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Abstract This paper proposes that the network dynamics
of the mammalian visual cortex are highly structured and
strongly shaped by temporally localized barrages of exci-
tatory and inhibitory firing we call ‘multiple-firing events’
(MFEs). Our proposal is based on careful study of a network
of spiking neurons built to reflect the coarse physiology of a
small patch of layer 2/3 of V1. When appropriately bench-
marked this network is capable of reproducing the qualita-
tive features of a range of phenomena observed in the real
visual cortex, including spontaneous background patterns,
orientation-specific responses, surround suppression and
gamma-band oscillations. Detailed investigation into the
relevant regimes reveals causal relationships among dynam-
ical events driven by a strong competition between the
excitatory and inhibitory populations. It suggests that along
with firing rates, MFE characteristics can be a powerful
signature of a regime. Testable predictions based on model
observations and dynamical analysis are proposed.
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1 Author summary

We present a parsimoniously designed model of the
mammalian primary visual cortex which has been well
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benchmarked against experimental data, and which can
capture many of the experimentally observed V1 phe-
nomena seen in cat and monkey. During our bench-
marking process, we find that the regimes which sup-
port the most biologically realistic behavior are those
that exhibit temporally localized barrages of excitatory
and inhibitory firing. These multiple-firing events are an
important feature of the neuronal network dynamics and
play a commanding role in the network’s transient and
steady-state response properties. We predict that simi-
lar multiple-firing events should be observable in the
real cortex.

2 Introduction

The mammalian primary visual cortex (V1) plays an inte-
gral role in many discrimination, recognition and classi-
fication tasks. It performs diverse functions, and is well
known to be immensely complex. As a dynamical system,
V1 likely demands many degrees of freedom to support
the great variety of dynamical processes accompanying its
many visual tasks. The aim of the present study is to gain
insight into these processes via computational modeling:
We designed a mechanistic model, carefully benchmarked
it using physiological data, and analyzed the underlying
dynamics. Our primary finding is that, when appropri-
ately calibrated, neurons in our network fire neither syn-
chronously nor independently, but in a highly structured
way. We propose that this is indicative of how the real
cortex operates.

We elaborate on each of the main steps:
When designing our model, the challenge was to strike

a balance between biological plausibility and parsimony.
We have elected to use a spiking network model which

http://dx.doi.org/10.1007/s10827-013-0445-9
mailto:rangan@cims.nyu.edu


156 J Comput Neurosci (2013) 35:155–167

we have built from the ground up, modeling its architec-
ture on basic V1 physiology. At the same time, we have
had to strip away many layers of complexity and introduce
some amount of idealization, without which the analysis of
dynamical mechanisms would not be possible.

The benchmarking process consisted of the follow-
ing: Our network has ∼ 10 parameters (representing e.g.
coupling strengths). A roughly comparable number of
experimental results and known biological facts from mul-
tiple sources were used: a few were used to constrain
parameters, the rest as validation. We have found that there
are regions in parameter space on which the regime exhibits
simultaneously all of the phenomena considered. These phe-
nomena include firing rates, background patterns, surround
suppression, gamma oscillations etc.

Our primary finding is that in the biologically plausible
regimes of our network, there is strong self-organized
collaborative firing activity in the form of ‘multiple fir-
ing events’ (MFEs); i.e., spiking in local populations
occurs in brief ‘spurts’ of variable sizes; the time inter-
vals between consecutive spurts are random but have
characteristic lengths. These events are an emergent phe-
nomenon, due not to correlated feedforward inputs but to
keen competition between excitatory and inhibitory popula-
tions. Given that MFEs are ubiquitous in our network, and
there is experimental evidence pointing to the occurrence of
such events in real cortex (Samonds et al. 2005; Mazzoni
et al. 2007; Petermann 2009; Churchland et al. 2010; Yu and
Ferster 2010; Yu et al. 2011; Plenz et al. 2011; Shew et al.
2011), we propose that this is the operating point of cortical
dynamics, and include some testable predictions. We know
from our analysis that MFEs affect subsequent dynamics;
we conjecture that they may encode useful information.

The main thrusts of this paper can be summarized as
follows: We present strong evidence in support of the
hypothesis that cortical activity is highly structured though
irregular, due in part to the mechanism of MFEs. Our
investigation, which is data-driven, has led to results which
challenge prevailing views in theoretical neuroscience:
Instead of focusing on (i) synchronous behavior or (ii)
coarse-grained models which presume weak correlations
between neurons, our results suggest that V1 is likely to
operate somewhere in-between, incorporating in a com-
plicated yet systematic way some characteristics of both
(i) and (ii).

3 Results

3.1 Model design

Existing models range from very small to very detailed. The
former have the virtue of simplicity but tend to be limited

in scope, as they lack the structural components required
to capture multiple phenomena, while the latter tend to
involve a large number of parameters which cannot be
appropriately constrained.

To develop a coherent and multi-faceted picture of the
dynamics of V1, we have constructed a model equipped
with the minimum number of architectural features
necessary to support the broad range of V1 phenom-
ena discussed below, while at the same time having few
enough parameters to allow for serious benchmarking and
subsequent investigation.

The model discussed in this paper is that of a ∼ 2 mm2

patch of layer 2/3 of V1. We have built it out of a net-
work of several thousand spiking integrate-and-fire point
neurons, using the voltages and conductances of individual
neurons as microscopic variables. To allow for basic V1
features such as orientation selectivity and receptive field
structure (Hirsch 2003), we have partitioned our network
into groups of neurons representing hypercolumns, each one
of which is further partitioned into orientation domains. In
terms of connectivity, we have abstracted the complex topol-
ogy of cortical interaction as follows: Orientation domains
within each hypercolumn interact via local connections,
whereas orientation domains in different hypercolumns
interact via orientation-specific long-range ‘horizontal’ con-
nections. Schematic diagrams of the network architecture of
our model are shown in Fig. 1.

With regard to network dynamics, we distinguish
between fast and slow synaptic currents, with fast cur-
rents corresponding to AMPA-type excitation and GABA-A
type inhibition and slow currents representing NMDA-type
excitation with decay time τslow ∼ 100 ms. All cells in
each orientation domain are driven by independent feed-
forward Poisson input comprising (i) a background drive
which has uniform rate across all clusters and, where
applicable, (ii) a drive modeling a drifting-grating stim-
ulus which targets stimulus specific orientation domains
and hypercolumns.

These are the main ingredients in our model; further
details are given in the Section 5 and in Supplementary
Material. As is evident from the description above, our
model is orders of magnitude simpler than the real V1.
We have included only a dozen or so of the most impor-
tant parameters, such as short- and long-range coupling
strengths (SQ′Q and LQE respectively, for Q, Q′ = E, I )
between neuronal populations, and strengths of feedforward
input currents. These parameters will be constrained by
comparing network outputs with data from experiments; this
is discussed in Section 3.2.

We stress that our results are data-driven. To ensure
that we did not limit a priori the type of dynamics that
may occur, we elected not to use from the outset coarse-
grained variables such as firing rates. Had we done that,
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Fig. 1 Left: Schematic diagram of network architecture. Our network
comprises a 2D array of ‘clusters’ (green circles) each containing
a few hundred excitatory (red) and inhibitory (blue) neurons. Rows
correspond to clusters with the same orientation preference and
columns represent hypercolums. We refer to Cjk as the j th orien-
tation domain in the kth hypercolumn. Neurons within each cluster
are connected via local excitatory and inhibitory connections (as
indicated by red and blue lines within one representative cluster).
Clusters with different orientation preferences within a hypercolumn
(i.e., C1k, C2k, . . .) are also connected via local connections. Clus-
ters of the same orientation preference in different hypercolumns
(i.e,. Cj1, Cj2, . . .) are connected via excitatory long-range connec-
tions (as indicated by dashed red lines). Local connectivity both
within each cluster and between clusters in the same hypercolumn is

statistically homogeneous; neurons are sparsely and randomly con-
nected to one another, with slightly higher connectivity among neurons
within a cluster. Long-range connectivity between clusters with like
orientation-preference in different hypercolumns is also statistically
homogeneous. For simulations we use a network with 3 orientation
domains in each of 8 hypercolumns. Right: Hypercolumn arrangement.
Eight hypercolumns, each containing 3 clusters corresponding to dis-
tinct orientation domains, are depicted by dashed circles; all pairs of
hypercolumns are thought of as ‘adjacent’, or ‘equal distance’ apart.
Our network is intended to model a ∼ 2 mm2 patch of cortex: large
enough to contain several hypercolumns, but small enough that the
long-range connectivities between any two pairs of hypercolumns are
roughly similar

the phenomena discussed in Section 3.3 would have been
missed entirely.

3.2 Benchmarking and validation

We subjected our network to a battery of ‘tests’ in which
we tried to replicate certain empirical observations of V1,
and found that there is a reasonably-sized region in param-
eter space on which the dynamical regime corresponding
to each parameter point exhibits simultaneously all of the
properties below. Specifically, (1)–(4) below were used to
constrain parameters; no further constraining was necessary
for the remaining phenomena.

(1) Firing rates and EPSPs: In real V1, E- and I-
firing rates in background (i.e. when unstimulated)
are known, as are sizes of EPSPs. We require that
corresponding values for our network lie within
acceptable ranges.

(2) Receptive fields and orientation tuning: (i) The idea
of classical receptive fields in V1 is translated in our
network to requiring that cells in Cjk not be activated
by stimuli applied to Cjk′ for k′ �= k (see caption of
Fig. 1 for notation). (ii) We require that E-neurons be
sharply tuned for orientation, i.e., firing in Cjk should
be lower when Cj ′k, j ′ �= j , is stimulated than when
no domain is stimulated; we also require that I-neurons

be broadly tuned. We demonstrate also ‘sharp tuning’
using a version of our model with J = 4, showing
that such a model produces sharply tuned firing-
rates even when driven by weakly tuned feedforward
input. See Section 3.3 in Supplementary Material for
more details.

(3) Iso-oriented surround suppression: Here we view a
stimulus applied to a single cluster Cjk as representing
a small drifting-grating stimulus aligned with orien-
tation j , and a stimulus applied to ∪k′Cjk′ as one
simulating a full-field drifting-grating. We require the
following: (i) When the system is strongly driven by
an input targeting cluster Cjk alone, the steady-state
firing rates of both E- and I-populations in Cjk should
increase significantly from their background values;
(ii) when the input is expanded to target ∪k′Cjk′ ,
firing rate of the E-population should drop signifi-
cantly from that in (i). This is consistent with exper-
imental results in real V1 (Sceniak et al. 1999). As
to the I-population, there has been an assumption
in the community that (iii) I-firing rate increases as
we go from the stimulus in (i) to that in (ii), while
recent experimental results of (Ozeki et al. 2009)
report (iii’) a decrease in the corresponding firing
rate. We have located two (distinct) parameter regions,
one exhibiting (iii) and the other (iii’), along with all



158 J Comput Neurosci (2013) 35:155–167

the other properties listed; the region corresponding
to (iii) is considerably larger. Dynamical mechanisms
leading to the two different outcomes are discussed in
Section 3.4. See (9) below for a related result.

(4) Spontaneous correlated background activity: Unstim-
ulated background activity is observed in the visual
cortex of several mammals (e.g., ferret, cat, and mon-
key). One sees spatio-temporal structure with spa-
tial correlations across orientation domains of similar
orientation preference in nearby hypercolumns and
temporal correlations on the order of 50–500 ms
(Tsodyks et al. 1999; Kenet et al. 2003). In our model
we coarsely discretize orientation, so the orientations
represented by different clusters in a hypercolumn
are quite dissimilar. Thus, as acceptable background
activity in our network, we require sustained activity
patterns that correspond to increases in both mean
firing-rate and mean subthreshold voltage across all
the clusters of a given orientation θ ; clusters with a
different θ should not be concurrently activated during
much of this period though some concurrent patterns
are permitted from time to time. Furthermore, we
require that any given sustained activity pattern should
persist for τ

bkgrnd
persist ∼50–500 ms before either decaying

to a ‘θ -mixed’ state or evolving into another sustained
pattern associated with a different θ . Some of our
findings are illustrated in Fig. 2.

We emphasize that, in accordance with (Chiu and
Weliky 2001), the correlated activity observed in back-
ground is entirely emergent, and is not dependent on
structured input (the feedforward input to the neurons in
our model is pure Poissonian, and is independent across
neurons). Moreover, the durations of the patterns are quite
random and often ill-defined, but they have a characteristic
persistent time τ

persist
bkgrnd which can be considerably longer

than τslow; this is consistent with several experimental
observations (Tsodyks et al. 1999; Chiu and Weliky 2001;
Kenet et al. 2003).

The parameters selected to fit (1)–(4) above also satisfy
(5)–(9) below. This can be taken as validation of our model
and parameter choices.

(5) Contrast dependence: Using Poisson rates in our
external input as an indication of contrast, and the
number of clusters (of the same orientation) stimulated
as representing the diameter of the drifting grating, we
find the response in terms of excitatory firing to be
consistent with those in (Sceniak et al. 1999), i.e. max-
imum firing occurs at larger stimulus size for weaker
contrast. See Fig. 3a.

(6) Gamma-oscillations in LFP: When averaged over
the neurons in a cluster, the subthreshold voltage
is highly irregular, exhibiting broadband fluctuations.

Moreover, the power spectral density of this locally
averaged voltage signal shows an increase across the
gamma-band when the system is driven, consistent
with LFP recordings of V1 (Henrie and Shapley 2005).
See Fig. 3b.

(7) Variance reduction at onset of input: Following stim-
ulus onset, the trial-to-trial coefficient of variation
of individual neuronal responses drops consider-
ably, while still maintaining relatively high values.
This is consistent with measurements of V1
(Churchland et al. 2010).

(8) Shift in coherence at onset of input: Following
stimulus onset the high frequency components of the
population’s activity become more coherent, whereas
the lower frequency components become less coher-
ent (see, e.g., Fig. 5c and e). This is consistent with
measurements of V1 (Yu and Ferster 2010).

(9) Surround suppression for natural stimuli. When the
drifting grating stimulus used in (3) above is replaced
with a more natural stimulus with rich spatio-temporal
structure, it is reported that I-firing increases when
stimulus size is increased (Haider et al. 2010). We
have produced similar results for certain non-iso-
oriented stimuli.

We were far from the first to attempt to model V1
phenomena. Earlier works include (i) the firing-rate mod-
els of (Murphy and Miller 2009) which exhibit orienta-
tion tuning and a form of background fluctuations depen-
dent on correlated input, (ii) the firing-rate models of
(Ozeki et al. 2009) which exhibit surround suppression
of the inhibitory population, (iii) spiking network models
of (Battaglia and Hansel 2011) which exhibit orientation
tuning and broadband gamma-band oscillations, and (iv)
spiking network models of (Rangan et al. 2005) which
exhibit spontaneous background patterns and dynamic tran-
sients associated with the Hikosaka line-motion-illusion.

We reiterate that our model exhibits simultaneously, in a
single regime, all of phenomena (1)–(9). Proposed explana-
tions for some these phenomena are given in Section 3.4.
See also Supplementary Material.

3.3 MFEs: an emergent phenomenon

On large regions of parameter space—considerably
larger than the physiologically plausible region found in
Section 3.2—neurons in our network spike neither syn-
chronously nor completely independently; the network
activity is somewhere in between and highly structured.
The most readily apparent of these structures are sudden
barrages of excitatory firing that are temporally localized,
accompanied by a commensurate amount of inhibitory
firing. These barrages typically involve, but are not limited
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Fig. 2 Dynamical regime exhibiting correlated background activity.
The top of (a) shows raster-plots of the activity during an 8 second
stretch of time. The clusters are organized such that the first eight
clusters correspond to θ1, the second eight to θ2, and the third eight θ3.
Thus, the clusters in the same hypercolumn are not plotted adjacent to
one another. Each row represents the total number of firing-events of
either the E-(top) or I-(bottom) population within each cluster binned
over intervals of 1 ms. This total number of firing-events is repre-
sented logarithmically using the colorscale to the left (i.e., the value 3
corresponds to 23 = 8 total events within the NQ = 128 neuron popu-
lation over a 1 ms interval, or an instantaneous population firing-rate of
64 Hz). In this panel it can clearly be seen that a typical epoch within
this background regime is dominated by the activity of E- and I-cells
associated with one of the 3 orientations. Below the rasters in panel-(a)
we display the summed E-(red) and I-(blue) activity for each orienta-
tion. The vertical scale-bar represents a magnitude of 256 total events
per 1 ms bin across all 8 clusters corresponding to a given θ—i.e., a
single-cluster event-count of 16 spikes per ms. Note that when any one
θj is active, the other two orientations are not typically active. Never-
theless, the activity is not always restricted to a single orientation—it
is not rare for multiple orientations to activate simultaneously. Note
also that, within this regime, there are multiple events which involve

brief heightened activity across both the E- and I-populations in many
iso-orientation clusters (see arrowheads). On the left of panel-(b) we
plot the crosscovariance C (E, Q, A, 0, τ ) in spiking activity between
cells in different hypercolumns. See Section 5 for a definition of cross-
covariance. The crosscovariance C is plotted for Q = E (red) and
Q = I (blue), as well as for A = 1 (upper curves) and A = 0
(lower curves). Note that iso-orientation activity is correlated on a
timescale of ∼ 300 ms, whereas non-iso-orientation activity is anti-
correlated over a similar timescale. Also note that the crosscovariance
is nearly symmetric and positive for both Q = E and Q = I . In
the right of panel-(b) we show experimental crosscovariance measure-
ments from two paired recordings presented in (Kohn and Smith 2005)
(gray, reproduced with permission), superimposed with the crossco-
variance C (E, E, 1, 0, τ ) measured in our simulation (light red, taken
from top of panel-(b)). Although the vertical scale is not directly com-
parable, the persistence time-scale observed in experiment is similar to
that seen in simulation. In panel (c) we plot the spike-triggered aver-
age voltage-distribution (see Section 5) SV D(E, Q, A, 0, τ, V ) for
Q = E and Q = I and A = 1 (Same-θ) and A = 0 (Diff-θ ). The
solid white lines indicate the mean and mean±stdev for the voltage
distribution

to, single clusters (see Fig. 1). We call them ‘multiple-firing
events’ (MFEs).

Now we do not claim that this phenomenon is entirely
novel: It is known that neurons in real V1 can fire
in partially synchronous bursts (Samonds et al. 2005;

Mazzoni et al. 2007; Petermann et al. 2009; Churchland
et al. 2010; Yu and Ferster 2010); it has also been noted
that spiking network models can have MFE-like behavior
(Hansel and Sompolinsky 1996; Brunel 2000; Kriener et al.
2008; Poil et al. 2012). Specifically, our MFEs are almost
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Fig. 3 a Here we show the time-averaged excitatory firing-rate as a
function of stimulus size (i.e., the number of driven clusters) across a
variety of contrasts. Each curve indicates the firing-rates correspond-
ing to a different fixed contrast. The contrasts chosen for illustration
are C = CE,j,k = 0.7500, 0.3750, 0.1875, 0.0938 (see Section 5),
with the highest and lowest contrasts indicated by red solid and dashed
lines, respectively. Note that, for low contrast, the firing rate does not
decrease appreciably when the size of the stimulus increases from
1-cluster to 2-clusters, whereas for high contrast, the correspond-
ing decrease is significant. b Power spectral density (averaged over
nonoverlapping 512 ms windows) of the population averaged voltage
for a single cluster in our model both under background (black) and
under low-contrast (green) and high-contrast drive (red)

for certain related to neuronal avalanches, which are well
documented in both models and experiments (Yu et al. 2011;
Plenz et al. 2011; Shew et al. 2011). Leaving comparisons
for later, we first give a mechanistic description of how
MFEs are produced.

Dynamics of MFEs in single clusters We consider here a
single ‘cluster’ as defined in Fig. 1, consisting of an E- and
an I-population both driven by Poissonian inputs, and dis-
cuss in this simpler setting the dynamics of MFEs: how they
are generated, their aftermath, and associated timescales. In
our full model (as described in Section 3.1), MFEs are pro-
duced similarly, except that inter-cluster competition further
complicates the picture.

To understand how MFEs come about, we assume, to
begin with, that the fast synaptic currents have zero rise and
decay times (this idealization can be removed; see Fig. 4d
and Supplementary Material). Suppose at some moment an
E-neuron fires. This increases the voltages of a number of E-
and I-neurons, and if some of these voltages are sufficiently
close to threshold, the initial spike can ‘cause’ some postsy-
naptic neurons to fire. Suppose, by chance, the first E-spike
causes some other E-cells to fire. That in turn raises the volt-
ages of more cells, possibly setting off a chain reaction until
eventually enough I-cells are aroused, and their inhibitory
action terminates the barrage of firing. This is what we mean
by a ‘multiple firing event’ (MFE). See Fig. 4b,c for
illustration.

While the propensity of a regime to nucleate MFEs is a
function of the synaptic coupling strengths SQ′Q, Q, Q′ =
E, I and background drive (see below), the exact details of
what happens in the 0–5 ms following the initial E-spike
depends sensitively on the voltage-configuration of the sys-
tem just prior to the spike: whether the next few neurons to
cross threshold are excitatory or inhibitory will determine
if an MFE will follow. The ‘magnitude’ of the MFE, i.e.,
the total number of E- and I-cells which fire during this
brief transient, can be any number > 1 to the entire clus-
ter, though frequent large MFEs—i.e., near-synchronous
firings—are likely unbiological (and are not permitted in
admissible regimes in Section 3.2).

Immediately following an MFE, the system is in a rather
different state: neurons that participated in the MFE are in
or just coming out of their refractory periods, while the
voltages of much of the rest of the population are com-
pacted somewhat and set far below threshold due to the
final surge of I-synaptic current which concluded the MFE
(as I-neurons arborize fairly densely). See Fig. 4b. In a
nontrivial-sized MFE, this current pushes the E-population
sufficiently far back that there tends to be a 10–25 ms lull
in activity (the length of the lull depending on input drive)
before the compacted population is ‘recharged’, and has the
capability to nucleate another MFE.

We emphasize that the MFEs in our system are not due
to correlations in the feedforward input (which are uncorre-
lated across neurons), nor are they due to synfire pathways
embedded in the local connectivity (which is random and
statistically homogeneous). While the addition of these fea-
tures would increase the likelihood of generating MFEs,
they are certainly not required. Rather, MFEs in our system
are generated internally as a result of the dynamics, i.e., this
is an emergent phenomenon.

As to which conditions contribute to the precipitation of
MFEs, a rule of thumb is the following: If synaptic cou-
plings and background drive are balanced in such a way that
either (i) the I-population dominates, or (ii) both distribu-
tions are far from threshold, then firing events are likely to
involve single neurons. If the E-population has too much of
an advantage, then near-synchronous firing will result. In
situations where there is genuine competition between the
E- and I-populations, MFEs will likely ensue, due to normal
fluctuations magnified by the tendency for E-firing to pro-
mote further spiking. They are prevalent in regimes in which
a small perturbation or fluctuation can have a large effect,
as is consistent with what is known about V1 (Lampl et al.
1999; Anderson et al. 2000).

Between completely uncorrelated activity and total syn-
chrony lies a vast and varied dynamical landscape, a
more detailed analysis of which is given in (Rangan and
Young 2012). An example of the mixed behavior typically
seen in our network is shown in Fig. 5a and b.
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Fig. 4 A pictorial introduction to MFEs. a Raster plots for E (top)
and I (bottom) cells in a single cluster of size NE = NI = 128.
The dynamic regime is chosen to clearly exhibit MFEs. Near-solid
vertical lines correspond to large MFEs; notice that MFEs in the E-
population elicit similar-sized MFEs in the I-population. Notice also
the characteristic (but variable) time intervals separating consecutive
MFEs. b Voltage distribution for the E (top) and I (bottom) cells in
the cluster both before (left), shortly after (middle) and ∼ 10 ms after
(right) the first large MFE shown in panel-(c). The times shown are
indicated by green lines in panel-(c). The brighter population (ver-
million, cyan) corresponds to the fraction of E and I cells which fire
during the MFE. Note that, during the MFE, the firing E-population
crosses threshold and returns to reset, whereas the nonfiring popula-
tion is suppressed. After the MFE has concluded, the entire population
slowly drifts closer towards the pre-MFE distribution. This is a very
large MFE, selected for easy visualization. Smaller MFEs involve the
crossing of threshold by a few neurons to a smaller fraction of the pop-
ulation, but the mechanism is the same. c Zoom in on a few MFEs
produced by the cluster in panel-(a). d A raster showing an MFE in
a larger cluster of conductance-based integrate-and-fire neurons with
fast-conductance timescales ∼ 2 ms and NE = NI = 2048. We show

this to demonstrate the following two facts: (i) The phenomenon of
MFEs persists when we let fast-conductance timescales take on more
realistic values. We set them to 0 in the text in order to make precise
the definition of an MFE, but that is not necessary, because a few ms is
still considerably smaller than the membrane time constant τV = 20.
(ii) MFEs are not a finite-size effect; they can be shown to occur in
arbitrarily large clusters provided parameters are tuned appropriately. e
Population spike-counts for two single-cluster networks with the same
firing-rate, but with very different MFE signatures, one producing fre-
quent large MFEs and the other producing a more steady stream of
independent firing events. If these characteristics affect computation
downstream, then firing rate alone would not adequately describe a
regime. f We plot, on a log-scale, the distribution of spike-counts for
the two networks shown in panel-(e). The vertical line at 16 spikes/bin
indicates the cutoff for the ‘95 % rule’ described in Section 3.4. These
plots show that the distribution of MFE magnitudes that appear is
very rich; they vary widely from very small to very large. Notice also
that the frequency of MFEs and the distribution of MFE magnitudes
is very different for these two regimes, an observation which will be
overlooked by trial-averaged or time-averaged firing-rates

3.4 MFEs in V1 dynamics

We now return to our network model of V1. All of the
physiologically plausible dynamical regimes we have found
exhibit nontrivial MFEs, both in background and under
drive. The MFEs seen often result from interactions of
the E- and I-populations within a cluster, modulated by
inter-cluster interactions. We discuss some examples of this
mechanism at work:
Items (6)–(8) in Section 3.2 are fairly direct consequences
of the presence of MFEs. Specifically, the ‘stochastic
rhythm’ produced by MFEs in our driven network is

largely responsible for the gamma oscillations in the
power-spectrum of its ‘LFP’. More precisely, during most
MFEs, the net synaptic influence of the firing popula-
tion significantly reduces the subthreshold voltage of the
nonfiring-population. Inter-MFE intervals, which include
recharge times for the depressed voltages followed by a
(random) waiting time for the next MFE, correspond to
frequencies in the gamma-range. Times between succes-
sive MFEs are quite variable depending on the size of
the MFE and the recent history of the network; this is
reflected in the broadband signature observed in the power
spectrum. Coherence shift is explained by the greater
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Fig. 5 In panels (a) and (b) we show the firing-events pro-
duced by the ‘reference parameter set’ used in Fig. 2 under
drive. a illustrates the sequence of E- and I-population spike
counts (collected over 1 ms bins) produced by the central
cluster Cjk in our network when that cluster alone is stimulated. b
illustrates these spike-counts when 2 other clusters Cjk′ of similar
orientation preference in other hypercolumns are also stimulated. In
(c) we show time-averaged firing-rates for the E-(red) and I-(blue)
populations as a function of the number of clusters stimulated. The
firing-rates for the I-populations are further divided into MFE-spike
(dashed) and nonMFE-spike (dotted) rates, as per the ‘95 %’-rule
described in Section 3.4. Note that, as the number of stimulated
clusters increases, the independent I-firings increase a little, but the
MFE-triggered I-firings decrease in frequency noticeably, and as a
result the total I-firing-rate decreases as the stimulus size increases. In

(d) we show the histograms of MFE magnitudes for E-(left) and I-cells
(right) for the regimes shown in panels (a) (black) and (b) (colored)
respectively. Note that for the large stimulus used in panel-(b) (col-
ored) there are fewer large MFEs and more small MFEs than when
only a single cluster is stimulated (black). In (e) we show for refer-
ence the population spike counts for the central cluster during a typical
active epoch in background (taken from Fig. 2). In (f) we show the
MFE distributions for the E-(red) and I-(blue) cells in background (col-
lected over a much longer time than that shown in panel-(e)). These
MFE-distributions generated by our network are qualitatively simi-
lar to the burst distributions observed in (Mazzoni et al. 2007). Note
that, under drive, the low-frequency background fluctuations are sup-
pressed, and the higher-frequency sequences of MFEs become more
tightly packed (compare panel-(e) with panel-(a,b)). This contributes
to the stimulus-driven coherence shift mentioned in (8) of Section 3.2

regularity of MFE occurrence when a system is stimulated,
together with the fact that MFE recharge times decrease
as stimulus strength is increased. Variance reduction is
explained similarly.

Iso-oriented surround suppression First we explain the
decreased E-firing. When a cluster Cjk (see Fig. 1) alone
is strongly stimulated, it produces fairly large MFEs. When
∪k′Cjk′ is stimulated, long-range effects from Cjk′, k′ �=
k, are felt by neurons in Cjk . Since these effects are, on
balance, suppressive (reflecting the fact that horizontal exci-
tation affects I-neurons more than E-neurons), MFEs in the

E-population are reduced in size and frequency leading to
lowered E-firing rates.

As discussed earlier, I-firing can go up or down
depending on parameter region. We have found that which
way it goes is closely related to the homogeneity of popu-
lation spike patterns. One way to capture this idea is to dis-
tinguish between ‘MFE-spikes’ and ‘nonMFE-spikes’. The
following is an operational definition: Consider timebins of
1–5 ms (binsize should be comparable to or larger than the
fast conductance timescales but substantially smaller than
the recharge time between MFEs). Given a dynamic regime,
if one assumes (i) all neurons fired independently and (ii)
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all spikes were equally likely to occur at all times, then the
distribution of spikes in an arbitrary timebin would be a
binomial distribution the mean of which is determined by
firing rate and population size. For simplicity, let us agree to
use the following ‘95 % rule’, which labels a timebin as an
‘MFE-bin’ if it contains more spikes than the 95th percentile
in the binomial distribution. All spikes in ‘MFE-bins’ are
then called ‘MFE-spikes’, and others are ‘nonMFE-spikes’.
The fraction of spikes that are MFE-spikes can then serve
as a measure of the homogeneity of the population spike
pattern.

We are now ready to discuss the changes in I-firing at
the center when ∪k′Cjk′ is stimulated. When E-firing goes
down, the number of MFE-spikes in the I-population goes
down with it, as these spikes are largely in response to
MFEs in the local E-population. However, the number of
nonMFE-I-spikes at the center can go up, due to the added
long-range excitation received by the E- and especially the
I-populations. At issue is the fraction of MFE-spikes among
all I-spikes in Cjk when only Cjk is stimulated. If this
fraction is large, then decreasing it will lead to a decrease
in the I-firing rate. If it is small, then the decrease in
MFE-spikes can be compensated for by the increase in
nonMFE-spikes, leading to an increase in the overall I-firing
rate. This explanation is consistent with simulations. The
case where I-firing decreases is illustrated in Fig. 5.

Background patterns This is the most dynamically
complex of the phenomena discussed, and a more in-depth
analysis is given elsewhere. Here we mention only how
MFEs assist in the switching of patterns: In our model, this
phenomenon has much to do with the competition between
the different orientation domains within a hypercolumn.
While a switch can occur due to chance, the ‘time gaps’
between MFEs in the activated domain provide natural
openings for attempted take-overs by a different θ . Thus the
switching mechanism in our model is different from that in
(Murphy and Miller 2009), which uses correlated input,
or in (Goldberg et al. 2004), which relies solely on
large-deviations in the input.

To demonstrate that the occurrence of MFEs and back-
ground fluctuations in our regime are robust and are not
sensitive to certain model details, we have performed sim-
ulations to confirm the following: MFEs are clearly visible
with τ

E,I
fast ∼ a few ms (they are taken to zero in the model);

increasing synaptic delays in horizontal connections to ∼ 10
ms has no appreciable effect on the dynamics, and back-
ground patterns persist even as the number of neurons in
each cluster NQ is increased; see Sections 2.1, 2.2 and
3.3 in Supplementary Material. We have also investigated
versions of our model with 4–6 orientation domains, and
believe that our main results are reproducible after retuning
of parameters.

4 Discussion

To summarize, we have produced a network model of
V1 with ∼ 10 parameters, and have benchmarked it
with ∼ 10 empirically observed phenomena. Our results
are data driven, and in the biologically plausible network
regimes that we have found, we have identified MFEs as
possibly the single most important dynamic mechanism.
Using these ideas, we have proposed explanations for some
of the phenomena observed, explanations that are confirmed
by simulations.

Model predictions Given (i) the prevalence and impor-
tance of MFEs in our model, and (ii) the ample evi-
dence that points to large fluctuations in real V1 (Samonds
et al. 2005; Mazzoni et al. 2007; Petermann et al. 2009;
Churchland et al. 2010; Yu and Ferster 2010; Yu et al.
2011; Plenz et al. 2011; Shew et al. 2011), we hypothesize
that V1 is capable of producing MFEs. A primary predic-
tion that results from this work is the presence of abundant
non-negligible MFEs within layer 2/3 of V1. The occur-
rence of MFEs may depend on a variety of factors such as
whether or not the subject is awake and behaving, details
of the experimental preparation (e.g., the choice of anaes-
thesia), the type of stimulus used, as well as the degree to
which inputs are correlated, but we expect that MFEs will
be found, and propose that their existence be directly con-
firmed using a sufficiently dense multiple electrode array.
Specifically:

(a) While the MFEs in our model are idealized, we expect
that the MFEs in the real V1 will be quite similar
to those we describe. We propose that, within local
regions in layer 2/3 of V1 spanning 100–200 μm,
brief transient surges in neuronal activity involving
collections of neurons will occur with notable fre-
quency. These brief surges—incorporating both excita-
tory and inhibitory neurons—will initiate and subside
on a timescale roughly equivalent to the synaptic time-
constants of the system (i.e., within, say, 3–9 ms).
Moreover, we expect that these events will signifi-
cantly impact subsequent dynamics in the local regions
in which they occur; in particular ‘inter-MFE’ intervals
should not be exponentially distributed.

(b) We propose that the presence and characteristics of
MFEs may be used as a signature of a regime, along
with standard measures such as firing rates, corre-
lations between pairs of neurons, LFPs etc. MFE
characteristics can be useful where (i) the activity
of the population as a whole matters more than the
behavior of each individual neuron, and (ii) transient
fluctuations and impulse-response properties of V1
over shorter (e.g. < 100 ms) time windows affect
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significantly the computation downstream. Averaging
experimental observations over multiple trials or over
time windows that are too long may hide the rich struc-
ture produced by MFEs on finer temporal scales. Even
time-averaged correlations between pairs of neurons
(which sometimes participate in these events together
and sometimes not) may not reveal MFE information.
There are many ways to detect or quantify the pres-
ence of MFEs. Some examples were discussed in this
paper: distributions of MFE magnitudes, measures of
homogeneity in population firing, e.g. the ‘95 % rule’
and other variants thereof.

(c) Another prediction is that MFE characteristics in the
real V1, such as the shape of the distribution of popu-
lation spike-counts, should (i) depend on the stimulus
and (ii) influence the dynamics, as they do in our
model. Specifically, under high contrast stimulus the
ratio of large spike-counts to small spike-counts (over
small time-windows) should decrease as stimulus size
is increased.

(d) Last but not least, as we have explained in Section 3.3,
the MFE characteristics of a regime depend sensitively
on the quality of the competition between the E- and
I-populations. This competition depends in part on the
system’s parameters, such as the synaptic coupling
strengths and the efficacy of the slow- versus fast-
synaptic conductances. In our model we have found
that altering these parameters can have strong ramifi-
cations for the dynamical properties of the regime. We
predict that, in real V1, the pharmacological manipula-
tion of similar quantities should affect the characteris-
tics of MFEs and, in turn, the computational properties
of the real cortex (see also Shew et al. 2011).

Implications for other parts of the nervous system While
our present model is developed specifically to address phe-
nomena observed in V1, some of its dynamical features
are likely shared by certain other parts of the brain (and
not by others). For example, MFE-like structures may well
exist in the dynamics of the leech ganglia, mammalian
motor cortex, rat auditory cortex and mammalian hippocam-
pus (Mazzoni et al. 2007; Hatsopoulos et al. 1998; Hahn
et al. 2010; Dehghani et al. 2012; Sakata and Harris 2009;
Leinekugel et al. 2002; Csicsvari et al. 2000), but prob-
ably not in e.g. parts of the hypothalamus and brainstem
(Karlsson et al. 2004, 2005; Blumberg 2005). A natural
conjecture would be that neuronal networks characterized
by flexibility, sensitivity and high gain are more likely to
exhibit MFEs.

Connections to neuronal avalanches The term ‘avalanche’
generally refers to spiking behavior that involves bursts with

pauses in between. The nature of the bursts observed in
experiments vary widely, ranging from spontaneous activity
involving relatively large numbers of neurons and occur-
ring 1–2 s apart on average (as seen in culture Beggs and
Plenz 2003) to smaller and more frequent bursts observed
in vivo (as in Hahn et al. 2010); the MFEs seen in our
‘biologically plausible’ network regimes resemble more the
latter. Power-law distributions of burst sizes and inter-event
times are important characteristics of neuronal avalanches;
they are in fact part of the definition.

Here, as in (Rangan and Young 2012), we have reserved
the term ‘multiple-firing-events’ (MFEs) to refer specifi-
cally to sequences of firing-events which are causally
linked by recurrent synaptic connections and triggered
essentially by single excitatory spikes. Because of the
infinitely-small synaptic timescales in our model, MFEs
can easily be pinpointed. We have also demonstrated in the
Supplementary Material that even as we permit nonzero
rise times for fast synaptic currents, these events continue
to be identifiable, as they tend to occur within very short
time-windows.

As to how exactly neuronal avalanches and MFEs are
related: we believe that, though their emphases differ, the
phenomena captured by these two approaches—one exper-
imental and the other theoretical—likely have much in
common. MFEs require direct causality; avalanches do not,
yet some fraction of the experimentally observed firing
in avalanches are likely causally linked, given the den-
sity and small spatial extent of the electrode arrays used
in the recordings. Power-law behavior is a pre-condition
for neuronal avalanches; for MFEs it is not, but inter-
estingly, not only do MFEs occur in our ‘biologically
plausible’ regimes, their magnitudes tend to have power
law distributions. We think this is far beyond coincidence,
and that further investigation is needed to both (i) clar-
ify the role played by recurrent synaptic interactions in
the avalanches observed experimentally and (ii) under-
stand, on a theoretical level, why power-law distributions of
MFE magnitudes in network models tend to produce more
realistic outputs.

Implications for theoretical neuroscience Since MFEs are
not easily captured by rate models or by population dynam-
ics approaches, our results suggest that these analytical tools
in their present form may not be adequate. They point to
the need for higher order statistics to complement the use
of firing rates, including new ways to capture effectively
collaborative activity among possibly random groups of
neurons. Finally, we hope we have shown that, at least for
the regime discussed here, statistics alone do not tell the
whole story; behind all that are dynamical events that are
causally linked.
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5 Methods

Model details Each of the neurons in our network is
modeled using conductance based integrate and fire
equations:

τV

d

dt
V = −

(
V − V L

)
− g

input
fast

(
V − V E

)

−g
syn,E
slow

(
V − V E

)
− g

syn,E
fast

(
V − V E

)

−g
syn,I
fast

(
V − V I

)
,

with V L = 0, V E = 14/3, V I = −2/3, τV =
20 ms (Dayan and Abbott 2001). The voltage V of neuron
n evolves continuously until V (t) crosses a membrane-
potential threshold V T = 1, at which point this neuron
fires, and its voltage V (t) is reset to V L = 0, and held
there for a time τref. The term g

syn,E
slow models the slow exci-

tatory synaptic conductance, and the term g
syn,Q
fast models the

fast Q-type synaptic conductance, Q ∈ {E, I }. The slow-
excitatory conductance g

syn,E
slow for the neuron n is given by

g
syn,E
slow (t) = ∑

n′ Wnn′
slowαE

slow � mn′ , where n′ runs over all

E-neurons, Wnn′
slow describes the coupling strength between

neuron n′ and neuron n, mn′ is a sum of delta-functions
representing the firing activity of neuron n′, and αE

slow (t)

is an alpha-function with instantaneous rise-time and a
decay-time of τE

slow ∼ 50–150 ms. The fast Q-type conduc-

tances g
syn,Q
fast , Q ∈ {E, I }, are given by similar equations

parametrized by Wnn′
fast and α

Q
fast, where this latter function

has infinitely fast decay τ
Q
fast → 0. To ensure that this sys-

tem remains well posed, we take the formal limit as τQ

and τref tend to 0+. The order in which we take these lim-
its affects the dynamics. We assume that τref � τ

Q
fast, so

each neuron can only fire once at each instant in time, and
τ I

fast ∼ τE
fast as τE

fast, τ
I
fast → 0+. This assumption allows for

a biologically realistic competition between excitatory and
inhibitory populations.

The coupling strengths Wnn′
fast and Wnn′

slow encode the con-
nectivity of the network, n′ being the transmitting and n the
receiving neuron. We assume that the neurons are sparsely
connected, so many of these weights will be 0. Since our
model incorporates a slow excitatory synaptic current but
not a slow inhibitory synaptic current, Wnn′

slow = 0 when n′ is
inhibitory. Also, since only excitatory cells broadcast long-
range connections, Wnn′

fast = Wnn′
slow = 0 when n′ is inhibitory

and in a different hypercolumn than n.
If two neurons are connected, then we assume that their

connection strengths depend only on (i) their types, (ii)
whether or not they share the same orientation preference,
and (iii) whether or not they lie in the same hypercolumn.
That is to say, given two connected neurons n and n′ of types

Q and Q′ in clusters Cjk and Cj ′k′ respectively, Wnn′
fast and

Wnn′
slow depend only on Q and Q′, δjj ′ and δkk′ . Thus for pairs

of neurons with δkk′ = 1, there are 6 local-coupling parame-

ters, which we denote by S
Q,Q′
fast and S

Q,E
slow . If δjj ′ = 1, there

are 4 long-range-coupling parameters, which we denote by
L

Q,E
fast and L

Q,E
slow . For ease of notation we use SQQ′

to refer

to S
Q,Q′
fast , and LQ to refer to L

Q,E
slow . We will also refer to τE

slow
as τslow.

The term g
input
fast models the excitatory conductance asso-

ciated with feedforward input to neuron n. We consider two
general classes of input g

input
fast for this system: (i) an input

which models the unstimulated or ‘background’ state of the
cortex, and (ii) an input which models a ‘stimulus’ intended
to represent a drifting grating of some diameter. Both the
background drive and the stimulus to neuron-n are modeled
by an input of the form g

input
fast = S

Q
drive

∑
h αE

fast

(
t − T drive

h

)
,

where the spike-times T drive
h are chosen from a Poisson pro-

cess with rate ηQ,j,k,l (t) that depends on Q, j and k, as
well as on the neuron’s index l. In background the rate of
this Poisson input is chosen to be constant across all orien-
tations j and hypercolumns k, as well as all indices l. The
stimulus is modeled by increasing this Poisson input drive
to selected clusters.

For example, in order to model a drifting grating stim-
ulus of orientation θj with a moderate spatial diameter,
we increase the drive to several clusters Cj1,Cj2,. . . . Thus,
in general, the drive is given by a cluster-independent
background drive plus a cluster-dependent stimulus-
specific drive:

ηQ,j,k,l (t) = η
bkg
Q + ηstim

Q,j,k,l (t) .

We simulate the type of input a ‘simple’-like cell would
receive under a drifting-grating stimulus by setting

ηstim
Q,j,k,l (t) = CQ,j,kη

bkg
Q (1 + sin (ω (t − φl))) .

In this expression CQ,j,k represents the effective
contrast/strength of the stimulus as perceived by the neu-
rons in question, and is high only for those clusters j, k

which would be influenced given the orientation and size
of the drifting-grating; CE,k,j = 3CI,k,j to simulate the
excess of orientation-tuned input to the excitatory pop-
ulation which may arise from feedback. The frequency
ω = 4 Hz is the temporal-frequency of the grating, and the
phase φl is related to the spatial-phase preference of the
cell, and is randomly distributed uniformly across the neu-
rons within each cluster. We note that our main conclusions
do not change when we ignore the spatial phase-preference
and take ηstim (t) to be a constant.

For our simulations we use a network with 8 hyper-
columns each with 3 orientation domains, resulting in a total
of 24 ‘clusters’ each containing a few hundred excitatory



166 J Comput Neurosci (2013) 35:155–167

and inhibitory neurons. Connectivity within each cluster is
random and ∼20 % for E- and ∼ 50 % for I-neurons, as
I-neurons are supposed to arborize more densely. Connec-
tivity across clusters are about half that within the cluster. A
typical value of τE

slow used is 128 ms.
Further details on model description are given in

Supplementary Material.

Benchmarking Our model as described above has ∼ 10
free parameters corresponding to short- and long-range
synaptic coupling strengths, SQQ′

, LQQ′
respectively, and

background drive. Such a high-dimensional space cannot
yet be systematically searched, and the nonlinear dynamic
phenomena we were looking for could not easily be
captured by any sort of ‘gradient descent’ in parame-
ter space. As a first step in our constraining procedure,
we restricted ourselves to parameter values that produced
results consistent with known physiological data such as
EPSPs and background E- and I-firing rates in V1. We
then pitched competing sets of parameters against one
another (e.g., SEE versus SEI + SIE), and performed some
guided parameter sweeps, i.e., at each step, we performed
a preliminary dynamical analysis of the search results, and
used that to guide the direction of the search, moving
closer successively to parameter regions that exhibited the
required characteristics.

We mention that among the more delicate parameters are
those related to the Poisson background drive, i.e., SQ

drive and

η
bkg
Q , Q = E, I . These parameters (along with the coupling

strengths) determine not only the firing rates but also the
quality of the competition between the E- and I-populations.
For example, if SE

drive · η
bkg
E is too low, then our system will

not fire sufficiently frequently in background. To put the
regime in a position of high gain, it is necessary that SE

drive

be not too large and η
bkg
E be not too small; in our case SE

drive
is approximately 0.5SEE and ηbkg ∼ 250–500 Hz.

Among the phenomena used for benchmarking, the spon-
taneous correlated background activity imposed the most
serious constraints on our model. In general, features of
background patterns depend more sensitively on parameters
than features of strongly driven systems, reflecting possi-
bly the corresponding underlying sensitivity in the real V1
(see, e.g., Ecker et al. 2010).

Detailed discussions of the restrictions imposed by each
of phenomena (1)–(4) are given in Supplementary Material.

Calculating cross-covariance As a diagnostic for spon-
taneous background patterns, we measured the cross-
covariance of firing and subthreshold-voltage activity
between cells in the same and/or different orientation
domains and hypercolumns, and we define these measure-
ments here. Let mQ,j,k,l denote the times at which the lth

neuron of type Q in cluster Cjk fires. Cross-covariances can
be summarized in the functions

C
(
Q, Q′, A, B, τ

)

= dt
∑

j,k,l,j ′,k′,l′
mQ,j,k,l (t) mQ′,j ′,k′,l′ (t − τ) .

Here Q, Q′ ∈ {E, I }, and the sum over j ′ is taken over
j ′|δjj ′ = A, and the sum over k′ is taken over k′|δkk′ = B.
The variable A in this definition indicates whether the cross-
covariance refers to either neurons with the same orientation
(A = 1) or different orientations (A = 0), and the vari-
able B indicates whether the crosscovariance sums over
neurons within the same hypercolumn (B = 1) or differ-
ent hypercolumns (B = 0). Similarly, we can compute the
‘spike-triggered-average’ of the voltage distribution:

ST V
(
Q, Q′, A, B, τ, V

)

= dt
∑

j,k,l,j ′,k′,l′
mQ,j,k,l (t) δ

(
V −VQ′,j ′,k′,l′ (t − τ)

)
,

Where, again, the sums over j ′ and k′ are deter-
mined by A and B. In order for our model to exhibit
a background regime which is physiologically reason-
able, we would expect ST V

(
E, Q′, 1, 0, τ, V

)
to be ele-

vated (i.e., have a mean closer to VT ) with respect to
ST V

(
E, Q′, 0, 0, τ, V

)
for Q′ = E, I . Moreover, we

would expect C
(
E, Q′, 1, 0, τ

)
to be elevated with respect

to C
(
E, Q′, 0, 0, τ

)
for Q′ ∈ {E, I }. This elevation should

last from ∼ 50 to ∼ 500 ms, defining an emergent timescale
τ

bkgrnd
persist . Plots of cross-covariances are shown in Fig. 2. Note

that τ
bkgrnd
persist ∼ 300 ms.

Binning of MFEs While in principle MFEs occur mostly
instantaneously when infinitesimal synaptic timescales are
used, we have found it convenient in practice to summarize
spiking activity using 1 ms timebins, and to call k spikes in
a single bin an MFE of magnitude k provided k spikes/ms is
significantly higher than mean firing rate for the population.
For a local population with relatively low firing rates (as in
our model), we have found this to be a reasonable opera-
tional definition, in the sense that MFE characteristics are
not substantially affected by bin sizes as they range from a
fraction of a ms to a few ms.
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