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Abstract

As a paradigm for heat conduction in 1 dimension, we propadass of models represented
by chains of identical cells, each one of which containingeaergy storage device called
a “tank”. Energy exchange among tanks is mediated by traamticfes, which are injected at
characteristic temperatures and rates from heat baths at¢thends of the chain. For stochastic
and Hamiltonian models of this type, we develop a theorydhats one to derive rigorously
— under physically natural assumptions — macroscopic enstor quantities related to heat
transport, including mean energy profiles and tracer dessiConcrete examples are treated
for illustration, and the validity of the Fourier Law in thegsent context is discussed.
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1 Introduction

Heat conduction in solids has been a subject of intensivdystwer since Fourier's pioneering
work. An interesting issue is the derivation of macroscapinduction laws from the microscopic
dynamics describing the solid. A genuinely realistic maaféhe solid would involve considerations
of quantum mechanics, radiation and other phenomena. $nptper, we address a simpler set
of questions, viewing solids that are effectively 1-dimenal as modeled by chains of classical
Hamiltonian systems in which heat transport is mediatedrager particles. Coupling the two
ends of the chain to unequal tracer-heat reservoirs andiatiothe system to settle down to a
nonequilibrium steady state, we study the distribution redrgy, heat flux, and tracer flux in this
context.

We introduce in this paper a class of models that can be seam asstraction of certain types
of mechanical models. These models are simple enough to beadiie to analysis, and complex
enough to have fairly rich dynamics. They have in commondalewing basic set of characteristics:
Each model is made up of an array of identical cells that aealily ordered. Energy is carried by
two types of agents: storage receptacles (called “tanksf)dre fixed in place, and tracer particles
that move about. Direct energy exchange is permitted oniyden tracers and tanks. The two
ends of the chain are coupled to infinite reservoirs that énader particles at characteristic rates
and characteristic temperatures; they also absorb thasersrthat reach them. To allow for a broad
range of examples, we do not specify the rules of interadbieveen tracers and tanks. All the
rules considered in this paper have a Hamiltonian charanteiving the kinetic energy of tracers.
Formally they may be stochastic or purely dynamical, r@syin what we will refer to astochastic
andHamiltonian models

Via the models in this class, we seek to clarify the relatimmag several aspects of conduction,
including the role of conservation laws, their relation lte dynamics within individual cells, and
the notion of “local temperature”. We propose a simple redigr deducing various macroscopic
profiles from local rules (see Sect. 2.2). Our recipe is gengrdoes not depend on specific char-
acteristics of the system. When the local rules are suffiigiesimple, it produces explicit formulas
that depend on exactly 4 parameters: the temperatures gslafatracer injection at the left and
right ends of the chain.

For demonstration purposes, we carry out this proposedgmofpr a few examples. Our main
stochastic example, dubbed the “random-halves model’atscolarly simple: A clock rings with
rate proportional tq/xz wherez is the (kinetic) energy of the tracer; at the clock, energghexge
between tracer and tank takes place; and the rule of exclamgssts simply of pooling the two
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energies together and randomly dividing — in an unbiased -wthe total energy into two parts.
Our main Hamiltonian example is a variant of the model stidiie[17, 12]. Here the role of the
“tank” is played by a rotating disk nailed down at its cengerd stored energy is®> wherew is the
angular velocity of the disk. Explicit formulas for the pte8 in question are correctly predicted in
all examples.

In terms of methodology, this paper has a theory part and alations part. The theory part is
rigorous in the sense that all points that are not provensatated and stated explicitly as “assump-
tions” (see the next paragraph). It also serves to elucitheteelation between various concepts
regardless of the extent to which the assumed properties Bitnulations are used to verify these
properties for the models considered.

Our main assumption is in the direction of local thermodyitagguilibrium. For our stochastic
models, a proof of this property seems within reach thoughrtieally involved (see.g. [5, 22,
10] and [11]); no known techniques are available for Hamiio systems. Extra assumptions
pertaining to ergodicity and mixing issues are needed forHamiltonian models. It is easy to
“improve ergodicity” via model design, harder to mathemty eliminate the possibility of all
(small) invariant regions. In the absence of perfect mixinthin cells, actual profiles show small
deviations from those predicted for the ideal case.

In summary, we introduce in this paper a relatively traceblass of models that can be seen
as paradigms for heat conduction, and put forth a programclvhi# under natural assumptions —
takes one from the microscopic dynamics of a system to itsophenological laws of conduction.

2 Main ldeas

2.1 General setup

The models considered in this paper — both stochastic andltdaran — have in common a basic
set of characteristics which we now describe.

There is a finite, linearly ordered collectionsifesor cellslabeledl, 2, ..., N. Inisolation,i.e.,
when the chain is not in contact with any external heat squneesystem is driven by the interaction
between two distinct types of energy-carrying objects:

e Objects of the first kind arfixed in placeand there is exactly one at each site. These objects play
the role of storage facility, and serve at the same time tdtingr energy level at fixed locations.
For brevity and for lack of a better word, let us call them ggadanks. Each tank holds a finite
amount of energy at any one point in time; it is not to be coadusith an infinite reservoir. We
will refer to the energy in the tank at siteas thestored energyat sites.

e The second type of objects are moving particles caliacers. Each tracer carries with it a finite
amount of energy, and moves from site to site. For definieng@s assume that from siigit
can go only to sites + 1.

With regard tomicroscopic dynamics the following is assumed: When a tracer is at sjtié may
interact — possibly multiple times — with the tank at thag¢ sitn each interaction, the two energies
are pooled together and redistributed, so that energy iseceed in each interaction. The times
of interaction and manner of redistribution are determingdhe microscopic laws of the system,
which depend solely on conditions within that site. Thesesldetermine also the exit times of the
tracers and their next locationé. priori there is no limit to how many tracers are allowed at each
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site. We stress that this tracer-tank interaction is thg type of interaction permitted: the tanks
at different sites can communicate with each other onlysttacers, and the tracers do not “see”
each other directly.

All stochasticmodels considered in this paper are Markovian. Typicallytinchastic rules
of interaction, energy exchanges occur when exponentiakslring, and energy is redistributed
according to probability distributions. IRlamiltonian models, tracers are usually embodied by
real-life moving particles, and energy exchanges usuallglve some types of collisions.

The two ends of the chain above are coupled to heat baths which are infinite reservoirs
emitting tracers at characteristic temperature (and dsording them). It is sometimes convenient
to think of them as located at sit@sand NV + 1. The two baths inject tracers into the system
according to certain rules (to be described). Tracersafiotr N can exit the system; when they
do so, they are absorbed by the baths. The actions of the tilie Bee assumed to be independent
of each other and independent of the state of the chain. Thledth is set at temperatui® ; the
energies of the tracers it injects into the systemiidrevith a law depending on the model. These
tracers are injected at exponential rates, with mgan Similarly the bath on the right is set at
temperaturd and injects tracers into the system at rage

To allow for a broad spectrum of possibilities, we have detitely left unspecified (i) the
rules of interaction between tracers and tanks, and (iictheoling to heat baths.e., the energy
distribution of the injected tracers. (Readers who wishe® soncrete examples immediately can
skip ahead with no difficulty to Sects. 3.1 and 4.1, where twangples are presented.) We stress that
once (i) and (ii) are chosen, and the 4 parameigtdy, oy, andgy are set, then all is determined:
the system will evolve on its own, and there is to be no othmriention of any kind.

Remark 2.1 Our approach can be viewed as that of a grand-canonical dtsesince we fix the
rates at which tracers are injected into the system (whidingntly determine the density and energy
flux at steady state). An alternate setup would be one in wihieldensity of tracers is given, with
particles being replaced upon exit. In this alternate sehg4 natural extensive variables would be
the temperature®}, and7y, the density of tracers (mean number of tracers per celltlamdnean
energy flux. For definiteness, we will adhere to our origimaifulation.

We now introduce theuantities of interest For fixed N, let 11y denote the invariant measure
corresponding to the unique steady state off{hehain (assuming there is a unique steady state).
The word “mean” below refers to averages with respegito The main quantities of interest in
this paper are

e s, = mean stored energy at site

e ¢, = mean energy of individual tracers at sitp

e k; = mean number of tracers at site

e FE, =mean total energy at siieincluding stored energy and the energies of all tracerssprte

For simplicity, we will refer toe; astracer energyand E; astotal-cell energy

We are primarily interested in th@ofiles of these quantities,e,, in the functions — s;, e;, k;
and E; as N — oo with the temperatures and injection rates of the baths hededfi More
precisely, we fixTy, Ty, o;, and og. Then spacing(1,2,..., N} evenly along the unit interval
[0,1] and letting N — oo, the finite-volume profiles — s;,¢;, k;, E; give rise to functions
& — s(8),e(6),k(6), E€), £ € [0,1]. Itis these functions that we seek to predict given the mi-
croscopic rules that define a system.
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2.2 Proposed program: from local rules to global profiles

We fix N, Ty, Ty, o1, and gr, and consider atv-chain with these parameters. To determine the
profiles in Sect. 2.1, we distinguish between the followwwg kinds of information:

(@) cell-to-cell traffic, and
(b) statistical information pertaining to the dynamicshaitindividual cells.

In (a), we regard the cells as black boxes, and observe ordy gdes in and what comes out. Where
left-right exit distributions are known, standard argutsdmalancing energy and tracer fluxes give
easily the mean number of tracers and energy transporteddite to site. While these numbers are
indicative of the internal states of the cells (for examplgh-energy tracers emerging from a cell
suggests higher temperatures inside), the profiles we sgsnd on more intricate relations than
these numbers alone would tell us.
We turn therefore to (b). Our very naive idea is to studsirgle cel] and to bring to bear on

chains of arbitrary length the information so obtained. \Wippse the following plan of action:

(i) Consider a single cell plugged to two heat baths (one ®feit, the other on its right), both
of which are at temperatur€ and have injection rate, 1" and ¢ being arbitrary. Finding
the invariant measurg”? describing the state of the cell in this equilibrium sitoatis, in
general, relatively simple compared to finding .

(i) Suppose the measuge*¢ has been found. We then look at Ahchain withT}, = TR =T
andy;, = og = o, and verify that the marginals at sitef the invariant measure,; are equal
to 2. (By the marginal at sité, we refer to the measure obtained by integrating out all
variables pertaining to all sites i.)

(iii) Once the family {x7*¢} is found and (ii) verified, weassumethat the structure common to
the ¢ passes to all marginals @fy asN — oo even whenT}, o) # (T, or). More
precisely, for all € (0, 1), we assume that all limit points of the marginals.qQf at site EV]
(where ] denotes the integer part o inherit, asN — oo, the structure common o',

We observe that (i)—(iii) alone are inadequate for deteimgitthe sought-after profiles, for they
give no information on whicll’ andp are relevant at any given site. The main point of this program
is that (a) and (b)ogetheris sufficient for uniquely determining the profiles in questi

Remark 2.2 Our rationale for (iii) is as follows: Fix an integef, As N — oo, the gradients

of temperature and injection rate on thsites centered at[V] tend to0, so that the subsystem
consisting of thesé sites resembles more and more the situation in (ii). Thoatiter natural from
the point of view of physics [4], this argument does not cibutst a proof. Indeed our program is in
the direction of proving the existence of well defined Giblmasures and then assuming, when the
system is taken out of equilibrium, that thermodynamic Eopiiim is attained locally; in particular,
local temperatures are well defined. The full force of lotarinal equilibrium is not needed for
our purposes; however. The assumption in (iii) pertaing tmmarginals at single sites.

The rest of this paper is devoted to illustrating the progoattined above in concrete examples.
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3 Stochastic Models

3.1 The “random-halves” model

This is perhaps the simplest stochastic model of the gengraldescribed in Sect. 2.1. The mi-
croscopic laws that govern the dynamics in each cell arellmsvia Letd > 0 be a fixed number.
Each tracer is equipped with two independent exponentigksl Clock 1, which signals the times
of energy exchanges with the tanks, rings at @& wherex is the (current) energy of the tracer.
Clock 2, which signals the times of site-to-site movemeritgs at rate,/z. The stored energy at
sitei is denoted byy;. In the description below, we assume the tracer is at site

(i) When Clock 1 rings, the energy carried by the tracer aedstbred energy at siteare pooled
together and split randomly. That is to say, the tracer getst y;) units of energy and the
tank gets { —p)(x +y;), wherep € [0, 1] is uniformly distributed and independent of all other
random variables.

(i) When Clock 2 rings, the tracer leaves sitdt jumps with equal probability to siteist 1. If
i =1 o0r N, going to site® or N 4+ 1 means the tracer exits the system.

It remains to specify the coupling to the heat baths. Herengitural to assume that the energies of
the emitted tracers are exponentially distributed with mséa, and7}.

This completes the formal description of the model.

Remark 3.1 The rates of the two clocks are to be understood as followsa¥geme the energy
carried by the tracer is purely kinetic, so that its speedis We assume also that a tracer travels, on
average, a distaneebetween successive interactions with the tank, and a distabefore exiting
each site.

Remark 3.2 As we will show, the invariant measure does not depend onahe\ofd, which can
be large or small. The size 6fdoes affect the rate of convergence to equilibrium, however

Remark 3.3 While the tracers do not “see” each other in the sense thia theo direct interaction,
their evolutions cannot be decoupled. The number of trgareisent at a site varies with time. When
two or more tracers are present, they interact with the tankngver their clocks go off, thereby
sharing information about their energies. A new tracer nmagreat some random moment, bringing
its energy to the pool; just as randomly, a tracer leavesnhgakith it the energy it happens to be
carrying at that time.

3.2 Single-cell analysis

3.2.1 Single cell in equilibrium with 2 identical heat baths

We consider first the following special case of the model diesd in Sect. 3.1V = 1,1}, =T =
T, andg;, = o = o. Each state of the cell in this model is represented by a foint

Q= U Qy (disjoint union)
k=0

whereQ, = {({zy,...,z1},y) : =5y € [0,00)}. Here{x,,...z;} is anunorderedk-tuple
representing the energies of theéracers;y denotes the stored energy, and a poirf2jnrepresents
a state of the cell when exactkytracers are present.
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Remark 3.4 We motivate our choice dR. During a time interval when there are exactlyracers

in the cell — with no tracers entering or exiting — it makeididifference whether we think of the
tracers asiamed and represent the state of the cell by a poinvire)***, or if we think of them
asindistinguishable and represent the state by a point(lp. With tracers entering and exiting,
however, thinking of tracers as named will require that siileg tracers return later, otherwise the
system is transient and has no invariant measure. Sinceikahat assigns to each departing tracer
a new tracer to carry its name is necessarily artificial, amgpfesent purposes exact identities of
tracers play no role, we have opted to regard the tracersiasinmguishable.

We clarify the relationship betwee, co)**! and(2,, and set some notation: Let : [0, o)kl
— Q. be the mapry(z,..., 25, v) = ({x,... 2}, v), i.e, 7 is the §!)-to-1 map that forgets the
order in the ordered-tuple (,,...,z;). For a measurg on [0, c0)**1 that is symmetric with
respect to the:, coordinates, it = (7)./i, andg ando are the densities gi and . respectively,
theng ando are related by

O-({ml?' . 7$k}7y) = k! 5-(3:17' .- 7xk7y) .

We also writed{z, ...,z }dy = (m).(dz; ...dx,dy), and usel to denote the characteristic
function.

Proposition 3.5 The model in Sect. 3.1 withi = 1, T}, = Ty = T, andg;, = pg = o has a unique
invariant probability measurg, = 1”>¢ on 2. This measure has the following properties:

e the number of tracers present is a Poisson random variabile mears: = 2g\/7T/—T, ie.,

k

wQy) = %e—% . k=0,1,2,... (3.1)
e the conditional density qf onQ, is ¢ o,d{z, ...,z }dy where
1
op,({zy,. . 21} y) = e Pyt toty) (3.2)

I [
e mey20} =y
heres = 1/T, andc, = 3 k! (3/)*/? is the normalizing constant.

Proof: Uniqueness is straightforward, since one can go from a beigfiood of any point if) to a
neighborhood of any other point via positive measure setsanfple paths. We focus on checking
the invariance of: as defined above.

Forz, 2 € Q, let P"(d2/|2) denote the transition probabilities for timke> 0 starting fromz.
We fix a small cubed C Qj, for somek, and seek to prove that

! ( / IA(z')Ph(dz’\z)> u(d2)

& =0

h=0
On the time interval( h), the following three types of events may occur:

EventE,: Entrance of a new tracer
EventE,: Exit of a tracer from the cell
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EventE;: Exchange of energy between a tracer and the tank

We claim that with initial distribution., the probability of more than one of these events occurring
before timeh is o(h) ash — 0. This assertion applies to events both of the same type and of
distinct types. It follows primarily from the fact that thiedse events are independent and occur at
exponential rates. Of relevance also are the exponenitigiofas; and the Poisson distribution of
p. = p(€2) in the definition ofu. To illustrate the arguments involved, we will verify at thed of
the proof that the probability of two or more tracers exitmgthe time intervalQ, i) is o(h), but
let us accept the above assertion for now and go on with the argument.

Starting from the initial distribution:, we letP(E;, A) denote the probability thal; occurs
before timeh resulting in a state i, and letP(E{ N E5N E5, A) denote the probability of starting
from a state ind and having none of th&; occur before timé:.. We will prove

P(Ey, A) + P(Ey, A) + P(E3, A) + P(Ef 0 ES N E§, A) — pu(A) = o()u(4) . (3.3)
Notice thatA can be represented as the union of disjoint sets, where eact; is of the form

Ag(Z):{({$1,...,$E},y)Il‘g S [j37j£+€]>£: 17"'7E>y€ [17,17—1—6]}

for somez = ({z,...,%;},9) € ©, e < 1, and with the intervalsi,, z, + <] pairwise disjoint
for ¢ =1,2,..., k. To prove (3.3) for4, it suffices to prove it for eacld, providedo(h) in (3.3) is
uniformly small for alls.

We consider from here oA = A_(z) with the properties above. Letdenote the density of.
With ¢ sufficiently small, we have(A) ~ o(2)e"! = p,;c,;a,;(é)a’““ wherec,;, ando,, are as in
the proposition. The other terms in (3.3) are estimated las\fs:

P(E,, A): E, isin fact the union oRk subevents, corresponding to a new tracer coming from the
left or right bath and thé approximate values of energy of the new tracer. For defieggnwe
assume the new tracer arrives from the left bath, and hagyemefz,, z, + ¢]. That is to say, the
initial state of the cell is described by

B = {({x27---7xl_c}7y):w£ € [££7£Z+E]7y € [g,g—l—é‘]} C Q/_f—l .

The contribution tdP (£, A) of this subevent is

I +e _
w(B) ho / U BePrde ~ ho u(B)e P Be

Zy

Here,ho is the probability that a tracer is injected, and the integbeve is the probability that the
injected tracer lies in the specified range. Summing oveXkasiubevents, we obtain

k
P(E;, A) ~ 2hoB (O \/T) pro1cp—1 05(2) €11 (3.4)
=1
P(E,, A): Inorder to result in a state iA, the initial state must be in

Cl = {({mlv 717]573:}71/) tZy € [i‘b‘fﬁ —|—€],3§‘ € [0,00),y € [gvg—i_g]} C fo—i—l .
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We assume here that the tracer with energxits between timé and timeh. This gives

P(E,A) % prys e 0@ [ min{hvE L) oo ds
T 7
Pt Cipr 05(2) M1 BT (R + o(R)) - (3.5)

P(E;, A): For definiteness, we assume it is the tracer with energyaethat is the product of the
interaction with the tank. To arrive in a statedn, one must start from

D= {({wla---axl_g}ay):xﬁ € [jb‘i.é—i_g] forez 2,1’1"‘?]6 [‘%1—’_@7‘%1—’_@—’_25]} .

A simple integration using the rule of interaction in Secl §ives
P(E,, A) ~ h@ prcror(2)eF L. (3.6)

P(ET{ N ESN E5, A): We first note that starting from, the probability of the tracer with energy
~ T, exiting is

Prcrop(R)/T e ek /
i‘l

Ty

te 1 _
h\/ETe_Bxdw = hy/Z; prepor(z) €L
x

the probability of the tracer with energy z, interacting with the tank is

/T _
h—5 L p,‘fckalg(i) Ek+1 ;

and the probability of a new tracer entering the cell fromléfie(resp. right) bath i p(A,). Thus
P(E{NESNES, A) ~ pregop(?) e I, — hy/Z,) - (1 — ho)? - TL(1 — hy/Ty/0)

— — 1 —
prcpor(z) L (1 —h (z:?:l\/f_z + 20+ 52@;@) > (3.7)

Summing Egs. (3.4)—(3.7), we obtain (3.3) provided

Q

200pr_1¢g—1 = Prerp and  20ppcp = Py T
Note that these two equations represent the same relatialiffierent k. We write this relation as

CrkPk 22 38
Cry1Pri1 20 (3-8)

and verify that it is compatible with assertion (3.1): Since

1 k 1 —Bz —p _
Ck 71 <HZZI/\/—Q:—Z€ de) /e Ydy = 1,

and [ z~'/2e=Pdy = /T, we have

20 ¢ 20 < 1 /OO 1 4 > 1 27
Pryri = 77— P = 7=\ .17 —=e x| pp, = /= — = Dk -
- T cpypq T 0 %
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To complete the proof, we estimate the probability of two arentracers exiting before time

Forn =2,3,..., let E,,, be the event that the initial state is in
On = {({xb .. ,ZE];,,QZ'(l), .. ’x(n)}’y) : xé € [i'bjﬁ + 6]7$(él) € [07 oo),y € [gvg + 6]} 9
and during the time intervab(h), all n of the tracers carrying energie&), ¢’ = 1,2,...,n, exit

the system. The probability of,, -, E, ,, is

> PrinCrincr (@D (OM)"

n>2

which, from Eg. (3.8), is bounded by

pregoR(e Y (%)nw(h))n = prerop(DeFt o(h) .

n>2

d

Remark 3.6 In the setting of Proposition 3.5, since the cell is in eduilim with the two heat
baths, it is obvious that it ejects, on avera@efracers per unit time, and the energies of the tracers
ejected have mea. We observe that the cell in fact reciprocates the actiorhefldath more
strongly than this: theistribution of the energies of the ejected tracers is also exponentiabe®
this, fix k and consider one tracer at a time. The probability of theetragiting with energy> u is

o0 1
~ [— —61? — -1 _ﬁu
L Vv \/Ee dx = B e Pu.

3.2.2 Chain ofV cells in equilibrium with2 identical heat baths

We treat next the case of arbitralyy. That is to say, the system is as defined in Sect. 3.1, but with
11, =Ty = T andp;, = or = o. Letu be as in Proposition 3.5.

Proposition 3.7 The N-fold productu x --- x u is invariant.

Remark 3.8 That the invariant measure is a product tells us that at gtetatle, there are no spatial
correlations. We do not find this to be entirely obvious on ititeitive level: one might think
that above-average energy levels on the left half of thenchrgly cause the right half to be below
average; that is evidently not the case. This result shoatdbe confused with the absence of
space-timecorrelations.

Proof: Proceeding as before, we consider a small time inte¥gl)( and treat separately the
individual events that may occur during this period. Onehefriew events (not relevant in the case
of a single cell) is the jumping of a tracer from sité- 1 to sitei. We fix a phase point

z = (0,... M) = ({f(ll),...,fgl)},y(l); o {gz(lN),...,gzg]VV)},y(N)),

and letd = 1Y, A® ¢ QN whereA® = A_(z®) is as in Proposition 3.5. Let?) = ¢, (z). For
definiteness, we fix also an integerl < n < N, and assume that at tinfie the state of the chain
is as follows:
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(i) atsiten + 1, there arek,, ,; + 1 tracers the energies of which lie in disjoint intervals

[x(n-‘rl) —(N+1) +e], ..., [x(n-ii) —(n-‘rl) +¢]  and [x(n) —(n) +¢],
(i) atsiten, there arek,, — 1 tracers whose energies lie in
[:B(Q") M yel, L, [$§€n),$§€n) +¢€] .

The probability of this event occurrirgndthe tracer with energy: z ‘(") jumping from siten + 1
into siten is then given by - I - IT where

I = Hz;ﬁn n+1 (pk Ck U(i)gki—‘rl)

()
I = Ck,, 0™ Z Mk
1 1
m = p, ¢ 10("+1)£kn+1+1/ hv/z—=e"Podz .
np1 R+ - NS

This product can be written as

C
h <HN lpk Ck U(Z)€k1+1> . pkn—l Ckn—l . pkn+l+l kn+1+l ) _(n)
1= . .

2 D c P c A
kn kn kn+1 kn+1

which, by Eq. (3.8), is equal to

h ; _
B <H£\Llpkickia(’)ski+l> . \/a:(ln) . (3.9)

There are many terms of this kind that contribute[td,(z') P"(d2'|2)u(dz), two for 20" for
each pair 4, ¢). We claim that the system has detailed balaneg, the term associated with the
scenario above is balanced by the probability of startioghfa state inA and having the tracer at
siten carrying energyx & *(”) jump to siten + 1. The probability of the latter is

2"
1 4 1 +e 1
—(UN. p;. ¢ oDehitly. a‘:(") pzy” = / h/z——=e P dz
g\ 1Pk, %k, e :?:(1") \/E
which balances exactly (3.9) as claimed.
An argument combining the one above with that in Proposi8dhregarding the injection of
new tracers holds at sitdsand V. O

Propositions 3.5 and 3.7 are steps (i) and (ii) in the progp@sbeme in Sect. 2.2.

3.3 Derivation of equations of macroscopic profiles

Having found a candidate family of equilibrium measufes ¢}, we now complete the rest of
the program outlined in Sect. 2.2. The next step, accordinyis program, is tassumehat for
N > 1, the marginals of the invariant measyrg at sitei are approximately equal to’¢ for
someTl = T, andp = p,;. We identify those parts of our proposed theory that are rmtqal in this
paper and state them precisely as “Assumptions”.
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Assumption 1. GivenTy,, Ty > 0, o1, 0g > 0, andN € Z™, the N-chain defined in
Sect. 3.1 with these parameters has an invariant probghitieasure. .

We do not believe this existence result is hard to prove fepnot to depart from the main line
of reasoning in this paper. Once existence is establishedueness (or ergodicity) follows easily
since any invariant measure clearly has strictly positeesity everywhere. A proof of the statement
in Assumption 2 below is more challenging. Roe (0, 1), let uy ¢ denote the marginal of
at the site { V].

Assumption 2. For every¢ € (0,1), every limit point asV' — oo of uy ¢y IS @
member of the familyu¢, T > 0,0 > 0}.1

In Sect. 2.1, we introduced four quantities of interest. réhe one that was somewhat ambigu-
ously defined, namely;. Its precise meaning is as follows; := > 72| p; re; , Wherep, , is the
probability that the number of tracers at sites equal tok ande; ;, is % of the mean total tracer
energy conditioned on the number of tracers present beingl ¢gk.

Theorem 3.9 is about the profiles of certain observables as oco. We refer the reader to the
end of Sect. 2.1 for the precise meaning of the word “profiethie theorem.

Theorem 3.9 The following hold for the “random-halves” model defined gc8 3.1 with arbitrary
11, TR, o1, or- Under Assumptions 1 and 2 above:

o the profile for the mean number of jumps out of a site per umié tis

J(€) = 2(or, + (or — 0L)§) -

the profile for the mean total energy transported out of agéeunit time is
Q&) = 2(oL Ty, + (erTr — 0. 11)E) 5
the profile for the mean stored energy at a site is

_ Q) _ o171, + (erTw — 0. T1)E |
3(€) o, + (er — 01)§

in the casep;, = oR, this simplifies tas(&) = 11, + (ITx — 11)¢ ;

the profile for mean tracer energy i$f) = %s({) ;

the profile for mean number of tracers is

s(¢)

#(§) = ) J(€);

the profile for mean total-cell energy is

EE) = s(8) + »#(Oe(€) = s() + %\/WS(E)J'(Q-

!As stated in Section 2, we assume all marginalgen;, N > 1, have uniform tail bounds in energy and in number
of tracers of the type suggested in the single-cell analysis
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Proof of Theorem 3.9 : We divide the proof into the following three steps:

I. Information on single cellsitems (i)—(iv) are strictly in the domain ohternal cell dynamics
The setting is that of Proposition 3.5, and the results belewdeduced (in straightforward compu-
tations) from the invariant density given by that propasiti The parameters are, as ustdagndp.
(Note that this means the rate at which tracers enter théesdte)

(i) stored energy has densifie™"¥ and meari” ;
(i) tracer energy has densi@%e‘ﬁz and meary; ;

(i) mean number of tracersy = 2@9 ;
(iv) mean total-cell energyy =1 - (1 + %).

Items (v) and (vi) are in preparation for the analysiceli-to-cell traffic:

(v) mean number of jumps out of the cell per unit timies 20 ;
(vi) mean total energy transported out of the cell per umgti)Q = T';.

II. Global phenomenological equation€onsider now a chain withy' cells with settingd; , Ty, oy,
andog at the two ends. The following results use only standardemasion laws together with the
local rule that when a tracer exits a cell, it has equal prifibabf going left and right.

(A) Balancing tracer fluxestet j, denote the number of jumps per unit time out of git&hen

Ji =2 <QL + NLH (or — QL)> : (3.10)
Proof: Consider an (imaginary) partition between gitend sitei + 1. We let—Aj, denote the flux
across this partition. TheAj;, = %(ji_;.l —j;)fori =0,1,..., N wherej, andjy_ , are defined

to be2g;, and2py respectively. Foi # 0, N, the% is there because only half of the tracers out of
sitei + 1 jump left, and half of those out of sitgump right. The fluxes across partitions between
all consecutive sites must be equal, or there would be aupilef tracers somewhere. This together
with >~ Aj; = 2(og — o1,) gives the asserted formula.

(B) Balancing energy fluxed:et ), denote the mean total energy transported out ofigier unit
time. Then .
1
Q=2 <QLTL YNNI (orTr — QLTL)> -
Proof: The argument is identical to that in (A), WithQ, = 1(Q,;; — @;) andQ, and Q.
defined to b&yo; 17, and2pi Ty respectively.

lIl. Combining the results from | and IIFix ¢ € (0,1). Passing to a subsequence if necessary, we
have, by Assumption 2y e ny — 17 €2 for someT'(¢) and (). We identify the two numbers
T(€) and (&) as follows:

Let 7V (£) denote the mean number of jumps out of S§t&] per unit time in theV-chain. Then
by (A) in part II, j(€) := limy_ . iV (€) = 2(o, + (0g — 0.)€). This is, therefore, the mean
number of jumps out of a cell with invariant measuré®)-2©). Similarly, we deduce that the mean
total energy transported out of a cell with the same invariagasure i€)(¢) := limy_.. QN (¢) =
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2(01, 11, + (orTR — 01,11.)¢). Appealing now to the information in part |, we deduce from gnd
(vi) that o(€) = 55(¢) andT'(€) = Q(€)/4(€)-

The rest of the profiles follow readily: we read off= T from (i), and deduce the relation
betweens and e by comparing (i) and (ii). The profiles far and F follow from (iii) and (iv)
together with our knowledge @fandT’. The proof of Theorem 3.9 is complete. a

We remark that in the terminology of [7] our random halves eids of gradient type

Remark 3.10 It is instructive to see what Theorem 3.9 says in the speas# eherp;, = 0. Since
no particles are injected at the left end, cleaffly, cannot matter. But since tracers do exit from
the left, one expects an energy flux across the system. Ugmstitsiing o;, = 0 into the formulas
above, one gets

J(€) = 20rE,  e(§) = 35(8) = 3Tr, (&) = 20pEV/7/ T
and an energy flux of 1Q’'(¢) = —ogTy.

3.4 Simulations

Numerical simulations are used to validate AssumptionsdlZaim Theorem 3.9 .

We mention here only those details of the simulations thii¢rdfrom the theoretical study.
Needless to say, we work with a finite number of sites, usugdly Simulations start in a random
initial state, and are first run for a period of time to let tigetem reach its steady state. All times are
in number of eventsK;, E,, andE;). Up to half the simulation time is used to reach statiogarit
statistics are then gathered during the remaining sinmaime. Since total simulation time is
finite, we find it necessary to take measures to deal with tsaafeexceptionally low energy: these
tracers appear to remain in a cell indefinitely, skewing théstics on the number of tracers. We
opted to terminate events involving a single tracer at dsisite after about 0.001 of total simulation
time. This was done about 10 times in the course0dfevents.

Simulations are performed both to verify directly the pntigs of the marginals at individual
sites and to plot empirically the various profiles of intéreExcellent agreement with predicted
values is observed in all runs. A sample of the results is shHowFig. 1.

3.5 Interpretation of results

We gather here our main observations, discuss their phHysipéications, and provide explanations
for the reasons behind the derived formulas.

1. Linearity of profiles

We distinguish between the following 3 types of profiles:

a. Transport of energy and tracerg(§) and Q(&) are always linear by simple conservation laws
and by the imposed left-right symmetry in outflow of tracemd anergy from each site.

b. Mean stored and (individual) tracer energieg(£) ande(&) are linear if and only if there is no
tracer flux across the system. (See item 4 below.)

c. Tracer densities and total-cell energy:(¢) is never linear (unles$;, = Ty ando;, = gg); in
addition to the obvious bias brought about by differentdtin rates, tracers have a tendency to
accumulate at the cold end (see item 3 for elaboration). Asalt; F(£) is also never linear.
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Figure 1: Random-halves model with 20 sites, temperatlires 10, 7z = 100 and injection rates
o1, = 10, o = 5. Top left: Mean tank energies. Top right: Mean number of tracess. Bottom:
Mean total energy;. Simulations in perfect agreement with predictions froeotty.
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2. Heat flux and the Fourier Law

Heat flux from left to right is given byp = T} o;, — T og. Thinking of the temperature of the
system as given by'(¢), Theorem 3.9 says that thermal conductivity is constadt@oportional
to T — 13, if and only if there is no tracer flux across the system, if and only if o, = og.

3. Distribution of tracers along the chain

In the case;, = o, more tracers are congregated at the cold end than at th&lnsts because
the only way to balance the tracer equation is to have the ruftjumps out of a site be constant
along the chain. Inside the cells, however, tracers moveeralowly at the cold end, hence they
jump less frequently, and the only way to maintain the remimnumber of jumps is to have more
tracers. Wheny, # og, the idea above continues to be valid, except that one nésmlfoaake into
consideration the bias in favor of more tracers at the endaviiie injection rate is higher.

4. Tracer flux and concavity of stored energy

One of the interesting facts that have emerged is #@tis linear if and only ifg;, = ogR,
and whenp;, # pg, their relative strength is reflected in the concavitys¢f). This may be a
little perplexing at first because no mechanism is built i@ microscopic rules for the tanks to
recognize the directions of travel of the tracers with whilthy come into contact. The reason
behind this phenomenon is, in fact, quite simple: If ther@iacer flux across the system, say from
right to left, then the tank at sitehears from sité + 1 more frequently than it hears from site- 1
(becausgj; | > j;_1). It therefore has a greater tendency to equilibrate wiehethergy level on
the right than on the left, causing to be > %(Sz‘ﬂ + s;_1). Since this happens at every site, a
curvature for the profile of, is created. The reader should further note that tracer fldbhaat flux
go in opposite directions ifof, — o) - (o1, 71, — orTR) < 0.

5. Individual cells mimicking heat baths

The cells in our models are clearly not infinite heat resesygjet for largeN, they acquire
some of the characteristics of the heat baths with which #ineyn contact. More precisely, tlith
cell injects each of its two neighbors with tracers per unit time. These tracers, which have mean
energy’;, are distributed according to a law of the same type as ththtwhich tracers are emitted
from the baths (exponential in the case of the random haleel) see Remark 3.6. Unlike the
conditions at the two ends, however, the numbe@ndT; areself-selected

3.6 A second example

We consider here a model of the same type as the “randomdiatvadel but withdifferent micro-
scopic rules The purpose of this exercise is to highlight the role plalygdhese rules and to make
transparent which part of our scheme is generic.

The rules for energy exchange in this model simulate a Hani#dh model in which both tracers
and tanks have one degree of freedom. Wirite: v? andy = w?, v,w € (—o0, 00), and think of
energy as uniformly distributed on the cirdl@y, w) : v2+w? = ¢}, so that when the tracer interacts
with stored energy, the redistribution is such that a randomt on this circle is chosen with weight
|v| (this is the measure induced on a cross-section by the antameasure of the flow). That is to
say, if (r,y) are the stored energy and tracer energy before an inemaethd ¢’, ') afterwards,
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then fora € [0,z + 1],

Vva dv 2d
P{y >a} = P{w'|>a} = 1— JoT oyt + (@) de o e (3.11)

)

ST 1+ (8) de Ty
or, equivalently, the density of is
Lt 1 for 3 €[0,z + ]
— or , T .
2y Tty Y Y

Assume now that all is as in Sect. 3.1, except that when Clauikaltracer rings, it exchanges
energy with the tank according to the rule in (3.11) and netrimndom-halves rule. Following the
computation in Sect. 3.2 (details of which are left to theder we see that Propositions 3.5 and
3.7 hold for the present model provided is replaced by

1
Ty,ey,y>0} m
This defines a new family of27*¢} for this model. With?"¢ in hand, we make the assumption

as before that fofV >> 1, the marginals of individual sites have the same form. Rxditgy as in
Sect. 3.3, we read off the following information on singldsce

(i) stored energy has densiztynst.e‘ﬁy/\/g and mear?’/2 ;
(i) tracer energy has densitynst.e %% /,/z and mear?’/2 ;
(i) mean number of tracers; = 2,/Z0;
(iv) mean total-cell energyy = Z(1 + ).
The rest of the analysis, including (iv), (v), (A) and (B), dot depend on the local rules (aside

from the fact that tracers exiting a cell have equal changmifg left and right). Thus they remain
unchanged. Reasoning as in Theorem 3.9, we obtain the falijpw

op({ar, - ot y) = I o B@ +o ot +y)

Proposition 3.11 Under Assumptions 1 and 2, the profiles for the model withggnexchange rule
(3.11) are

e j(&) = 2(or, + (er — 00)8) ;

e Q) = 2(or Ty, + (erTr — 0r.11))

o 5(6) = el§) =35 QO/i©);

o x(&) = 2m/s(§) j(€)/2;

o E(§) = s(&) +s&e(§) = s(&) + v2ms(€) j(§)/2 .

Numerical simulations give results in excellent agreemtit these theoretical predictions.

4 Hamiltonian Models

In Sect. 4.1, we introduce a family of Hamiltonian modelseayatizing those studied numerically in
[17, 12]. A single-cell analysis similar to that in SectioisZarried out for this family in Sect. 4.2,

and predictions of energy and tracer density profiles areenra®ect. 4.3. We again use the As-
sumptions in Section 3, but the predictions here are maderamadditional ergodicity assumption,
ergodicity being a property that is easy to arrange in st&taheodels but not in Hamiltonian ones.
Results of simulations for a specific model are shown in SE8t. A brief discussion of related

models is given in Sect. 4.6.
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4.1 Rotating disks models

We describe in this subsection a family of models quite ctostmose studied numerically in [17,
12]. The rules of interaction (though not the coupling tothmdhs) are, in fact, used earlier in [20].

4.1.1 Dynamics in a closed cell

We treat first the dynamics within individual cells assumihg cell or box issealed i.e., it is not
connected to its neighbors or to external heat sources.

LetT, C R? be a bounded domain with piecewi6€ boundary. In the interior of, lies a
(circular) diskD, which we think of as nailed down at its center. This disk teddreely, carrying
with it a finite amount of kinetic energy derived from its afayuvelocity; it will play the role of
the “energy tank” in Sect. 2.1. The system below describedre motion ofk point particles
(i.e, tracers) in[* = I'y \ D. When a tracer runs intol',, the boundary of’, the reflection is
specular. When it hits the rotating disk, the energy exchasgccording to the rules introduced in
[20, 17, 12]. A more precise description of the system folow

The phase space of this dynamical system is

Q, = (TF x 0D x R¥*+1)/ ~

where
x = (zy,...,r;) € ¥ denotes the positions of thetracers,
¥ € 0D denotes the angular position of a (marked) point on the baynaf the turning disk,
v = (vy,...,v;,) € R?* denotes the velocities of thetracers,

w € R denotes the angular velocity of the turning disk,

and~ is a relation that identifies pairs of points in the collisimanifold M, = {(x, 9, v,w) : z, €
oI for somel}. The rule of identification is given below.
The flow onQ,, is denoted byb,. As long as no collisions are involved, we have

O, (x,0,v,w) = (x+ sV, + sw,V,w) .

We assume at most one tracer collides withat any one point in time &, is not defined at multiple
collisions, which occur on a set of measure zero.) At thetaafiimpact,i.e., whenz, € oI for one

of the, letv, = (v}, v}) be the tangential and normal components,0fWhat happens subsequent
to impact depends on whethey € 0I'; or 9D. In the case of a collision withl',, the tracer
bounces ofbI', with angle of reflection equal to angle of incidence,,

(p) = —vp, (p) = v, (4.12)

and the other variables are unchanged. In the case of a@oNisth the disk, the followingenergy
exchangdakes place between the disk and the tracer:

(p) = —vp, () =w, W' = . (4.13)

Here we have, for simplicity, taken the radius of the disle thoment of inertia of the disk, and
the mass of tracer in such a way that the coefficients in Efj3j4re equal to 1. The identification
in the definition ofQ2;, is 2 ~ 2’ wherez, 2’ € M, are such that all of their coordinates are equal
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except thatv, andw in z are replaced by the corresponding quantities with primesgs. (4.12)
and (4.13) forz’. We also writeF'(z) = #'.

Note that in both (4.12) and (4.13), total energy is congiive,, |v|? +w? = |v/|? + (W)%. The
energy surfaces in this model are therefore

Qg = (" x 0D x SF)/ ~

where
SH ={(vi, ..., vpw) ERFFTL: D "y |2 +w? = E} .

We claim that the natural invariant measure, or Liouvilleaswge, of the (discontinuous) flow

d,onQ, is

My, = (alr)* X (1lop) X Akt
where)\,; is d-dimensional Lebesgue measure ands surface area on the relevahsphere. Once
the invariance ofn,, is checked, it will follow immediately that the induced meeessm;, , =
(Aalp)¥ x (v1]ap) X Vo, ONQ,  ared -invariant, as are all measures Qp of the formy(E)my, 5
for somey : [0, 00) — [0, 00).

The invariance ofmn,, is obvious away from collisions and at collisions wili,. Because
collisions occur one at a time, it suffices to consider a simglllision between a single tracer and
the disk. The problem, therefore, is reduced to the follgwiGonsider®, on ,, and letM; p
denote the part of the collision manifold involving. To prove thatn, is preserved in a collision
with D, if suffices to check that fod C M, j, ande > 0 arbitrarily small,

ml( U—€<s<0 (I)S(A)) = ml( U0<s<€ (I)S(F(A))) :

We leave this as a calculus exercise.

4.1.2 Coupling to neighbors and heat baths

We now consider a chain a¥ identical copies of the dynamical system described in Settl,
and define couplings between nearest neighbors and betwdeareks and heat baths.

Let~;, andyy be two marked subsegmentsdif, of equal length; these segments will serve as
openings to allow tracers to pass between cells. For novéssto think ofl’, as having a left-right
symmetry, and to think of;, and~y as vertical and symmetrically placed (as in Fig. 2), altfroug
as we will see, these geometric details are not relevanhéodérivation of mean energy and tracer
profiles. We call the segmentg, and~y in the ith cell yg) andyg). Fori =1,...,N — 1, we

identify »yg) with fyf“’, that is to say, we think of the domains of titk cell and the 4+ 1)st cell

as having a wall in common, name‘yﬁ) andfyg“), andremovethis wall, so that tracers that would
have collided with it simply continue in a straight line irttte adjacent cell. (See Fig. 2.)

Tracers are injected into the system as follows. ConsideexXample, the bath on the left. We
say the injection rate ig if at the ring of an exponential clock of ratg a single tracer enters céll
via 7£1). (Note that the rate is not the injection rate per unit length of the open&yﬂi but per unit
time) The points of entry and velocities of entering tracersiidrehe law being the one governing
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Figure 2: A row of diamond-shaped boxes with small lateréési¢gmade by removing vertical walls
corresponding to/g) = fyI(f“)) to allow the tracers to go from one box to the next. The shapes
the “boxes” can be quite general for much of our theory. Thafigaration shown is the one used
in the simulations discussed in Sect. 4.5, but with largéestor better visibility.

the collisions of tracers witl‘yﬁ”. That is to say, the point of entry is uniformly distributed wz{l),
and the velocity has density

2[63/2
=7
wherev € R? points intoy{"” andy € (0, 7) is the angley makes with{" at the point of entry.
(This is the distribution of at collisions for particles with velocity distributioﬁ exp(B|v|})dv.)
Here = 1/T whereT is said to be the temperature of the bath. Observe that tha ereagy of
the tracers injected into the system by a bath at temperdtusenot 7" but 37°/2. Injection from

the right is done similarly, via the openiné{N). When a tracer in the chain reachg{é) or fy(N), it
vanishes into the baths.

2
c e Al |y|| sin(p)| dv , c

(4.14)

This completes the description of our models. We remarktti@iprocess above is a Markov
process in which the only randomness comes from the actitimedbaths. Once a tracer is in the
system, its motion is governed by rules that are entirelgrdeinistic.

4.2 Single-cell analysis

In analogy with Sect. 3.2, we investigate in this subsectininvariant measure for a single cell
coupled to two heat baths with paramet@rand o.

LetQ, ankoyE be as in Sect. 4.1.1. As before, a state of this system issepted by a point
in

Q= Uplol = UploUg>0 Qe p

where(),, andQ),, i are quotients of2,, andQ,% 5 respectively obtained by identifying permutations
of the k tracers. With{- - - } representing unordered sets as before, poinfs ame denoted by =
{xy,y -y}, 95 {vg, ..o u, byw) or simply €, }, 95 {v, }, w), with v, understood to be attached to
z,. The quotient measures of;, andm,, 5 are respectivelyn;, andmy, g.

Abusing notation slightly, we continue to ude, to denote the semi-flow of2, and let®,
denote the induced semi-flow 6 Then®, is as in Sect. 4.1.1 except where tracers exit or enter
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the system. More precisely, 4 ,(z) € 2, forall 0 < s < sy, and a tracer exits the system at time
50, then<I>SO (2) jumps toQ2,_ ;. Similarly, if a tracer is injected from one of the baths ateis,, then
instantaneouslﬁ)SO (2) jumps tof2, . 4, the destination being given by a probability distribution

Let |y| denote the length of the segmentor .

Proposition 4.1 There is an invariant probability measurewith the following properties:

(a) the number of tracers present is a Poisson random vagiabth mears: where

Y — ﬂ)‘Q(F)L.
BRARTRA

(b) the conditional density gf on €2, is ¢;,0;,dm,, where
on({zed, 0 {vg},w) = e AT )
andc,, is the normalizing constant.

We observe as before that the Poisson parameteiproportional to (the higher the injection
rate, the more tracers in the cell) and inversely propoaliom\/T, i.e., the speed of the tracers (the
faster the tracers, the sooner they leave). Unlike the samiisidered in Sect. 3, where the tracers
are assumed to leave the cell at a rate equal to their speedtheeratio\,(I")/|~| appears, as it
should: the smaller the passage way, the longer it taketidéatrdicers to leave.

Notice that we have not claimed thais unique.

We introduce some notation in preparation for the proof. Ror €, andh > 0, we let
®_,(A) denote the set of all initial states in that in time . evolve into A assuming no new
tracers are injected into the system between tithaad /.2 Then®_,(A) = Unz(]@(f,)L(A) where
<I>(_",)1(A) =& (AN, ,.le, <I>(_",)1(A) is the set of states where initialky+ n tracers are present,
and by the end of timé exactlyn of these tracers have exited and the remairkigge described by
a state inA.

Lemma 4.2 Letu be as in Proposition 4.1, and let_ be a cube of sidesin €., ¢ small enough
that u(A,) ~ prpcpo(2)e** 2 for somez. We assume the following holds for all smalt> 0:

(i) no tracers are injected into the system on the time irgef®, 1] ;

(i) @,,(@7),(4.)) = A..
Then

@ (40) = @ (e + 20 e + o)) (@.15)
wherep, = 1(Q,) ande = %53/2.
Proof: The idea is that for a particle to exit in the very short timét must be close to the exit, or

~yr and move towards it without colliding with the disk or the bdary,or it must have very large
speed (and that is improbable).

Notice that (1} ®5, h > 0} is a semi-flow, and_, is not defined; (2% _1(A) as defined ist () (4).
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By assumption (i), we have(®_,(4,)) = >, M((I)‘_@L(Ag)). Then = 0 term is handled
easily: By virtue of (i) and (ii), the situation is equivateto that in Sect. 4.1.1. Sinc,e|Qk is

invariant for the closed dynamical system wittracers, we havp(<I>(_OZl(A€)) = u(A,).

Consider next» = 1. We give the estimate fqn(cb(_l;l(Ae)) assumingy;, andyy are straight-
line segments, leaving the general case (where these sesgman be curved) to the reader. First
some notation: For € R? anda > 0, let E(v, a, L) be the parallelogram on the same sideyof
asI' and with the property that one of its sidesyiswhile the other is parallel to and has length
a; E(v, a,R) is defined similarly. To simplify the discussion, we assuta fora > 0 sufficiently
small, E(v,a,L) and E(v, a, R) are contained if", and leave to the reader the verification that
“corners” at the end ofy, or v lead to higher order terms (in the varialdleised below).

Starting from a state i®{") (4.), we letz andv denote the initial position and velocity of the
tracer that exits before timk, and treat separately the cases|(1)< # and (2)|v| > #. In Case
(1), in order for the tracer to exit before tinke we must have: € E(v, h|v|,L) U E(v, h|v|,R),
andv must point toward the exits. Sincg(E(v, h|v|,L)) = Ay(E(v, hlv|,R)) = hlv|| sin(p)||v]
wherep is the anglev makes withy;, or v, we obtain

a T . _8lol?
HAUAI O S 5D = Al e 240 [T delsing) [ avlole

a
v|<y

1
= @ 14 - 2011+ o(h)

with ¢ = 26%/2/\/7. For Case (2), we have the trivial estimatg(z)c***2p, ¢, .1 - o(h).

To see that the terms corresponding:to- 1 are negligible, we first derive the bound
n = 1 n
@A) < oy Gy Rl + o) (4.16)

Then we compute the growth ratepf, , ¢, ,,. By the definitions of these numbers, we have

Ch1 Prar _ (@ e—mvﬁdv)_l( ! QﬁAQ(F)L>

Dk k41 Jge k+1 vl VT
giving
co\"
PkinCrin = <m> DiCrs n>1. (4.17)
From (4.16) and (4.17) it follows thai(® ") (4)) < o (2)e** 2 (const. - h)".
The asserted bound (4.15) fo(®_; (A)) is proved. O

The main difference between the proofs of Propositions Bdb4al is that Hamiltonian models
have both geometry and memory. In preparation for the pmweintroduce the following language.
Let A_ be asin Lemma4.2. Fdr=1, ..., k, we letX, denote the projection od, onto the plane
of its z,-coordinate, and’, the projection ofd_ onto the plane of it®,-coordinate (so thak’, and
V, aree-squares il andR? respectively). We assume for simplicity that for edcleither X, is
a strictly positive distance frony;, and~y, in which case we say, is in the interior, or one of
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its sides is contained iy, or vz. In the latter case, we say, is adjacent to an exit We further
assume that iX, is adjacent to an exit, then either ajl € V, point toward the exit or away from it.

Proof of Proposition 4.1: The invariance ofs is already noted in Sect. 4.1.1 except where it per-
tains to entrances and exits of tracers. We focus therefotiease events, noting that the probability
of more than one tracer entering on the time interGah] is o(h), as is the probability of a tracer
entering and leaving (immediately) on this time intervahe$e scenarios will be ignored.

Let A, be as above. We seek to show as before haft 1, (') P"(d='|2)u(dz)|,—o = 0. Here
it is necessary to treat separately the following configumtférAE:

Case 1.The following holds for all: X, can be in the interior or adjacent to an exit, and if it is
adjacent to an exit, then al, in V, must point toward the exit. Notice that this configuration is
relatively inaccessible, meaning the probability of a nesxeér entering on( ») leading to a state
in A_ is o(h)u(A.). Notice also that this configuration has the propdry @) (4.)) = A_, so that

the contribution of the no-new-tracers event(td, (2')P"(dz'|z)u(dz) is, by Lemma 4.2,
1
(1 — ho)? o1 ()e™ 2 (pyey, + 2h”Y\ng+1Ck+1 + o(h))

1
= oy(2)eH? <pk0k(1 —2hg) + 2h|7|gpk+1ck+1 + O(h)> (4.18)

= 01,(2)e* 2 (pcy, + o(h)) |

the last equality being valid on account of Eq. (4.17).

Case 2.X, is adjacent to an exit ang points away from it;X, andV, for ¢ > 1 are asin Case 1. In
this configuration, there is a part &f, that can only be reached in tinkgf one starts from outside.
This region is a parallelogram similar to that in the proofLeinma 4.2 but with one of its sides
equal toX; Ny, or X; N~g. Following the estimates in Case 1, we obtain that the dauttan of
the no-new-tracers event jol A (z")P"(d2'|z)p(dz) in this case is

Jk(5)54k+2 PrCk <1 - g‘@lH Siﬂ(@l)‘ + 0(h)> (419)

whereu, is thev; coordinate oz andgp, is the angler; makes withry, (or vg).

We now argue that the negative term above is balanced by thiglmgion of the event in which
a new tracer enters on the time intervalf). This new tracer must hawg < V; and must enter
through thes=-segmentX; Ny, or X; N ~i. We claim that the probability of this event is

_ 2 _ 2
Pr_1Ch10u(Z)eP =2 L o =l singz,)||o, e Pl g2 | (4.20)

7l
The first factor in (4.20) is the-measure of the states corresponding to thosé.ibut withoutthe
tracer with position and velocityz(, v,); the second factor is the probability of a tracer entering
through the designated segment, and the third is the fraofitcracers entering with velocity V;
(see (4.14)). That (4.19) and (4.20) add upel.)(1 + o(h)) again follows from (4.17).

Case 3.X,; and X, are adjacent to exits; andv, point away from the exits in question, and
andV, are as in Case 1 fdr> 2. We assume for simplicity that eitheK( x V}) N (X, x V5) =0
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In the case X; x V;) N (X, x V) = 0, the contribution of the no-new-tracers event is

_ h, . h, _ L
o (D)2 prey, (1 - g‘le sin(@;)| — E’UQH sin(@,)| + O(h)> ; (4.21)

and this is cancelled perfectly by the estimate correspgnt (4.20).

In the caseX; x V; = X, x V,, on{,, where tracer positions and velocities are regarded as
orderedk-tuples, the set of states where both,({v,) and @4, v,) are not reachable in timk is
o(h), and the set where exactly one of these is not reachable igiilon of two sets that project to
the same set undert,. Thus the estimates for both cases are as in Case 2.

The remaining cases are handled similarly. O

Proposition 4.3 For the N-chain defined in Sect. 4.1.2 willhy, = T = T and g;, = o = o, the
N-fold productu x - -- x p is invariant.

It suffices to check that the transfer of energy from one aelhe next leads to the correct
relation betweem,.c, andp,, ¢, ;. The proof is left to the reader.

4.3 Derivation of equations of macroscopic profiles

Having found the candidate family of Gibbs measufgd'¢}, we now proceed as in Sect. 3.3,
seeking to derive the relevant macroscopic profiles undsuptions 1 and 2; see Sect. 3.3. There
are two new problems, leading to two additional assumptiamsh we now discuss.

The first problem is that of uniqueness and ergodicity. Untheir stochastic counterparts, the
Hamiltonian chains defined in Sect. 4.1 may not be ergodey #re, in fact, easily shown to be
nonergodic for certain choices f,. Without ergodicity, it is not clear how to make sense of the
notion of local temperaturewhich lies at the heart of Assumption 2. Postponing a dsousto
Section 4.4, we bypass this issue by introducing

Assumption 1’. We assume,; is the unique invariant probability measure for the
N-chain defined in Sect. 4.1. It follows thay; is ergodic.

Another important departure from the stochastic case tathidamiltonian models, local rules
are purely dynamical: whether a tracer goes to the left drdoight when it exits a cell is determined
entirely by local conditions at the time. In the presence obazero temperature gradient, exit
distributions are typically asymmetric in the finite chaamd may depend on specific characteristics
of the model in question (see below). We first state a genesalltrgiving the relation among the
various quantities of interest.

Let jy; andQ ; denote respectively the mean number of exits and mean totad)e trans-
ported out of theth cell per unit time in theV-chain.

Assumption 3. We assume that a8 — oo, the profilesjy ; and @ ; converge in the
C° sense to functiong&) and Q(€) on (0, 1).

Theorem 4.4 Under Assumptions 1, 1', 2 and 3, the following hold for thedeis in Sect. 4.1.
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mean stored energy at a site :

_ 1@
O350
e mean tracer energy ¢(§) = 2s(§) ;
e mean number of tracers :
(M) T
#(§) = "Y’ m](ﬁ)

where|v| = |y,| = || is the size of the passage between adjacent cells
mean total-cell energy :

E() = s(€) + #0)ele) = () + Afg ) /275®) i(6)

Proof. The proof follows that of Theorem 3.9, except that all quasgihere are expressed in terms
of the two functionsj and@ (which vary from model to model).

First we read off the pertinent information from Propositié.1 for a single cell connected to
two heat baths with parametéfsand g:

i B - _T.
(i) stored energy has densi e #Y and mears = 35

(i) tracer energy has densifse % and meari” ;3

(i) mean number of tracersy = ATV(‘F) \/EQ—\/Q_ ;

(iv) mean total-cell energyly = T'(s + 3) ;
(v) mean number of jumps out of cell per unit time= 2o ;

(vi) mean total energy transported out of cell per unit tiQe+ % -3=3Tp.

To prove (i), for example, we condition on the event that #yak tracers are present. Integrating
2
out all other variables, we obtain that the distribution.ds const.e~?“" . Thus the distribution of

s = w? is as claimed. Items (i) — (iv) are proved similarly, and &nd (vi) are deduced from the
fact that the cell is in equilibrium with the two baths.

To deduce the asserted profiles, §ixc (0,1), and consider the{[V]-th cell in the N-chain.
By Assumption 2,y ey — 1729 for someT'(€) and o(€). Moreover, with respect to this
limiting distribution, the number of jumps per unit time aftthe cell isj(¢), and the total energy
transported out of the cell I©(£). We then use the single-cell information above combineith wi
these values of(£) andQ(€) to identify T'(€) and o(£). The formula fors is obtained as follows:
T = 2Q/j is from (v) and (vi), ands = 37" is from (). O

Of particular interest to us are models in which there is gouxing within individual cells
In an idealized model in which mixing within individual cells perfect and instantaneous, exits
to the left and the right would be equally likely, as would he tase for mean energy flow. With
such a perfect left-right symmetry at each sjtend( would be linear as explained in the proof of
Theorem 3.9. For the class of models described in Secthsligkealized state is never attained, but
we have found that exit distributions come very close to ¢pslymmetric under certain conditions:

3Note that this is the energy density when the tracersraitee box to be distinguished from (vi).
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The most important of these conditions are (i) a geometry/ofhat gives rise to fast mixing for
the closed dynamical system (such as concave walls and gsned of “traps”), and (ii) small
passageways between adjacent cells (so most tracers stayaall for a long time). The presence
of large numbers of tracers is also conducive to good mixing.

Corollary 4.5 In the setting of Theorem 4.4, jfand (Q have approximately linear profiles with
J(0) = o1,,7(1) = 0gr,Q(0) = 11,01, and Q(1) = TR og, then the profile for mean stored energy is
given by

S(€) ~ 1oyTy, + (orTr — 0LTL)E
2 ot (or—0aL)
Other approximate profiles are obtained similarly by sutogiig

J(€) = 2 (oL + (or — 0L))

into the formulas in Theorem 4.4.

Numerical simulations validate these predictions for Hamian chains with small passage-
ways between cells. See Sect. 4.5. Our findings suggesttirCfaconvergences tp andQ. More
precisely, letjy ; = iy + Jnir Wherejy ;1 andjy ; g are the numbers of exits per unit time
that go to the{— 1)st and { + 1)st cells respectively. Analogously, 1€y ; = Qx ;1 + Qn,ir-
Then for each compact set of cell configuratiohg, ¢,, vg) and parameter$; , Ty, or,, or > 0,
there exists anx > 0 such that for all largeV, the following hold for alli:

. 1. a 1 «
liniR — §]N,i| SN Qnir — §QN,2'| SN

. 1. . 1. o
|Un,ir — 5]1\7,@') = Unjis1R — §JN,Z-+1)| S

1 1 a
(Qnir — §QN,2') —(Qni+1r — §QN,Z'+1)‘ < N
The situation in Corollary 4.5 corresponds to the case 1.

Remark 4.6 The bounds above are consistent with the following obsiemst For a cell in the
N-chain, the temperature difference between the cell oreftsahd the one on its right is of or-
der Ty, — TR|/N, so one expects the marginal of; at this site to deviate from the equilibrium
measure in Sect 4.2 by the same order of magnitude. Thistitevia in turn reflected in the differ-
encedjy,; g — Jn.pl and|Qy,; g — Qn ;1| Similarly, if the second differences are well behaved
as we assume, their orders of magnitude as indicated abewdiraensionally correct. Detailed
dependencies of this asymmetry on the physical parametetsegiond the scope of this paper.

The discussion of results in Sect. 3.5 (with “linearity” l&ped by “approximate linearity”)
applies to models satisfying the hypotheses in Corollaby 8tatements not involving linearity ¢f
and( apply to the broader setting of Theorem 4.4.

“It is important to distinguish between the following two dév of mixing: mixingwithin cells and mixingin the
chain For example, small passageways between cells enhancegnifihe first kind but are obstructions to the latter.
SWe thank H. Spohn for interesting correspondence on thigtpoi
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4.3.1 Comparisons of models

1. Predicted profiles for Hamiltonian and stochastic modélge observe that the predicted formu-
las in Theorem 4.4 are of the same type as their counterpaiitedorem 3.9 but the constants are
different. The similarity stems from the fact that they aegiced from the same general principles.
The differences in constants reflect the differenceg’if, which in turn reflect the differences in
local rules (see below).

2. Relation between ande. To highlight the role of the local rules in the profiles stdlin this
paper, we recall the relation between stored enargynd individual tracer energy in the various
models encountered:

(a) Random halves (Sects. 3.1-3.8)= 2e. (At collisions, energy is split evenly on average, but
the expected time for the next clock is longer for slowerdrag

(b) Stochastic models simulating Hamiltonian systems eli@th disk and tracer have a single
degree of freedom (Sect. 3.6)= e.

(c) Hamiltonian models in which the disk has one degree @&doen and tracers have two (Sec-
tion 4.1):e = 2s.

To this list, we now add one more example, namely

(d) Hamiltonian models in which the disk has one degree efdoen and tracers hade Consider
the model described in Sect. 4.1, but with ¢ R? and the disk replaced by a cylinder
that rotates along a fixed axis. Here, Liouville measure foloaed system withk tracers is
my, = (\s|p)* X (v ]ap) X A1 (cf. Sect. 4.1.1). From a single-cell analysis similar to that in
Sect. 4.2,7¢ is easily computed. One notes in particular that the distioh of tracer energy
is const./ze 5%, while disk energy is as before. A simple computation thersj = 3s.

These examples demonstrate clearly that the relation betwande is entirely a function of the
local structure. In the case of Hamiltonian systems, welssattis also dimension-dependent.

4.4 Ergodicity issues

Questions of ergodicity for the chains in Theorem 4.4 ar@bdythe scope of this paper. We include
only brief discussions of the following three aspects ofghablem:

1. Randomness in the injection process

Among the various features of our models, the one the mgsbnsible for promoting ergodicity
is the randomness with which new tracers are injected irdsyistem. We observe, however, that
this genuinely stochastic behavior occurs only at the twidseanf the chain, and even there, the
transition probabilities do not have densities with respethe underlying Lebesgue measure. The
problem is thus one afontrollability involving the deterministic part of the dynamics.

2. Hyperbolicity of billiard dynamics: a necessary conatiti

Let Ay C R? denote the playground for the tracers in tNechain. That is to say, it is the
union of N copies ofl" arranged in the configuration shown in Fig. 2 with open passagtween
adjacent copies df. The presence of one of more tracers bamgpedin A 5, without contact with
any of the turning disks or the openings at the two ends (y(Ll) andfyl(DLN)) is clearly an obstruction

to ergodicity. This scenario is easily ruled out by choodigdo have concave (or scattering) walls.
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Such a choice df ; implies thato A y; also has concave boundaries, and the free motion of a jgarticl
in a domain with concave boundaries is well known to be hyplertand ergodic [21, 16].
We do not know if the absence of trapped tracers in the sermse@ ammplies ergodicity.

3. Enhancing ergodicity

Without (formally) guaranteeing ergodicity, various m@&s can be taken to “enhance” it,
meaning to make the system appear for practical purposdesesto being ergodic as one wishes.
For example, one can introduce more scattering within ealilbg increasing the curvature of the
walls of Iy, or alternately, one could add convex bodies indigethat play the role of Lorentz
scatterers. Another possibility is to add a small amount@$ey and a third is to increase the
injection rates: physical intuition says that the larger tlumber of tracers in the system, the more
likely stored energy will behave ergodically.

4.5 Results of simulations

To check the applicability of the theory proposed in Sect$-4.3 to real and finite systems, we
have done extensive simulations some of which we descritesisubsection. The domain, used

in our simulations is as shown in Fig. 2. Actual specificagi@hl’, are as follows: We start with

a square of side, subtracting from it first 4 disks of radius 1.15 centeredhat4 corners of the
square. Two openings correspondingyjoand~y are then created on the left and right; each has
length 0.02. This completes the definitionIgf. The diskD is located at the center of the square;
it has radius- = 0.0793.

Our choice of domain was influenced by the following factdfsst, OI' is taken to be piece-
wise concave to promote ergodicity. Second is the size afiidie A disk that is too small is hit by
a tracer only rarely; many tracers may pass through the dlbwt interacting with the disk (this is
analogous to having a largein Sect. 3.1). A disk that is too large (relative to the doniaiwhich
it can fit) may cause an unduly large fraction of tracers @mjethe box to exit immediately from
the same side. Both scenarios lead to large time-corraitiwhich are well known to impede the
speed of convergence toy in a finite chain. They may also affect the infinite-volumeitim

We have found the geometry and specifications above to watdk eell, with a tracer making,
on average, about 71 collisions while in a cell. Of thesesiols, about 12.5 are with the disk.

For the single cell (with the geometry above) plugged to tamtical heat baths, we have tested
the system extensively for ergodicity. To the degree thateam ascertain from simulations, there is
an ergodic component covering nearly ¥06f the phase space. The various energy distributions as
well as the Poisson distribution of the number of tracersgmeagree perfectly with those predicted
by Proposition 4.1.

Simulations for chains of 20 to 60 cells with the choiceraind || above showed very good
agreement with the theory. A sample of the fits (), s(¢) and E(€) for 9 - 10° events and 30
sites is shown in Figure 3. Here the ejection rates to theatadtright are very close t80/50. We
have also investigated the quantityoward the end of Sect. 4.3 for various values- @nd|v|, up
to r = 0.23 (which is quite close to the maximum-size disk that can bedithto the domair’)
and|v| = 0.06. Our findings are consistent with the discussion in Sect. 4.3

In addition to these profiles, we have also verified directhgdmption 2, which asserts that the
distributions of energy and tracers within each cell arecicoadance with those given ky/*¢ for
someT, p depending on the cell. A sample of these results is showngrdri
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4.6 Related models

In this subsection we recall from the literature a few motieds in their original or slightly modified
form can be regarded as approximate realizations of the described in Sect. 2.1 of this paper.
For more complete accounts, see the review papers [2, 1.3, 15]

The models which come closest to ours, and which to some el@gspired this work, are those
in [17, 12]. In these papers, the authors carried out a naalestudy of a system comprised of an
array of disks similar to those in Sect. 4.1 but arranged mriows with periodic boundaries (in the
vertical direction). These disks interact via tracersdwihg the rules first used in [20]. We have
adopted the same local rules, but have elected to arrangdisksrin a single row to simplify the
analysis.

There is a number of papers dealing with mechanical gadgateh some level appear similar to
ours. For example, in [14, 9], vertical plates are pushed# bad forth by particles trapped between
them. The main difference between these models and ourstishiy have exactly one “tracer”
in each “cell”. In this respect, these models are closer toeaulier work [6] in which locked-in
tracers were considered. Ding-a-ling and ding-dong moblelsng essentially to the same class
[3, 19, 8, 18].

We mention that nonlinearities of profile are difficult to seieen the temperature differences at
the two ends are relatively small (in fact, what counts in yneases, including the models studied
in this paper, is theatio of temperatures at the two ends). This may explain why sorti@eihave
reported linear profiles when our analysis suggests thatmoglge the case.

We mention also a very well-studied situation, namely tHdahe Fermi-Pasta-Ulam chain. In
this model, and in many others, there is a potential of thefor

Uz, — z;41) + V() ,

with U andV functions that grow t@o andzx; the coordinates of a chain of anharmonic oscillators.

The pinning potential” plays the role of the “tank” in our models, while the interpze potential

is more akin to the role of the tracers. This class of moddtiiffisult to handle because in contrast

to the basic setup in our study, there is no clear separatitre@inning and interaction energies.
Finally, we mention that Hamiltonian systems with noiseehbgen studied in the context of the

Fourier Law. See.qg.[1].

Acknowledgments: The authors thank O. Lanford for helpful discussions. JA&awledges the
Courant Institute, and LSY the University of Geneva, foirthespitality.
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Figure 3: Rotating disks model with chain of 30 cells, tenapares’; = 100, 7y = 10, and
injection rateso;, = 1, o = 2. Top left: Q;, energy transported out of siigoer unit time as a
function ofi. Top right: Mean disk energy,. Bottom: Mean total energy;.
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Figure 4: Same parameters as in Fig. 3. Top 2 figures showlsgrplots of tracer energy distribu-
tions at various sites. Top left: Densities of tracer erergiside boxes (theory predlgﬁs‘ﬁx) Top
right: Densities of tracer energies upon exiting the vagibaxes (theory predlcmﬁ Va/me” by,
Bottom: Distribution of numbers of tracers at several sjtesory predicts Poisson distribution).



