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We begin with an overview of this article. Consider a dynamical system generated
by a diffeomorphism f with an attractor Λ. We assume f |Λ is sufficiently complex
that it is impossible to have exact knowledge of every orbit. The ergodic theory
approach, which we will take, attempts to describe the system in terms of the
average or statistical properties of its “typical” orbits.

If Λ is an Axiom A attractor, then it follows from the work of Sinai, Ruelle
and Bowen ([S],[R1],[BR]) in the 1970’s that orbits starting from almost all initial
conditions have a common asymptotic distribution. “Almost all” here refers to a
full Lebesgue measure set in the basin of attraction of Λ. We will call this invariant
measure the SRB measure of (f,Λ).

In the late 70’s and early 80’s the idea of a nonuniformly hyperbolic system
was developed and the notion of an SRB measure was extended to this more
general context. In Section 1 of this article I will define SRB measures and de-
scribe some of their ergodic and geometric properties, including their entropy and
dimension.

While one could formally define SRB measures and study them abstractly,
the question of how prevalent they are outside of the Axiom A category is not well
understood. The first nonuniform (dissipative) examples for which SRB measures
were constructed are the Hénon attractors. In Section 2, I will discuss briefly the
analysis by Benedicks and Carleson [BC] of certain parameter values of the Hénon
maps, and the subsequent work of Benedicks and myself [BY1] on the construction
of SRB measures for these parameters.

In Section 3, I would like to present a recent work, also joint with Benedicks
[BY2], in which we study stochastic processes of the form {ϕ ◦ f i}i=0,1,2,··· where
f is a “good” Hénon map, the underlying measure is SRB, and ϕ is a Hölder
continuous observable. We prove for these random variables the exponential decay
of correlations and a central limit theorem.

While the results in Sections 2 and 3 are stated only for the Hénon family,
our methods of proof are not particularly model-specific. I will conclude with some
remarks on the types of situations to which these methods may apply.
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§1. Some ergodic and geometric properties of SRB measures

Let f be a C2 diffeomorphism of a finite dimensional manifold M and let Λ ⊂M
be a compact f -invariant set. We call Λ an attractor if there is a set U ⊂M with
positive Riemannian measure such that for all x ∈ U, fnx→ Λ as n→ ∞.

Given an f -invariant Borel probability measure µ, let λ1 > λ2 > · · · > λr

denote the distinct Lyapunov exponents of (f, µ) and let Ei be the corresponding
subspaces in the tangent space of each point. Stable and unstable manifolds are
defined a.e. on sets with negative and positive Lyapunov exponents. They are
denoted by W s and Wu respectively.

Let (f, µ) be such that λ1 > 0 a.e., and let η be a measurable partition on
M . Let Wu(x) and η(x) denote respectively the unstable manifold and element of
η containing x. We say that η is subordinate to Wu if for a.e. x, η(x) ⊂Wu(x) and
contains an open neighborhood of x in Wu(x). For a given η, let {µη

x} denote a
canonical family of conditional probabilities of µ with respect to η. We will use mη

x

to denote the Riemannian measure induced on η(x) as a subset of the immersed
submanifold Wu(x).

Definition 1. Let (f, µ) be as above. We say that µ has absolutely continuous

conditional measures on Wu if for every measurable partition η subordinate to

Wu, µη
x is absolutely continuous with respect to mη

x for a.e. x.

This definition has its origins in [S] and [R1]; in its present form it first
appeared in [LS].

For Axiom A attractors the invariant measure we called SRB in the intro-
duction has several equivalent definitions, one of which is that it has absolutely
continuous conditional measures on Wu. My feelings are that as a working defini-
tion, this property is the most useful and the most straightforward to generalize.
I therefore take the liberty to introduce the following definition:

Definition 2. Let f and Λ be as in the beginning of this section. An f -invariant

Borel probability measure µ on Λ is called an SRB measure if λ1 > 0 a.e. and µ
has absolutely continuous conditional measures on Wu.

The physical significance of this property is that the set of points whose
future trajectories are generic with respect to an SRB measure form a positive
Lebesgue measure set. This is because we can “integrate out” from the attractor
along W s using the absolute continuity of the stable foliation. More precisely:

Theorem 1 ([P] [PS]). Let µ be an ergodic SRB measure of f and assume that

λi 6= 0 ∀i. Then there is a set Ũ ⊂M with positive Lebesgue measure such that if

ϕ is a continuous function defined on a neighborhood of Λ then

1

n

n−1
∑

i=0

ϕ(f ix) →
∫

ϕdµ

for every x ∈ Ũ .
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In general, entropy and Lyapunov exponents are different invariants, although
both measure the complexity of a dynamical system. With respect to its SRB
measure, however, the entropy of a map is equal to the sum of its positive Lyapunov
exponents. Indeed, SRB measures are precisely the extreme points in the following
variational principle:

Theorem 2 ([P], [R2], [LS], [L1], [LY1]). Let µ be an f -invariant Borel probability

measure. Then

hµ(f) ≤
∫

∑

λi>0

λi · dimEi dµ ;

and equality holds if and only if µ is SRB.

For arbitrary invariant measures, the difference between entropy and the sum
of positive Lyapunov exponents can be understood in terms of the dimension of
the measure. It is shown in [LY2] that if µ is ergodic, then corresponding to each
λi 6= 0 there is a number δi with

0 ≤ δi ≤ dimEi

such that
hµ(f) =

∑

λi>0

λi · δi = −
∑

λi<0

λi · δi .

The number δi has the geometric interpretation of being the dimension of µ “in
the direction of Ei”; it is equal to hi/λi where hi is the entropy “in the direction
of Ei”. (See [LY2] for precise definitions.)

These ideas have led to the following result on the dimension of SRB mea-
sures. For a finite measure µ, we write dim(µ) = α if for µ− a.e. x,

lim
r→0

log µB(x, r)

log r
= α

where B(x, r) is the ball of radius r about x.

Theorem 3 ([L2], [LY2]). Let µ be an SRB measure. We assume that (f, µ) is

ergodic, and that λi 6= 0 ∀i. Then

dim(µ) =
∑

all i

δi

where the δi’s are as above. In particular, δi = dimEi for all i with λi > 0.

It is not known at this time whether this notion of dimension is well defined
for arbitrary invariant measures. For a special case, see e.g. [Y1].
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§2. SRB measures for Hénon maps

As we mentioned in the introduction, it follows from the work of Sinai, Ruelle and
Bowen that every Axiom A attractor admits an SRB measure. It is natural to
wonder to what extent this is true without the hypothesis of Axiom A. Mathe-
matically very little has been proved, although the existence of SRB measures in
general situations is often taken for granted in numerical experiments and by the
physical scientist.

To the best of my knowledge, the first dissipative, genuinely nonuniformly
hyperbolic attractor for which SRB measures were constructed are the Hénon
attractors. (By “dissipative” I mean not volume preserving: if a volume preserving
diffeomorphism has a positive Lyapunov exponent a.e. then its volume measure
satisfies the condition in Definition 2.) The Hénon maps are a 2-parameter family
of maps Ta,b : R

2 → R
2 defined by

Ta,b :

(

x
y

)

7→
(

1 − ax2 + y
bx

)

.

It is not hard to see that there is an open region in parameter space for which Ta,b

has an attractor; and that for (a, b) in the region, there is a continuous family of
invariant cones on {|x| > δ} (δ depending on parameters) but that the attractor
is not Axiom A.

In [BC2], Benedicks and Carleson proved that for b sufficiently small, there is
a positive measure set of a’s for which T = Ta,b has a positive Lyapunov exponent
on a dense subset of Λ. In addition to proving this result they devised a machinery
for analyzing DTn, the derivatives of the iterates of T , for certain orbits with
controlled behavior. Without getting into the specifics of their machinery, let me
try to explain the essence of what is going on:

Some of the ideas go back to 1-dimension, so let me first explain how expand-
ing properties are proved for the quadratic family fa : x→ 1−ax2, x ∈ [−1, 1], a ∈
[0, 2]. Yakobson [J] proved in 1981 that for a positive measure set of parameters
a, fa admits an invariant measure absolutely continuous with respect to Lebesgue
and has a positive Lyapunov exponent a.e. Roughly speaking, the “good” param-
eters are those for which the derivatives along the critical orbit have exponential
growth. Away from the critical point 0, we could think of the map as essentially
expanding, and for x near 0, the orbit of x stays near that of 0 for some period of
time, giving (fn)′x ∼ 2ax · (fn−1)′(f0) ∼ 2ax · λn−1 for some λ > 1. These ideas
have been used by various authors studying 1-dimensional maps (see e.g. [CE] and
[BC1] as well as [J]).

An obstacle to proving hyperbolicity in dimensions greater than 1 is the
switching of expanding and contracting directions. For a 2 × 2 matrix A that is
not an isometry, let s(A) denote the direction that will be contracted the most by
A. Suppose that for m,n > 0 we have proved hyperbolicity for the stretches from
T−mx to x and from x to Tnx. In order to extend this hyperbolic behavior all the
way from T−mx to Tnx we must control ∠(s(DT−m

x ), s(DTn
x )), the angle between

s(DT−m
x ) and s(DTn

x ).
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In some sense then, the set of points x where ∠(s(DT−m
x ), s(DTn

x )) → 0
as m,n → ∞ plays the role of the critical point in 1-dimension. An essential
difference, however, is that the exact location of this “critical set” cannot be known
ahead of time. To identify points with the property above, one must prove the
hyperbolicity of DT−m

x and DTn
x for arbitrarily large m and n, but the behavior

of these derivatives in turn depend on how the orbit of x interacts with the critical
set. This almost seems like circular reasoning, but can in fact be achieved through
inductive arguments. In dimensions greater than one, the inductive character of
the analysis is both more prominent and more essential than in 1-dimension.

What Benedicks and Carleson did in [BC2] was to identify and control – for
a positive measure set of parameters – a critical set C as described above. We
stress that their inductive procedure goes through only on a positive measure set
of parameters. Furthermore they showed that for certain orbits approaching this
set, the loss of hyperbolicity is ∼ dist(fnx, C), and that subsequent recovery is
guaranteed.

Building on this machinery, Benedicks and I constructed SRB measures for
Hénon maps corresponding to these “good” parameters.

Theorem 4 ([BC], [BY1]). Let {Ta,b} be the Hénon family. Then for each suffi-

ciently small b, there is a positive measure set ∆b such that for each a ∈ ∆b, T =
Ta,b admits an SRB measure µ. This SRB measure is unique; its support is all of

Λ; and (T, µ) is isomorphic to a Bernoulli shift.

As a corollary to this theorem and to Theorem 1, we have a positive Lebesgue
measure set in R

2 consisting of points the statistics of whose future trajectories are
governed by µ. If for instance one is to pick a point in this set and to plot its first
N iterates for some sufficiently large N , then the resulting picture is essentially
that of µ. It follows from our proof of Theorem 4 that this set of generic points
fills up a large part of the basin of Λ; we believe (but have not yet proved) that it
in fact fills up the entire basin up to a set of measure zero.

In [BC2] the analysis is focused mostly on the “bad set” C. Part of the proof of
Theorem 4 consists of adapting and globalizing these ideas to unstable manifolds.
We then prove the existence of µ by pushing forward Lebesgue measure m on a
piece of unstable leaf γ. A key observation is that it is only necessary to consider a
positive percentage of these pushed-forward measures. Roughly speaking we show
that for a positive density set of integers n, there are subsets γn of γ with m(γn)
bounded away from 0 such that for each n,

(i) |DTn|γn
| ≥ cλn for some λ > 1;

(ii) DTn(γn) is the union of (many) roughly parallel curves of a fixed length.

An SRB measure is then extracted from the Ceasaro averages of Tn
∗

(m|γn
).

While the result above is stated only for the Hénon family, it holds for families
with similar qualitative properties, such as those that appear in certain homoclinic
bifurcations [MV].

We close this discussion by remarking that one cannot expect all attractors
– or even all attractors with the general appearance of the Hénon attractors – to
admit SRB measures. Periodic sinks are easily created near homoclinic tangencies
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[N], and the presence of sinks substantially complicates the dynamical picture.
Nonhyperbolic periodic points are also not condusive to the existence of invari-
ant measures with smooth conditional measures on unstable manifolds [HY]. The
question of existence of SRB measures in general is not one that is likely to be
resolved in the near future.

It seems, though, that the time has come to attempt the following type of
questions: given a “typical” or “generic” 1-parameter family of dynamical systems
that are hyperbolic on large parts of their phase spaces without being uniformly
hyperbolic everywhere, is it reasonable to expect that a positive measure set of
them will admit SRB measures? (This is the “attractor” or “dissipative” version;
one could also formulate similar questions for the positivity of Lyapunov exponents
for conservative systems.) I will come back with some brief remarks on this in
Section 4.

§3. Decay of correlations for Hénon maps

Independent identically distributed random variables are “chaotic” in the sense
that it is impossible to predict the future from knowledge of the past, yet their
distributions obey very simple limit laws. One might wonder if the same is true
for processes coming from chaotic dynamical systems. For example, if f has an
attractor Λ and µ is its SRB measure, what can be said about the random variables
{ϕ ◦ f i}i=0,1,2,··· where ϕ is a reasonable function on Λ?

I would like to report on some recent results in this direction.

Theorem 5 [BY2]. Let {Ta,b} be the Hénon family, and let T = Ta,b be any one

of the maps in Theorem 4 shown to admit an SRB measure µ. Let Hβ denote the

set of Hölder continuous functions on Λ with exponent β. Then there exists τ < 1
such that for all ϕ, ψ ∈ Hβ , there is a constant C = C(ϕ, ψ) such that

∣

∣

∣

∣

∫

ϕ · (ψ ◦ Tn)dµ−
∫

ϕdµ ·
∫

ψdµ

∣

∣

∣

∣

≤ Cτn ∀n ≥ 1.

The main ideas of our proofs are as follows. Given that “horseshoes” are
building blocks of uniformly hyperbolic systems, the following seems to be a natural
generalization to the nonuniform setting: Let ∆0 be a rectangular lattice obtained
by intersecting local stable and unstable manifolds. Suppose that ∆0 intersects
unstable manifolds in positive Lebesgue measure sets, and that it is the disjoint
union of a countable number of “s-subrectangles” ∆0,i each one of which is mapped
under some power of T , say under TRi , hyperbolically onto a “u-subrectangle” of
∆0. (A subset X ⊂ ∆0 is called an “s-subrectangle” of ∆0 if X ∩ γ = ∆0 ∩ γ for
every local stable leaf γ used to define ∆0.) Let R(x) = Ri for x ∈ ∆0,i. Then
we may regard the dynamics of T as something like the discrete time version of
a special flow built under the return time function R over a uniformly hyperbolic
“horseshoe” with infinitely many branches.

For the “good” Hénon maps in Theorem 4, we show that sets with the proper-
ties of ∆0 above are easily constructed. Furthermore, because of the rapid recovery



ERGODIC THEORY OF ATTRACTORS 7

after each visit to the critical set C, the return time function R has the property
that µ{R > n} < Cθn for some θ < 1. This enables us to show that there is a
gap in the spectrum of the Perron-Frobenius operator, proving exponential decay
of correlations. (A similar tower construction is used in [Y2].)

Using this spectral property of the Perron-Frobenius operator we obtain also
the Central Limit Theorem for {ϕ ◦ T i}i=0,1,2,··· :

Theorem 6 [BY2]. Let (T, µ) be as in Theorem 5, and let ϕ ∈ Hβ be a function

with
∫

ϕdµ = 0 and ϕ 6= ψ ◦ T − ψ. Then

1√
n

n−1
∑

i=0

ϕ ◦ T i distribution−→ N (0, σ)

where N (0, σ) is the normal distribution and σ > 0 is given by

σ = lim
n→∞

[

1

n

∫

(
n−1
∑

i=0

ϕ ◦ T i)2dµ

]1/2

.

§4. Final remarks

The proofs of Theorems 4, 5 and 6 involve technical estimates specific to the
Hénon maps, but I would like to point out that the ideas behind them are not
model-specific and may be quite general.

Very roughly speaking, the existence and mixing properties of SRB mea-
sures seem to be related to the rates at which arbitrarily small pieces of unstable
manifolds grow to a fixed size (which is more than just the existence of a positive
Lyapunov exponent pointwise). To formulate something more precisely, one could
look for a set with the properties of ∆0 in the last section, and study the return
time function R. If R is integrable with respect to Lebesgue measure onWu- leaves,
then an SRB measure exists; and if in addition to that, R has an exponentially
decaying tail estimate as in Section 3, then the system has the exponential mixing
property provided all powers of the map are ergodic.

In general, I doubt that it is possible to determine the nature of R from
the overall appearance of a dynamical system. If, however, there is a recognizable
“bad set” – in the sense that away from this set the map is uniformly hyperbolic
(with no discontinuities), and when an orbit gets near it there is a quantifiable
loss in hyperbolicity followed by a “recovery period” – then, as observed in [BY2],
there are often natural candidates for ∆0, and the character of the return time
function R is directly related to the rate of recovery after each encounter with the
“bad set”. In particular, if the recovery is “exponential” (meaning it takes ∼ log 1

δ
iterates to recover fully from a loss ∼ δ) then R has an exponentially decaying tail
estimate.

Obvious examples that fit into this “bad set – recovery” scenario are large
classes of piecewise uniformly hyperbolic maps, including certain billiards, where
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the “bad set” is the set of singularity curves (see also the recent preprint [Li]),
and quadratic maps of the interval whose critical orbits carry positive Lyapunov
exponents (see Section 3). It is less obvious a priori that the Hénon maps fit into
this category; indeed the various notions there have to be interpreted with a bit
more care. The rate of recovery is exponential in these examples, but not in e.g.
[HY].

It is certainly not the case that all nonuniformly hyperbolic systems have
recognizable “bad sets”, nor am I suggesting a generic theorem that can be applied
to all “bad set – recovery” type scenarios. I wish only to point out that many of the
known nonuniform examples belong in this category, and I hope that the methods
discussed here will shed some light on the ergodic properties of these systems – as
well as on other systems with similar characteristics.

References

[BC1] Benedicks, M. and Carleson, L., On iterations of 1 − ax
2 on (−1, 1), Ann. Math. 122

(1985) 1–25.
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