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Annals of Mathematics, 122 (1985), 509-539 

The metric entropy of diffeomorphisms 
Part I: Characterization of measures 
satisfying Pesin's entropy formula 

By F. LEDRAPPIER and L.-S. YOUNG* 

This is the first article in a two-part series containing some results in smooth 
ergodic theory. We begin by giving an overview of these results. Let M be a 
compact Riemannian manifold, let f: M -- M be a diffeomorphism, and let m 
be an finvariant Borel probability measure on M. There are various ways of 
measuring the complexity of the dynamical system generated by iterating f. 
Kolmogorov and Sinai introduced the notion of metric entropy, written hm(f) 
This is a purely measure-theoretic invariant and has been studied a good deal in 
abstract ergodic theory (see e.g. [Ro 2]). A more geometric way of measuring 
chaos is to estimate the exponential rate at which nearby orbits are separated. 
These rates of divergence are given by the growth rates of Dfn (the derivative of 
f composed with itself n times). They are called the Lyapunov exponents of f 
and are denoted in this paper by { Xi(x): x e M, i = 1, . . ., r(x)}. (See (1.1) for 
precise definitions.) 

The relationship between entropy and exponents has been studied before. A 
well-known theorem of Margulis and Ruelle [Ru 2] says that entropy is always 
bounded above by the sum of positive exponents; i.e., 

( * ) hm(f) < f Xt(x)dimEi(x)dm(x) 

where dim Ei(x) is the multiplicity of Xi(x) and a'= max(a, 0). Pesin shows 
that ( * ) is in fact an equality if f is C2 and m is equivalent to the Riemannian 
measure on M. This is sometimes known as Pesin's formula [P 2]. 

Our aim here is to further the study of relations of this type. In Part I we 
identify those measures for which equality is attained in (*) by their geometric 
properties. Part II is mainly devoted to proving a formula that is valid for all 

* Part of this work was done while the authors were visiting the Mathematical Sciences 
Research Institute of Berkeley, California. Partially supported by NSF Grant No. MCS 8120790 
and AFOSR-83-0265. 
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510 F. LEDRAPPIER AND L.-S. YOUNG 

invariant measures. This generalized formula contains, in some sense, the above 
mentioned results of Margulis, Ruelle and Pesin. It involves the notion of 
dimension and leads to certain volume estimates. These results are announced in 
[LY]. 

From here on our discussion will be confined to the subject of Part I. 
We attempt to give a brief history leading to this problem. Recall that in the 

ergodic theory of Anosov diffeomorphisms or of Axiom A attractors, there is an 
invariant measure that is characterized by each of the following properties: 

(1) Equality holds in (*). (In the literature such a measure is sometimes 
referred to as the equilibrium state of a certain function connected with the 
derivative of f.) 

(2) Its conditional measures on unstable manifolds are absolutely continuous 
with respect to Lebesgue. 

(3) Lebesgue a.e. point in an open set is generic with respect to this 
measure. 

(4) This measure is approximable by measures that are invariant under 
suitable stochastic perturbations. 

Each one of these properties has been shown to be significant in its own 
right, but perhaps more striking is the fact that they are all equivalent to one 
another. Many of these ideas are due to Sinai, Bowen and Ruelle. For further 
information and details we refer the reader to [A], [B], [Ki], [Ru 1], [S 1], [S 2] 
and [S 3]. 

At about the same time that progress was being made on uniformly 
hyperbolic systems, Oseledec [0] proved an ergodic theorem for products of 
matrices paving the way for analyzing dynamical systems of more general types. 
Pesin then set up the machinery for translating this linear theory of Lyapunov 
exponents into non-linear results in neighborhoods of typical trajectories [P 1]. 
Using these new tools he began to develop an ergodic theory for arbitrary 
diffeomorphisms preserving a measure equivalent to Lebesgue measure [P 2]. 
(The entropy formula we alluded to earlier is among these first results.) Part of 
his theory has since been extended and applied to dynamical systems preserving 
only a Borel measure. (See e.g. [Ka] and [Ru 3]; see also [M].) 

In view of these developments, it was natural to ask if some of the major 
results for uniformly hyperbolic systems would remain valid in the more general 
framework of all C2 diffeomorphisms. In particular, it was conjectured that 
properties (1) and (2) above were equivalent. That is, given a diffeomorphism 
preserving a Borel probability measure m, is it the case that Pesin's formula f 
holds if and only if m has absolutely continuous conditional measures on 
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THE METRIC ENTROPY OF DIFFEOMORPHISMS. I 511 

unstable manifolds? It is to this conjecture that we shall address ourselves in 
Part I. 

Results partially confirming this conjecture were obtained earlier. That (2) 
implies (1) is an extension of Pesin's theorem and was proved in [LS]. The 
reverse implication was proved by the first author [L] under the additional 
stipulation that the system be at least nonuniformly hyperbolic. We now remove 
this assumption, confirming the above conjecture in full generality. 

To carry out this last step, we have found it necessary to consider explicitly 
the role played by zero exponents. Indeed, a good portion of our proof consists of 
an attempt to obtain some control over these nonhyperbolic parts of the 
dynamical system. 

This paper proceeds as follows: Definitions and precise statements of results 
are given in Section 1. In Section 2 we discuss the estimates and constructions 
associated with partial nonuniform hyperbolicity. Two partitions are described in 
Section 3. They are used to estimate the various entropies. Section 4 contains 
some technical lemmas. These together with all the previous constructions are 
used in Section 5 to prove the main proposition. The proofs of the theorems are 
then completed in Section 6. 

It is our pleasure to thank our families and a long list of friends and 
colleagues whose interest and support contributed to the existence of this 
manuscript. The first author wishes also to acknowledge the hospitality of the 
University of Maryland. 

Standing hypotheses for the entire paper 

A. M is a C' compact Riemannian manifold without boundary; 
B. f is a C2 diffeomorphism of M onto itself; 
C. m is an finvariant Borel probability measure on M. 

1. Definitions and statements of results 

(1.1) For x E M, let TxM denote the tangent space to M at x. The point x 
is said to be regular if there exist numbers X1(x) > ... > r(x)(x) and a 
decomposition of the tangent space at x into TxM = El(x) ED ... * Er(x)(x) 
such that for every tangent vector v = 0 E Ei(x), 

lim -1loglDfxnvlj = Xi(x) and 

r(x) 
lim -logIJac(Dfx)I = >.X(x)dim Ei(x). 

n?0 i+= 

This content downloaded from 128.122.114.35 on Mon, 15 Sep 2014 23:43:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


512 F. LEDRAPPIER AND L.-S. YOUNG 

By a theorem of Oseledec [0], the set F" of regular points is a set of full measure. 
The numbers Xi(x), i = 1,..., r(x), are called the Lyapunov exponents of f at 
x; dim Ei(x) is called the multiplicity of Xi(x). The functions x '-* r(x), Xi(x) 
and dim Ei(x) are invariant along orbits, and so are constant almost everywhere 
if m is ergodic. 

( 1.2) Define 

Es(x) = E Ei(x), 
xi<o 

Ec(x) = Eio(x) where Xio(x) = 0, 

Eu(x) = @ Ei(x) and 
Xi>o 

Ws(x) = {y E M: lim sup-log d (f'x, f'y) < 0 

where d is the Riemannian metric on M. The set WS(x) is called the stable 
manifold at x. For x E F', if dim Es(x) # 0, then Ws(x) is an immersed 
submanifold of M of class C2, tangent at x to Es(x). The collection 
{ Ws(x), x E F') is sometimes referred to as the "stable foliation" of f. The 
unstable manifold at x, denoted by Wu(x), and the "unstable foliation" are 
defined analogously using f-' instead of f. (See [Ru 3] or [FHY] for more 
details; see also ? 2.2 and 4.2.) If W is an immersed submanifold of M, then it 
inherits a Riemannian structure from M. We denote the corresponding Rieman- 
nian measure on W by lLw. 

(1.3) Let V be the Borel a-algebra on M completed with respect to m. 
Then (M, A2, m) is a Lebesgue space; i.e., it is isomorphic to [0, 1] with Lebesgue 
measure union a countable number of atoms. A measurable partition ( of M is a 
partition of M such that, up to a set of measure zero, the quotient space M/l is 
separated by a countable number of measurable sets (see [Ro 1]). The quotient 
space of a Lebesgue space with its inherited probability space structure is again a 
Lebesgue space. An important property of measurable partitions is that associ- 
ated with each A, there is a canonical system of conditional measures: That is, for 
every x in a set of full m-measure, there is a probability measure mt defined on 
((x), the element of ( containing x. These measures are uniquely characterized 
(up to sets of m-measure 0) by the following properties: If Mt is the sub-a- 
algebra of . whose elements are unions of elements of A, and A c M is a 
measurable set, then x '-* mt(A) is 4-measurable and m(A) = fmt(A)m(dx). 

(1.4) Let ( be a measurable partition of M. 
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THE METRIC ENTROPY OF DIFFEOMORPHISMS. I 513 

Definition 1.4.1. We say that t is subordinate to the Wu-foliation if for 
m-a.e. x, we have 

1. ~(x) c WU(x) and 
2. ((x) contains a neighborhood of x open in the submanifold topology of 

WU(x). 

Note that in general the partition into distinct Wu-manifolds is not a 
measurable partition and that in order for the notion of conditional measures on 
unstable manifolds to make sense it is necessary to work with measurable 
partitions subordinate to Wu. 

Definition 1.4.2. We say that m has absolutely continuous conditional 
measures on unstable manifolds if for every measurable partition t subordinate 
to WU, mt is absolutely continuous with respect to tLWu(x) for a.e. x. 

(1.5) THEOREM A. Let f: M <-- be a C2 diffeomorphism of a compact 
Riemannian manifold M preserving a Borel probability measure m. Then m has 
absolutely continuous conditional measures on unstable manifolds if and only if 

hm(f) = fAX+(x)dimEj(x)m(dx) 

where a + = max(a, O). 

We prove the "if" part of Theorem A in Part I. The reverse implication is 
essentially due to Sinai and is proved in precise form in [LS]. (See [M] for an 
alternate approach. This result also follows from Part II.) 

Remark. We show in fact that when the entropy formula in Theorem A is 
satisfied, the densities dm$/dtiWU(x) are given by strictly positive functions that 
are C' along unstable manifolds. (See Corollary 6.2.) 

(1.6) Define Mu to be the sub-a-algebra of a whose elements are unions of 
entire WU-manifolds; As is defined analogously. Recall that the Pinsker a-algebra 
of f: (M, AR, m) <-, is the sub-a-algebra of a consisting of sets A such that if 
a = {A,M - A), then hm(f, a) = 0. 

THEOREM B. Let f: M <-- be a C2 diffeomorphism of a compact Rieman- 
nian manifold preserving a Borel probability measure m. Then 

U 
t_ S _ the Pinsker a-algebra of f. 

For sub-a-algebras 1, 2 C a 1-2 means that for every A1 E 
one has A2 E -2 such that m(ApAA2) = 0 and vice versa. 

Theorem B was shown to be true for smooth invariant measures by Pesin [P]. 
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514 F. LEDRAPPIER AND L.-S. YOUNG 

We have chosen to prove Theorems A and B by reducing the problems to 
their respective ergodic cases (see ?6). While not at all essential, this line of 
approach simplifies the presentation, especially where notation is concerned. 
Thus along with the standing hypotheses stated at the beginning of this paper, 
we now declare the following 

Additional hypothesis for Sections 2-5: 

D. m is ergodic. 

2. Lyapunov charts and related constructions 

We let 

X+= min{fXxi > 0}, 

A- = max{ Xi, Xi < },) 

u = dim Eu, 

c = dim EC, 

s = dim Es 

and assume that u > 0. 

(2.1) Lyapunov charts. In this subsection we summarize some results from 
Pesin theory. Our formulation differs slightly from that in [P1]. See the appendix 
of this paper for more details. 

As always, we let d be the Riemannian metric on M. For 

(x, y, z) E RU X Rc X RsI 

we define 

j(x, y, z)j = max{IxIx, IyIy, Izs} 

where 1 I I ic and Is are the Euclidean norms on R11, Rc and Rs respec- 
tively. The closed disk in Ru of radius p centered at 0 is denoted by Ru(p) and 
R(p) = Ru(p) X Rc(p) X Rs(p). 

Let 0 < F < X+/100, - A-/100 be given. We shall define in a nonautono- 
mous way a change of coordinates in some neighborhood of each regular point. 
The size of the neighborhood, the local chart and the estimates will vary with 
x E F'. First there is a measurable function 1: F' -> [1, Io) such that l(f-x) < 
efl(x). Then there is an embedding Dx: R(l(xf') -l), M with the following 
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THE METRIC ENTROPY OF DIFFEOMORPHISMS. I 515 

properties: 
i) DxFO = x; D4FD(O) takes Ru, RC and RS to Eu(x), Ec(x) and Es(x) 

respectively: 
ii) Let fIx = Ax ' o f o Dx be the connecting map between the chart at x 

and the chart at fx, defined wherever it makes sense, and let 1X = 
- lx o f-1 o (DX be defined similarly. Then 

e +-EIvI < jDfj(O)vI for v E R', 

e-EIvI < IDL(O)vI < e~jvj for v E RC 

and 

IDLx(O)vI < e"Ejvj for v E Rs. 

iii) If L(g) denotes the Lipschitz constant of the function g, then 

L(fx - Dfx(O)) ? 6, 

L(fX - Dfx (o)) < 

and 

L(Dx), L(Dfx ? 1(x). 

iv) For all z, z' E1 R(l(x)-<), we have 

K-ld((DxzDxz?) < jz - z'j < l(x)d(DxzDxz') 

for some universal constant K. 

It follows from ii) and iii) that there is a number X > 0 depending on E and 
the exponents such that for all x c F', IfxzI < eXizI for all z c R(e ' ( x) 
In particular, fxR(e-X-El(x)-1) C R(l(fx)-<). 

From here on, we shall refer to any system of local charts { (Dx x GE F) 
satisfying i)-iv) as (c, 1)-charts and X will be as above. 

(2.2) Local unstable manifolds and center unstable sets. For very small 
E > 0, let { 4)x, x c F') be a system of (c, l)-charts. Sometimes it is necessary to 
reduce the size of our charts. Let 0 < 6 < 1 be a reduction factor. For x c F', 
define 

S8"(x) = z E R(l(x)Y): IDfflxof oOxzI < 3l(f x) lVn 0); 

that is, 4IDXSU( x) consists of those points in M whose backward orbit stays (well) 
inside the domains of the charts at f nX for all n ? 0. It is called the center 
unstable set of f at x associated with the charts { (Dx } and reduction factor S. On 
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516 F. LEDRAPPIER AND L.-S. YOUNG 

S"u(x), we have 

fn -fxon o Xf 
= 

f-n+1 
? . * *ff f-1X 

We next introduce the local unstable manifold at x associated with { ?x} 
and 3. This is defined to be the component of WU(x) n (DXR(8l(x)-') that 
contains x. The (x-l-image of this set in the x-chart is denoted by WXU1(x). 

PROPOSITION 2.2.1. Let { X4 x E F") be a system of (e, l)-charts. 
A. If O < 3 < 1 and x IF,, then 

i) Wxus(x) is the graph of a function 

gX: R'(8l(x) 1) Rc+s(8l(x) 1) 

with gx(O) = 0 and JjDgxlj < 3; 

ii) WXUa(X) C SgC"(x). 

B. If 0 < 3 < e-X-e (where X is as in (2.1)) and x E F', then 

]xWS I(x) n R(1(fx)1) -= WfXafr)* 
The proofs of these assertions are standard in unstable manifold theory. We 

refer the reader to [FHY] for details. 

LEMMA 2.2.2. If 8 < e-X-e, then for almost every x E F', 

scu(x) n (D - lWu(x) = Wxu(x). 

Proof. In view of ii) in Proposition 2.2.1, it suffices to show 
S C( ) < >x-1 W (x) c Wxu,(x). Let z E Sgu(x) n (Fl 1W'(x) and let du de- 
note Riemannian distance along Wu-manifolds. Since (Dxz E WU(x), 
du(f noxz, f-nx) - 0 as n -x o. But for recurrence reasons, l(f -x) i> 0 as 
n -+ oo for almost every x E F'. This implies that for almost every x E F' there 
is some k > 0 such that Jx Z E Wf8-kX 6(f kx). Let k = k(x) be the smallest 
nonnegative integer for which this happens. If k > 0, then by Proposition 
2.2.1 B, tk+lz q R(81(f-k+lx)-,)' which contradicts z E Sg"(x). So k = 0, or 
equivalently, z E Wu,6(x). 

Consider now y E F' l (Fsgu(x) where 8 < '. Let WX23(y) be the 4'-U- 
image of the component of Wu(y) n 4DxR(28l(x)-1). Then IxWxWu23(y) contains 
an open neighborhood of y in Wu(y) and is also referred to as a local unstable 
manifold at y (although in general 0yWyu6(y) # OxWxu(y)). A reduction factor 
of < 1 is taken because working in f ax-charts we cannot control the unstable 
manifolds of points whose backward orbits come too close to the boundary of 
f -nXR(l(f -x)-). Another technical nuisance is that If->x f fy I 0. Aside 
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from these, we have the analog of (2.2.1) and (2.2.2) for Wju23(y) which we state 
below. The proofs are almost identical to the corresponding ones above. 

LEMMA 2.2.3. Let { Ox} be (E, 1)-charts as usual. 
A. Let 0 <68 < . Then for every x e l' andy ci" n Scu(x), 

i) Wx238(Y) is the graph of a function 

gx U RU(261(x)') -> Rc+s(261(x) ') 

with IjDgX~yI ? 43; 

ii) Wxu28(Y) C S48u(X). 

B. Let 8 < min(, 4e -X-). For almost every x E F', if y E F' n Scu(x) 
andfy E Scu(fx), then 

i) fxWx28(y) n R(281(fx)-1) C Wx2(h) 
ii) S c u(x) n 4I- lWu(y) C WxU2>(y) C Sc8(x) n 4y-LWu(y). 

We remark that in general Scu(x) is a rather messy set. Among other things 
we think of it as containing pieces of local unstable manifolds (see Lemma 2.2.3, 
A.ii)). In the case where none of the exponents are zero, Scu(x) is equal to 

WX,8(X) 

(2.3) More estimates. We list here some estimates that will be used in later 
sections. Let E, 1, { (Dx x E F' } and X be as before. When working in charts, we 
use z U to denote the u-coordinate of the point z E R(l(x) -1). Other notations 
such as zS and zCU are understood to have obvious meanings as well. 

LEMMA 2.3.1. Let 8 < e-X- and let x E F'. Then 
(a) If z, z' e R(Sl1(x)-<) and Iz - z'j = I - zj 1, then 

| fXZ - fXZ | = It fXZ) U - (!XZ ) U1 

2 e --2E z'I-Z; 

(b) If u in (a) is replaced by cu, then the conclusion holds with XA 
replaced by 0; 

(c) If z, z' E Scu(x), then 

Itfz _- 7'z- ? e2 IZ - Z'I 

Proof The proofs of (a) and (b) are direct applications of properties ii) and 
iii) in (2.1). We prove (c): First we claim that IZ~ -z I = Iz - z'I. Suppose 

not. Then applying (a) to ft , we have 

j1Z- fx- = (z - (fx z )s 

e- X--2eZ - z'I. 
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Inductively, this gives 

|DnZ _n I~ =Z n( Z)s - Z,) s 

2 e-(X-+2?)n z - z'I 

for all n 2 0, which forces one of the points 1-7nz or fx nz' to leave the chart, 
contradicting z, z' E Sgu(x). Now this argument also applies to fx 1z and fix z', 
since they belong in ScU(uf 'x). It then follows from (b) that 

Iz - I = Izcu - zul 2 e-2 lJ-jz - ' 

which is the desired conclusion. O 

The next lemma involves some estimates in the charts at x and fx where 
both of these points belong in F'. 

LEMMA 2.3.2. Assume 8 < min(4, le A E). Let y E SCU(x), z = 
({O} X Rcs) n W,28(y) and z' = ({O} X Rc~s) ffWx28(y) Then 

Iz'j < e3eIzI. 

Proof. Since Wxu,2A(y) is the graph of a function g x, with IIDgx ,ll < 1, the 
slope of fxWXj2(Y) is < 1. This gives 

Iz'I < I(Jxz)csI + ?i(xz)ui. 

From properties ii) and iii) of (2.1), it follows that l(fxz)csl < (eE + e)IzI and 
I(fxz)t1l < _ez, so that jz'j < e3eIZI. 

(2.4) Partitions adapted to Lyapunov charts. In order to make use of the 
geometry of Lyapunov charts in the calculation of entropy, it is convenient to 
have partitions whose elements lie in charts. If 37 is a partition of M, write 

+ = V00Ofn . Let -, 1, {'Ix, x e 'I and X be as before, and let 0 <6 ? 1 be 
a reduction factor. 

Definition 2.4.1. A measurable partition 37 is said to be adapted to 
({(x 1, 6) if for almost every x E F', 9+(x) C DxScu(x) 

LEMMA 2.4.2. Given { x I and 0 < 6 < 1, there is a finite entropy parti- 
tion 3Z such that g? is adapted to ({ Ox 6). 

Proof We outline the construction of b? using an idea of Maiies [M]. Fix 
some l0> 0 and let A c F' n {l(x) < 101. Assume that mA > 0. For x e A, 
let r(x) be the smallest positive integer k such that fxk E A. We define 
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4:A R by 

( if x E A 
Io(X) 81-2e-(X+E)r(x) if x A . 

Then 4 is defined almost everywhere on A and log 4 is integrable since 
fArdm = 1. Let B(x, p) = { y E M: d(x, y) < p}. By Lemma 2 in [M], there is 
a partition 9 with Hm(97) < xo such that 9Y(x) C B(x, 4(x)) for almost every 
x. We claim that this 92 is adapted to ({ IDx}, 6). In fact, we will show that 
97+(x) C OXR(81(x)1) for almost every x E UnOfnA. 

First consider x E A. By choice of 92, we have 97+(x) C 97(x) C B(x, +(x)) 
which is contained in eD R(6l(x)-L) because 4(x)l(x) = 610-2e-(X+?)r(x)l(x) < 
8 1( x) - 1. Suppose now that x 0 A and n > 0 is the smallest positive integer such 
that f-nx e A. Then f-ng+(X) C g+(f-nX) C B(f-nX, ,(f -x)). Now 

fnB(f nx, ,(fx n)) C IY;?xR(6l(f-nx) e-(X?+)r(fX) 

c OxR( l(fnx) ele (+)r(f nx)eXn) 

C (DR(81( X) 1 

since n < r( f -nX). Note that this computation makes sense because for every 
1 < k < n, fkn R(8l(f-nx)-le-(?+,)r(f-nx)) c R(l(f-n+kx)-le-(X?e)) This 
completes the proof. S 

3. Construction of two partitions 

(3.1) Increasing partitions subordinate to the W"-foliation. Given two par- 
titions 4l and 42 of M, we say that 4l refines 42 (4l > 42) if at m-a.e. x E M, 
41(x) C 42(x). A partition is said to be increasing if ( > fE. 

In this subsection we describe a family of increasing partitions that are 
subordinate to the unstable foliation. Partitions of this type were used by Sinai 
[S1] to study uniformly hyperbolic systems and are discussed in detail in [LS]. 

LEMMA 3.1.1. There exist measurable partitions with the following proper- 
ties: 

1) ( is an increasing partition subordinate to Wu; 
2) Voc of-nt is the partition into points; 
3) the biggest a-algebra contained in fl~ofnt is s"y. 

The construction we sketch below not only proves Lemma 3.1.1 but 
produces partitions with certain additional properties that will be useful later. 
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Outline of construction. Let { 1y x E F') be a system of (E, l)-local charts 
and let lo be a number such that m(l < lo) > 0. We claim that there is a 
measurable set S with the following properties: 

(a) mS > 0; 
(b) S is the disjoint union of a continuous family of embedded disks { Da), 

where each Da is an open subset of Dx Wxu 1(xa) for some xa E {l ? lo}; 
(c) For almost every x E M, there is an open neighborhood Ux of x in 

Wu(x) such that for each n ? 0, either f-UX n S = 0 or f-UX c Da for 
some a; 

(d) (This requirement is irrelevant for proving Lemma 3.1.1.) There is a 
number y such that: 

i) The du-iameter of every Da in S is less than y and 
ii) If x, y e S are such that y E Wu(x) and du(x, y) > y, then x and y 

lie on distinct Dad5isks. 
The existence of an S satisfying (a), (b) and (c) is proved in [LS] and will not 

be repeated here. Property (d) is easy to arrange by cutting down the d usize of 
the disks in [LS]. Let ( be the partition of M defined by 

((x)A = ( Da if x e Da 
OX) M - S if x 0S; 

then = ? is the partition we desire. It is easy to verify that it has the 
properties stated in Lemma 3.1.1. 0 

The partitions whose construction we just outlined have the following 
alternate characterization: There is a set S satisfying (a)-(d) such that if 
a = VtofOt S, M - 5), then for every x E M, y E ((x) if and only if y E a(x) 
and d"(f-x, ff-y) < y wheneverf fx e S. 

For measurable partitions 'q1 and 'q2, let Hr1(q 11 'q 2) denote the mean 
conditional entropy of 'q1 given 'q2 Note that if 'q is an increasing partition, then 
h,,(f, q) = Hm(.tlIfl). 

LEMMA 3.1.2. Let 1 and 2 be partitions constructed in the proof of 
Lemma 3.1.1. Then 

hnm(f, 41) = hrnf 42) 

Proof. It suffices to show h(f,.41 V 4) = h(f, 1)- For every n ? 1, we 
have 

h(f, v 42) = h(f, 4 V fnt2) 

= H( V fnf21fA1 V fnf l ) 

= H((,IfN1 V 
fn+fl? ) + H(42Ifi2 V f-nf.) 
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As n -- o, the second term goes to 0 since f -'n generates. We claim that 

H((jIftj V fn+ L2) H((jjft,). Clearly, H((jIftj V ffn+ L2) < H((jIftj) for 
all n 2 0. Let Dn = {x: (fg1)(x) C (fn2)(x)} . Since for almost every x, the 
du-diameter of (1(x) is finite and du-diam(f -nl)(x) IO as n -x o, we have 
mDn -- 1. Thus for large enough n, there is a set Dn with measure arbitrarily 
close to 1 such that restricted to Dn, f1 V fn 2 = ftj. This proves 

lim H( lljgj v fn+ t2) 2 H((jjft,). 

(3.2) Two useful partitions. Let { DX, x E F') be a system of (E, l)-charts, 
let X be as before and let t be an increasing partition subordinate to Wu 
constructed as in the proof of Lemma 3.1.1, with 10, S and y having the same 
meaning as in (3.1). Let 8 < min(4, Ae -x-y/2K) and let b? be a finite 
entropy partition adapted to ({ DX , 8). We require that b? refine { S, M - S} 
and another finite entropy partition to be specified later. Define 

%1 = V v '7 and 

712 = g+. 

These two partitions play central roles in Section 5. We compare their properties: 
1) Both % and 2 are increasing measurable partitions, 
2) 1 > '12' 
3) 2(x) C FS'u(x) and p1(x) C DxoWx(x) for m-a.e. x, 

and 
4) hm~f 2) = hm(f, 9) and hm(f, 1) = Hm(Ift). 
Properties 1) and 2) and the first half of 3) follow from the definitions of rq1 

and 2. The second half of 3) is a consequence of Lemma 2.2.2. The first half of 
4) is straightforward. We prove the remaining assertion: 

LEMMA 3.2.1. h(f, f) = Hm(Ift)- 

Proof As in the argument in Lemma 3.1.2, we have 

h(f,,ll) = h(f, V fnYA+) 
= H((Ift V fn+L+) + H(+ I f-nt V fg+) 

where the first term is < H( I ft) and the second term goes to 0 as n -3 x. 
Also, using the fact that H(9') < x, we have 

h(f,,ql) = h(f, V 39) ? h(f, ). 

(3.3) Quotient Structure. Since 1 > % we can view % restricted to each 
72(X) (written % lI%(Wx)) as a subpartition of 2(x). This subpartition has a simple 
geometric description in the x-chart: recall that since 2(x) C FDxSu(x) where 
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6 < 1, for every y E S"u(x), Wx'23(y) is the graph of a function from 
Ru(281(x)-<) to RC s(281(x)-L). The restriction of these graphs to O71x2(x) 
gives a natural partition of 1X- r1q(x). The next lemma says that this corresponds 
to 'qi1I'q 2(x). 

LEMMA 3.3.1. For almost every x and every y E I' f 'q2(X), 

xWx,?28(y) n q2(X) = q1(Y). 

Proof First consider z E xWx,2J(y) n 'q2(x). We will show that z E 
Since 9 refines (S, M - S} and z E 9a+(y), it suffices to show (using the 
characterization of t in (3.1)) that d u(f ny, fnZ) < -y whenever ffny E S. 
This is in fact true for all n ? 0, for I(D1-yy - 1-lzI < 261(x)-1 and by Lemma 
2.3.1, 

f n-ly g-noj[lz < ? ly - ( - |z for all n 2 O. 

Together these imply that du(f-ny, f -z) < K281(x)-1 < -y. The reverse con- 
tainment follows from Lemma 2.2.3, B.ii). o 

This lemma allows us to identify the quotient space 'i2(x)/ql with a subset 

of RC`s via 1(y) '*> Wxu26(y) n {O} X RC+s. The next lemma tells us that the 
map ff- 1('q2(X)): f 1('q2(x)) -> p2(X) acts like a skew product with respect to 
this quotient structure. 

LEMMA 3.3.2. For almost every x and every y E F, n %W, 

if- (q(y)) = ml(f 1y) nfl 1('12(X)). 

Proof. First f-1(q1(Y)) C fl('q2(x)) because p1(Y) C p2(x) and 

f- L(q 1(y)) c q I( f 1y) because q I is an increasing partition. That 

f(,l(f-ly)) nq2(X) C %1(Y) 

follows immediately from Lemma 3.3.1 and Lemma 2.2.3, B.i). 

(3.4) Transverse metrics. To use the fact that all the expansion of f occurs 

along the W"-foliation, we need to show that the map induced by f on 
(f- 712(X))/7ql -k 'q2(x)/,q1 does not expand distances. To that end we define a 
metric on the quotient space q2(x)/rql for m-a.e. x. This will be referred to as a 
transverse metric. 

As far as we know, "canonical" systems of transverse metrics do not exist. 
First we give a point-dependent definition: Let x E F'. From (2.2) we know 

that for every y E 'rq2(x), Wxu26(y) intersects (O) x RC's at exactly one point. 
We call this point z. For y' E 2(x), let z' be the corresponding point in 
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{O} X RCs. Then 

d(y ',)def d'(yy'=Iz - z'I. 

Note that d'(., ) induces a metric on q2(x)/ql, but that in general, d'( ) 
d',(, ) for x' E q2(x), x' # x. 

To rectify this situation, we (arbitrarily) choose a reference plane T and 
standardize all measurements with respect to T. Let S be the set in the 
construction of t (see (3.1)), the partition from which ql and q2 are eventually 
derived. Let E C S be a measurable set with mE > 0. Further assumptions on 
the diameter of E will be given in (4.2). Let T be the C2 embedding of a 
(c + s)-dimensional disk into M. We assume that T, the image of I, is transverse 
to every Da in S and intersects Da in exactly one point if Da n E 0 0. Finally, 
we require that the partition 9 in the definition of q I and q2 refine { E, M-E }-. 
(See (3.2).) 

With this setup, we can now define a metric on q2(x)/ql for every 
x E Un>0fnE. First define a function r: Un OPE - Rc+s as follows: For 
x E E n Da, let 

ST(X) = T-1{ T n Da ) 

and in general, let 

ST(X) = q7T(f-n(x)X) 

where n(x) is the smallest nonnegative integer such that f-n(x)x E E. Then for 
x E Un>0f E and y, y' E 2(x), define 

dT(y, y') = I7Y - 7TY'I 

where I denotes Euclidean distance in RC's 
Note that since 2 = 9+, for every n ? 0 either f-n(2(x)) C E or 

f-n(rq2(x)) n E = 0. Also, when f-nx E E, f-n(q(x)) C Da for some a. This 
guarantees that dX(, T ) induces a genuine metric on each q2(x)/,1 and that for 
x E q2(x), dXj = dX1. 

We comment here on the arbitrariness of our choice of T. It will become 
clear after (4.2) that for given E, if T and T' are admissible transversals, then dTX 

is uniformly equivalent to dfT' for m-a.e. x. Furthermore, it is on the equivalence 
classes of { dT }, not the metrics themselves, that our estimates in Section 5 
depend. 

Finally, what we have done here is to represent M/lq1 as a subset of 
M/'q2 X R's. and to define transverse metrics on q2(x)/'1 that correspond to 
Euclidean distance on RC's. This Euclidean space geometry plays a role in some 
of our averaging arguments as we shall see in (4.1). 
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4. Some technical lemmas 

(4.1) A covering lemma and some consequences. For x E R , let B(x, r) 
denote the ball of radius r centered at x. All distances are Euclidean in this 
subsection. 

BESICOVITCH COVERING LEMMA (BCL, [G]). Given a set E C Rn and an 
arbitrary function r: E -- (0, o.) with supXeEr(x) < + ox, let J?/ = 

{ B(x, r(x)), x E E }. Then there exists a subcover _i' C _ such that no x in Rn 
lies in more than c(n) elements of A1', c(n) depending only on n. 

Now let ,i be a Borel probability measure on Rn. The next two lemmas are 
standard when ,i is Lebesgue. When working with arbitrary finite Borel meas- 
ures, we use Besicovitch's covering lemma instead of Vitali's lemma. (This, of 
course, is not new.) Let g e L1([t) and define 

g6(x) = I B(x,) g d 

For g positive, we further define 

g * =sup g 6 and 

g= inf g6. 

First we have the maximal lemmas. 

LEMMA 4.1.1. (a) For X E R., 

p(g*>X)< c n) 

(b) Let v be defined by dv = g di. Then for X E R+, 

v(g. < X) < c(n)X. 

Proof We give a proof of (a). Part (b) is proved similarly. Let 
A = {g* > X}. For each x e A, choose 6(x) such that g6(x) > X; i.e. 

JB(X, 6(x))g d > XiB(x, 8(x)). Letting I= {B(x, 8(x)), x E A) and choosing 
A' as in BCL we have 

11(A) < E (B) 
B E=-fWl 

B E WL( Te g -n g am t erw e 

LEMMA 4.1.2. Let g E- L'(IL). Then g,6--- g almost everywhere. 
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Proof This is obvious if g is continuous. Using Part (a) of Lemma 3.1.1 we 
can show that the set of functions g for which this is true is norm closed in 
V(p)L 0 

The next lemma is usually stated slightly differently in the literature. For 
geometric reasons we average over balls instead of taking conditional expecta- 
tions with respect to fixed partitions. 

LEMMA 4.1.3. Let (X,1i) be a Lebesgue space and let n: X -" R' be a 
measurable map. Disintegrate , to get a family of probability measures { I. t tE Rn. 

Let a be a partition of X with H.M(a) < ox. For t E Rn and A E a, define 

gA(t) = pt(A). 

Letg6 andgA be functions on Rn defined as above. Letg, g6 and g: X R 
be given by 

g(x) = X A(X)gA(X) 
Aea 

g;(x) = E XA(x)gA(7rx) and 
Aea 

g*(x) = X XA(X)g*(Mx) 
AEa 

Then g , -- g almost everywhere on X and 

- logg*d, ?< H,(a) + logc + 1 

where c = c(n) is as in BCL. 

Proof First by Lemma 4.1.2 we have gA - g , oT -1 a.e. on Rn and hence 
g- g a.e. on X. Note also that 

- logg*dp= p4- logg* > s)ds 
00 

- f~~IL(A n{gAor < e-s})ds. 
0 Aea 

Now 

p(A nf{gAo7T < e-s}) < ,u(A). 

Also, 

,I(A n f{g*Ao < e-s}) < gAd(I o er1) 
{g<e-s} 

< c(n)e-s by Lemma 4.1.1(b). 
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Thus 

-logg* du < fmin(c(n)e-s,,l(A)) ds f - logg,~~~~AdEi Aa 
< H,(a) + log c(n) + 1 

by a simple calculation. [l 
Another consequence of BCL is the following classical result (whose proof 

we omit): 

LEMMA 4.1.4. Let ,I be a finite Borel measure on R'. Then 

inf ,IB(x, E) > 0 
0<E<l E 

for p-a.e. x. In particular, 

lim sup log ? < n. 

(4.2) Lipschitz property of local unstable manifolds within center unstable 
sets. This is the only part of our construction where it is essential to assume that 
f is C2, or at least C1+1, as opposed to CL+a for some a > 0. We will be 
working exclusively in charts and all notations are as in Section 2. 

Let L(RU, RC's) denote the set of linear maps from RU to RC`s with norm 
< Fix x E F' and let U c R(l(x<l) be such that fxU c R(l(fx) - 1). To 3. 

simplify notation we write F = fx. For z E U, define *I: L(RU, Rc+s) by 

DF-graph(v) = graph(*Pv) 

where v E L(Ru, RC+s). Given g: U L(Ru, RC+s), if fig is the function from 
F(U) to L(Ru, RC+s) given by 

Ig(Fz) = jg(z)) 

then 'Pg is called the graph transform of g by (F, DF). Similar ideas are 
discussed in [HP], for instance. 

In what follows, L(.) denotes the Lipschitz constant of the map. 

LEMMA 4.2.1. Let x and U be as above, and let g: U -> L(Ru,Rc+s) be 
Lipschitz. Then 'Pg is Lipschitz with 

L('g) < e-X+?+6L(g) + 4e2Fl(x). 

Proof. By ii) and iii) of (2.1), it is straightforward to verify that for all y E U 
and for all u, v E L(Ru, RC+s), 

| *Yu- Iyv I < e-x +4IU - V. 
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Now 

(*) 
Ig(Fy) - Ig(Fy')j ?I'IY(g(y)) - 'y(g(y'))I +'I'*y(g(y')) - *'y(g(y'))l. 

The first term of the right-hand side of (*) is < e-A +4- g(y)-g(y')l, so that 

*yWgY)) - *y(g(y,))I 

IFy - Fy'I 

<-X++4Fg(y) - g(y)l Iy -W 

-I IFy - Fy'I 

< e-X+ +4? * L(g) * e2F by Lemma 2.3.1(c). 

A simple calculation shows that the second term is < 41DFY - DFYI. By iii) 
of (2.1), this is ? 41(x)Iy - y'I* Thus 

IIy(g(y')) - Iy (g(y'))I 41(x)y 
- 

IFY - Fy'I IFy - Fy'I 
< 4e2?1(x) 0 

Recall from (2.2) that for x E F' and 8 < 4, if y E S"u(x), then 
Wx2,8(y) 

is 
well defined. A well-known fact from unstable manifold theory is that if 
go: Sgu(x) L(R', RC's) is implicitly defined by 

DIx(graph go(z)) = Eu(1xz), 

then go = limn Oi' O, where I, is the graph transform by (fX. Df>nn) and 
O is the zero function from f nSgu(x) to L(Rt, RC+s). 

LEMMA 4.2.2. Let x E I' and 8 < 4. Then go as defined above is Lipschitz 
with 

L(go) ? Dl(x) 

where D is a constant independent of x. 

Proof Letting 0: ynS CU(x) L(Ru, RC+s) be the trivial map and using 
Lemma 4.2.1, we can show inductively that 

n-1 
L (*no) < 4e 2e E e(- X + 6)i (f - i-x) 

i=O 

n-1 
< 41(x)e3 e + 

i=O 

This geometric series converges as n -x oo since e < X+/100. (See (2.1).) The 
uniform Lipschitz property of Ino for all n passes on to go. O 
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We have shown that on Sgu(x), the tangent bundle to WxU2A(Y) y E Sgu(x), 
is Lipschitz with Lipschitz constant < Dl(x). It follows from this that 
{ WXU,2( Y) I Y E Scu(x)} is a Lipschitz lamination, meaning that the Poincare 
map between transversals (wherever it make sense) is also Lipschitz with 
Lipschitz constant proportional to 1(x). 

We will record this corollary in a convenient form, but first we give further 
specification on E and T. 

Let E c S n { 1 < lo} be as in (3.4) and have (arbitrarily small) positive 
measure. We can take T as before, but for the sake of definiteness, let us fix some 
wo E E and let T = Xwol(?} x Rc+s(l(wo)-l). Then T is contained in the 
expo-image of a neighborhood of 0 in EC~s(wo). We assume the diameter of E 
is small enough that for all x E E, 1)7'w0 E R(41(x<') and )7-'T is the graph 
of a function from Rc+s(1I(x)-1) to Ru(lI(x)-l) with slope < 1/100. This is 
possible to arrange since x - Ec +s( x) is continuous on ({ < ? 10 and all chart 
estimates are uniform on { I < 10) 

LEMMA 4.2.3. Let E and T be as above. Then there is a number N = N(10) 
such that for all x E E, 

- dx(., -) 'd T(, ) <Ndf(*, ) 

Proof: In the chart at x, we define the Poincare map 

9: ({O} X Rc's) fl { wu(2y) y E Sgu(x)} O x T 

by sliding along Wxu28(y). Lemma 4.2.2 tells us that there is a number D' 
independent of x such that 

L(O),L(0-1) < D'l(x). 

Thus if y, y' E 'q2(x), and z and z' are respectively the points of intersection of 
WX'23(y) and Wxu2a&(Y') with D- 1T, then 

IZ - Z'lD-1T ? D'dX(y y') 

where I - I z-'T denotes distance in R(I(x)-') along the submanifold y'-1T. 
Therefore we have 

X TWy Y' - 17Ty - 7Tyf| = 10 -10 z - (D O XZ | 
d<7y, KDfdf(ydYf= 

The other inequality is proved similarly. O 
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As is evident from the proof, the number N depends only on the charts and 
on 10. It is independent of i1 and %2, or the choice of E and T (provided of 
course that everything is as described before). 

5. The main proposition 

Using the machinery developed in Sections 2, 3 and 4 we now prove that 
the entropy of f is equal to the entropy of f with respect to certain partitions 
subordinate to Wu. 

PROPOSITION 5.1. Suppose f: M <-, is a C2 diffeomorphism of a compact 
Riemannian manifold and m is an ergodic Borel probability measure on M. Let 
/ > 0 be given. Then there is an increasing measurable partition (/a of the type 
discussed in (3.1) such that 

f3(c + s) ? (1-)[hm(f) -hm(f,B)-/3] 

Proof: Our strategy is to construct by as in (3.1) and to use it to construct 1 
and q2 as in (3.2) with hm(f, '12) 2 hm(f) - //3. Calling the conditional 
measures associated with ql and iq2 { ml } and { m2 } respectively, we will show 
that if BT(x, p) = (y E 2(x): d j(x, y) < p1, then 

3 -lim inf logmx(p) ? (1-0- ) [ hm(f, i2) - hm(fAql) - 2/3/3] 
P --+ 0 log p 

for m-a.e. x. The desired conclusion follows immediately from this and Lemmas 
3.1.2 and 4.1.4. 

We divide the proof into 5 parts. 

(A) We start by enumerating the specifications on (A, ql and q2. First fix 
e > 0. We assume that E < /3/3, X /100 and - A /100. Let ( ?X, x E IF') be 
a system of (E, 1)-charts as described in (2.1). Using these charts, we construct an 
increasing measurable partition by as in the proof of Lemma 3.1.1 with S. lo and 
y having the same meaning as in that proof. Let N = N(10) be the constant in 
Lemma 4.2.3. Pick E c S nf {I < o10) according to (3.4) and the paragraph 
before Lemma 4.2.3. Let T be chosen likewise. We assume that the measure of E 
is small enough that e - -eN4m(E) < 1. Now as in (3.2), let 8S = 
min( 1, 1e- - , y/2K) and let 9 be a finite entropy partition adapted to 
({ 4x }, 80). We require also that 9 refine ( S, M - S } and ( E, M - E } and that 

hi1(f, 9) ? hm(f) - E. Finally we set ql = (A V Y' and '2 = }e+. Recall that 
with q11 and %2 so constructed, 'q2(x)/,ql has a nice quotient structure endowed 
with a transverse metric d T for m-a.e. x. 
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(B) Before proceeding with the main argument, we record some estimates 
derived from the results of (4.1). For 8 > 0, define g, g8, g*: M -* R by 

g( y) = my fq2)(y), 

=m BT(Y 8) JBTY " q( 2)(Y)M2(dZ) and 

g*(y) = infg3(y). 

Note that by Lemma 3.3.2 g(y) is also equal to ml,(f -,q 1)(y). We leave it to the 
reader to verify the measurability of go. (For fixed 8, one could check for 
instance that y - JBT(Y,,)mz(f -q2)(y)m(dz) is measurable on E.) 

We claim that g& -* g almost everywhere on M and that 
J - logg dm < ox. To see this, first consider one q2-element at a time. Fix x. 
Substitute (772(x), mX2) for (X, t) in Lemma 4.1.3, let '7: -12(X) RC+s be the 7 
in (3.4) and let a = (f' q2)jIl2(x) Then g, g8 and g * as defined above agree 
with the corresponding functions in (4.1.3). We can therefore conclude that 
g- g, m2-a.e. and that f - log g*dm2 ? Hm2(f'-12) + log c + 1. Integrating 
over M, this gives f - log g*dm < Hm(f -q2j'q2) + logC + 1 < oo. 

(C) The purpose of this step is to study the induced action of f on 
-12(x)/4(X/71 with respect to the metrics d' , and dX. Consider 

x E M. The point x will be subjected to a finite number of a.e. assumptions. Let 
ro < r1 < r2 < ... be the successive times t when ftx E E with ro < 0 < rl. 
Note that ro is constant on 2(x). For large n and 0 < k < n, define a(x, k) as 
follows: If rj < k < rj 1, then 

a(x, k) = BT(fkX e- (n- r)N2 ). 

LEMMA 5.2. a(x, k) n (f i12)(fkx) C f la(x, k + 1). 

Proof If k # rj - 1 for any j, then we have fa(x, k) nl q2(fk~lx) = 

a(x, k + 1) automatically since d and dF+ 1 are defined by pulling back to E. 

The case when k = rj - 1 for some j reduces to the following considera- 
tion: Let y E E and let r > 0 be the smallest integer such that fry E E. Let 
Z E (f-rq2)(Y). It suffices to show that 

d yT(fry, frZ) < N2erfdT(y, Z) 

First we have d'(y, z) < Ndy(y, z). (For the definition of d' see (3.4).) 
Then for i = 1, 2,..., r, Lemma 2.3.2 tells us that dfy(fiy, flz) < e'3d,(y, z). 
We pick up another factor of N when converting back to the d'imetric at f ry. 
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(D) We now estimate m2 BT(x,e- (n-ro(x))) = mX2a(xO), which we can 
write as 

2 ~ mfkxa (x, k) 2 
m a(x,0) = H 2 fm pa(x,p) x 

~k=o mfk+lxa(x, k+ 1) x 

where p = [n(l - e)]. First note that the last term < 1. For each 0 < k < p, 

mfkXa (x, k) m fk Xf (02( f X)) 

mfk+lxa(x, k + 1) m)fkXf-'(a(xk + 1)) 

by invariance of m and uniqueness of conditional probabilities. This is 

m2k a(x, k) 

mfk ((f-?2)(fxk) n a(x, k)) mfkX(f-,2)(fx) 

by Lemma 5.2. If g, is defined as in (B), then the first quotient in (*) is equal to 

[g (x, n k)( fkX)] where 

8(x,n,k) = e-3(n-rj(x))N2i and 

j = #tO < i < k: fix E E). 

When I(x) =-log m2(f -i2)(x), the second term in (*) is equal to e I(fkx). 
Thus 

p-l p-l 
logm~BT(x e-E(nro(x))) ? - E logg8(x n k)(f X) - I(fkx). 

k=O k=O 

Multiplying by - 1/n and taking lim inf on both sides of this inequality, we 

have 

.3* .flogmXB(xP) 
,l8 lm inf - 1 -- 

P --* o log p 

log m2BT(x, e1-(n-ro(x))) 
= / *liminf log - An 

n -*00lg 
- 

1 n(l-) 1 n(l -E)] 
? liminf - log g8(x( n k)(fkX) + lim - ? I(fkx) n - oo nk=o n - oo k=0 

where the last limit = (1 - -)H('q2lffq2) > (1 -)(hm(f) - c). Thus Proposi- 
tion 5.1 is proved if we show that 

1 [ n(l -E)] 
limsup - n E [ngj) (x] nk)(fkX) < (1 - + 2E] 

n k=O 
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532 F. LEDRAPPIER AND L.-S. YOUNG 

(E) We prove this last assertion. It follows from (B) that there 
is a measurable function 8(x) such that if 8 < 8(x), then - log g&(x) < 
- log g(x) + E. Also, since f - logg* < + so, there is a number 81 such that if 
A = {8 > 81 } then JM-A - log g* ? E. 

We claim that for almost every x, if n is sufficiently large, then 8(x, n, k) < 
81 for all k < n(l - e). First there is N(x) such that for n ? N(x), 
#{O < i < n: fix E E} < 2n * m(E). If n ? N(x), then 

8(x, n, k) = e- (n-rj)N2j 

< e-#enN2 2nm(E) 

Since e - -eN4m(E) < 1, 8(x, n, k) is less than 81 for n sufficiently large. Thus 

[n(l-e)] 

E - log g(x n k)(fkX) 
k=O 

[ n(1-c)] [ n(l-E)] 

(-lo gg(fkx) + e) + E 
_ 
logg*(fkx) 

k=O k=O 
fkxeA fkx 1ZA 

and the lim sup we wish to estimate is bounded above by 

(1 E[f logg +e+ - logg*j 

Recall now that g(x) = ml(f- l1)(x), so that f - log g = hm(f, 1). This 
completes the proof. O 

COROLLARY 5.3. With the same hypotheses as in Proposition 5.1, if t is any 
partition constructed in the proof of Lemma 3.1.1, then 

hm(f, t) = hm(f). 

Proof For any /3, hm (f, ) = hm (f, (,q) where (A is as in Proposition 5.1. 
Let /3 -O0. [O 

6. Proof of theorems 

We fill in the gaps between the results in Section 5 and Theorems A and B 

as stated in Section 1. 

(6.1) Proof of Theorem A: the ergodic case. We may assume that u > 0. 
(The reader can verify that Theorem A is completely trivial if u = 0.) Let t be 

an increasing partition subordinate to Wu, constructed as in the proof of Lemma 
3.1.1. By Corollary 5.3, Hm(Ift) = hm(f). Let {mx} = {mx} be the condi- 
tional probabilities associated with t and let ux be the Riemannian measure on 
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W"(x). It remains to show that 

H((Ift) = E At dim E1 =i mx << ILx for m-a.e. x. 

This proof is given in French in [L]. We recall the ideas involved for the sake of 
completeness. 

Let JU = IJac(DfIEu(x))I. By Oseledec's Theorem, f log Ju = i X+dim E . 
Suppose we know that mx << lx for almost every x. Then dmx = pdtx almost 
everywhere for some function p. This function must satisfy h(X)P(y)djux(y) = 1, 
and p(y)JU(f-ly)/p(f-ly) must be constant on ((x) by the change of vari- 
ables formula. (See [LS], Proposition 4.2.) From this we can guess that for all 
y E (x), 

00 

defpy) _HJU (f ix) 

p(x) -nJu(f-iy) 

i=1 

A candidate for p then is p(y) = A(x, y)/L(x), where L(x) = (x)A(x y) dIlx. 
Of course all this makes sense only if A(x, y) is uniformly bounded on ((x). 

LEMMA 6.1.1. For almost every x, y - > log zA(x, y) is a Lipschitz function 
on 4xwuW(x). It follows from this that for each x, y - z>A(x, y) is uniformly 
bounded away from 0 and + xo on ((x)- 

Proof. This is a standard calculation relying on the Lipschitz property of the 
functions z '-4 Dfz and z -k Eu(z) (Lemma 4.2.2) and the fact that for any two 
points y, y' e WXui(x), I7'ny - ] nytl ? - 2Ey - y'l (Lemma 2.3.1(a)) 

So we define p as above and define a measure v on M such that if { vx } are 
the c-conditional measures of v, then dvx = p dpx and v coincides with [ on , 
the biggest a-algebra containing sets that are unions of elements of t. 

LEMMA 6.1.2. f - log vx(f ')(x) dm(x) = flog Ju dm. 

Proof: Define q(x) = vx(f'-')(x). Then 

A(x, y) dtx(y) L(fx) I 
q(x) = _______ 

L(x) L(x) Ju(x) 

Since L is a positive finite-valued measurable function with 

f log+(L(fx)/L(x)) < flog+Ju < x, 
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534 F. LEDRAPPIER AND L.-S. YOUNG 

it follows that log q is integrable and f log q =-f log JU. (See e.g. [LS], 
Proposition 2.2.) 0 

From the definition of v, it is clear that v = m when restricted to the 
a-algebra H*I The next lemma and an induction show that they are equal on 
4f -. for all n ? 0 and hence they are equal on A. 

LEMMA 6.1.3. f log Judm = Hm(.(ff) implies v = m on Of 1q. 

For m-a.e. x, (f1l)Il(x) is a countable partition. For y E ((x), define 

dP I vy (f- l()(y 
dmv f = m(f-')(y) 

Note that (dv/dm)lf-1X is well defined almost everywhere. By the convexity of 
log we have 

, (dv (dv 
log dm ) dm< zlog dm ) |dm=O 

with 

dv dv f log dm = 0 if and only if -- 1 m-a.e. 
dm dm rlt 

But we know that f log(dv/dm)If-1-dm = 0, for Lemma 6.2.2 says that 

- flogvX(f-1t)(x)dm = flog Judm 

HM(f-'tI() 

-| flog mx(f ')(x) dm. 

Thus v = m on f- . This completes the proof of the ergodic case of 
Theorem A. [ 

COROLLARY 6.1.4. Let m be an ergodic measure satisfying Pesin's formula, 
let t be as above, and let p be the density of mt with respect to [ix. Then at 
m-a.e. x, p is a strictly positive function on ((x) satisfying 

p(y) - ftJU(f-ix) 

In particular, log p is Lipschitz along Wu-leaves. 

Remark. It can in fact be shown that when f is C2, each WU(x) is a C2 
immersed submanifold (see e.g. [PS]) and that p is C' along Wu(x). 
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(6.2) Proof of Theorem A. We reduce the general theorem to its ergodic 
case. Let g be the sub-c-algebra of 4 consisting of all invariant subsets and let D 

be a measurable partition such that ,- g. (We know that such a partition 
exists.) Choose a family of conditional probability measures associated with D. 
Call it { m, }. Then there is an invariant set N1 C F' with mN1 = 1 such that for 
every x E N1, mx is invariant and ergodic. 

Suppose that hm(f) = fYEi+(x)dim Ei(x)m(dx). Since 

hm(f)= fhm(f)m(dx) and 

hm1(f) < fXX+(y)dimEi(y)mx(dy) 

for every x E N1[Ru2], there is an invariant set N2 c N1 with mN2 = 1 such that 
for every x E N2, 

hm(f) = XI+(y)dim Ei(y)mx(dy). 

Let t be a measurable partition subordinate to the Wu-foliation and let 
{ m) } be a family of conditional probility measures associated with (. We verify a 
couple of technical points before applying (6.1) to f: (M, mX) . 

First there is an invariant set N3 c N2 with mN3 = 1 such that for every 
x E N3, ((y) c Wu(y) and contains a neighborhood of y in Wu(y) for mi-a.e. 
y, i.e. ( is indeed a partition subordinate to Wu with respect to mx for every 
x E N3. More crucial is the fact that t refines D (see e.g. [LS] Proposition 2.6). 
This implies that there is a set N4 c N3 with mN4 = 1 such that for every 
x e N4, { in } is a family of conditional probability measures associated with ( in 
the space (N4n f(x), m) 

Thus for f: (M, mx) -, x e N4, we can appeal to the proof of the ergodic 
case and conclude that my is absolutely continuous with respect to MWU(y) for 
min-a.e. y. Moreover, dmI/dIWU(Y) is as in Corollary 6.1.4. 

Let A = {x: m << ALWU(X)). It is straightforward to verify that A is a 
measurable set. We have just proved that mXA = 1 for m-a.e. x. Therefore 
m(A) = 1 and the proof of Theorem A is complete. O 

COROLLARY 6.2. Corollary 6.1.4 is true in the nonergodic case. 

(6.3) Proof of Theorem B. We shall prove that u_ the Pinsker 
c-algebra. The other equality involving s is obtained by substituting f by f1. 
Again we first prove the theorem assuming that m is ergodic. 

The case u = 0 is trivial, for then I u - the Pinsker c-algebra. So 
suppose u > 0, and let t be a partition constructed in (3. 1). Then { 4f- n } n > 0 is 
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a generating family and hm(f) = Hm(Ift). A theorem in [Ro2] tells us that for ( 
with these properties, the Pinsker a-algebra coincides with fnl ?0 oar which in 
this case is 'U. 

When m is not ergodic, let q, D and { m.,} be as in (6.2). There is a 
measurable partition u such that IAu" fu(m), and we let { mu } be a family of 
conditional probability measures associated with (u* 

Since g C MU, there is an invariant set N1 with mNN = 1 such that for 
every x E N1 we have 

i) mx is invariant and ergodic, 
ii) (u is a measurable partition of D(x) and 

AULo qu(mX) 

and 
iii) y-4 mu is a family of conditional measures associated with (u in the 

space (D(x), mj). 
Let A be a set in the Pinsker u-algebra of if: (M,m) . Since 

h7i(f, { A, M - A)) = 0, there is an invariant set N2 C N1 with mN2 = 1 such 
that hm(ff{A,M-A))=0 for xeN2. For such x, our argument in the 
ergodic case shows that A n D(x) is in Mu and by ii) and iii) above, miu(A) = 0 
or 1 at mi-a.e. y. Thus min(A) = 0 or 1 at m-a.e. x and therefore A is in Ad". 
This proves that the Pinsker a-algebra is contained in 4u. The extension of the 
other containment is easy. 

Appendix: Lyapunov charts 

We include here an outline of the construction of Lyapunov charts partly for 
the convenience of the reader and partly because we need a little more than what 
is usually done. (See for instance [P1].) All notation is as in Section 2. In addition, 
we let , .) be the usual inner product in Euclidean space, (( , ) ) x be the 
inner product on TxM given by the Riemannian structure and 11 lix be its 
corresponding norm. 

Let E > 0 be given as in Section 2. We use as our starting point the 
following fact, namely that there is a measurable function C: IF' - [1, I) such 
that: 

1. For every x e F' and n ? 0, 

IlDf -nVI < ()-A-E//2)nil l fS Ex IIDfx7vvIgn < C(x)ei /72 |IvIIx for all v E Eu(x), 

II DfxIg ? I< C(x)e(// )nIlvIIx for all v E Es(x), 

IlDfx~nvIlf?-x ? C(x)e(E/2)nhiViix for all v e Ec(x); 
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2. Isin(Eu(x), Ec(x))I, Isin(Ec(x), ES(x))I, Isin(ES(x), Eu(x))I I C(x)'; 
3. Qf +x ) -< e (1/3)-c(x X). 
A standard technique for obtaining good estimates on Df after one iteration 

is to introduce a new inner product K )x on TXM for every x E F'. First we 
let 

KKDf xu, DffnV))f-nX for u, v E Eu(x) 
n=O e-2n(X+ -) 

((U >, v E KK((Df u, Dfi v))r for u, v E Ec(x) 
fl= -00o 

x0 KKDf uDfv ) for u, v E E s(x). 
E 

2n(A- + E) n=O e~nX~ 

Then we extend K , ))'x to all of TxM by demanding that the subspaces 
Et'(x), Ec(x) and Es(x) be mutually orthogonal with respect to KK 

Recall that our objective here is to define a measurable function 
1: F' -* [1, oc) and a family of maps { 4x: R(l(xf-) -* M, x e 'P) so that these 
coordinate charts and their connecting maps have properties i)-iv) as stated in 
(2.1). Let Lx: TxM -* Ru+c+s be a linear map taking Eu(x), Ec(x) and Es(x) 
onto Ru x {0} x {0}, {0} x Rc X {0} and {O} x {0} x Rs respectively and 
satisfying 

(Lxu, Lxv) = (1u, v))X 

for every u, v E TxM. Setting 

(X= expx oL 

one immediately verifies i) and ii) in (2.1). 

Next we want some bounds on Iv IK I/ IIvII x for v 0 0 E TxM, where II IL is 
the norm derived from KK ,))'. First we consider v E E't(x) or Ec(x) or 
Es(x). Obviously llvii' > llvii. A direct calculation using the properties of the 
function C( x) shows that 

1v11X, -< C0C(X)11V11x 

where C0 = (2EZ oe%-En)1/2. For arbitrary v E TxM, write v = vu + vc + Vs 

respecting the decomposition EU(x) e EC(x) e ES(x). It is easy to check that 
llvllx < 3iIvil'. Observe that llvii ? iivull IsinSl - sin 21 where 01 is the angle 
between vu + vc and vs and 02 is the angle between vu and vC. Since Isin Ol, 
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sin 021 C(X) we have 

IIVIL ' C0C(x)[hIvulix + IIvCII + llvSII] 

< 3CoC(x)3llvllx. 

Finally we are in a position to show that properties iii) and iv) are satisfied if 
we let l(x) = C. C(X)3 where C is a constant the magnitude of which will be 
obvious from the next discussion: 

There is number 8 > 0 such that for all x E IF% expx restricted to { lIv II < 8} 
is a diffeomorphism with IIDexpxIH, IIDexp - 1 < 2. If C is large enough, we are 
assured that L - 'R(l(xf1) C {jv II < 8) and that propertyiv) holds with K = 6. 
Since 

A = Lfx oexpj-' o foexpX o L-1, 

and the second derivatives of exp, exp- 1 and f are uniformly bounded in x, the 
Lipschitz size of Dix is essentially determined by the norm of LfX. Thus for C 
sufficiently large we have 

L(Dfx) < 1(x)E. 

Also, 

IDLx(z) - DLx()I < 1(x)eIzI < E 
for z E R(l(x) -). Similar considerations for f-x 1 guarantee the properties listed 
in iii). 

Remarks. 1) The above construction requires only that f be C' +a for some 
a > 0. Needless to say, with this hypothesis property iii) in (2.1) has to be 
modified accordingly. 

2) The reader can verify easily that if TxM = El(x) E ... EEr(x)(x) is the 
decomposition into subspaces corresponding to exponents X1(x),5.. . ,(x)(x)X 
then the same trick used for Ec(x) above can be performed on each Ei(x) 
separately to obtain a norm II - II", with the property that for each v E i(X), 

e(Xi-,-)jjvjj" < JjDfxvjlfx < e(Ai + E)lv 

Charts with these properties are extremely useful in Part II. 
3) If the measure m is not ergodic, the construction described in this 

appendix can be carried out on invariant sets of the form 

F(E, XA+ X-) = {x E F/: min Xi(x) ? XA, max Xi(x) ) 

where XA, - 2 ? OOc and mF(,, XA, X) > 0. 
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