.

∑

S′′
k , which treats iterates outside of C(1), is easily estimated to be

< K
|σq|

δ
+ nKKαne−λ′n. �
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