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Abstract

The fast dynamo growth rate for a Ck�� map or �ow is bounded above by topo�

logical entropy plus a ��k correction� The proof uses techniques of random maps

combined with a result of Yomdin relating curve growth to topological entropy� This

upper bound implies the following anti�dynamo theorem� in C� systems fast dynamo

action is not possible without the presence of chaos� In addition topological entropy is

used to construct a lower bound for the fast dynamo growth rate in the case Rm ���
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� The Kinematic Fast Dynamo Problem

Magnetic dynamo theory involves the study of the generation of magnetic �eld in astrophys�
ical objects such as planets and stars� One star of particular interest� of course� is the sun�
which exhibits vigorous magnetic �eld activity on time scales much shorter than the mag�
netic di�usive time� Kinematic fast dynamo theory attempts to gain some understanding of
the non�di�usive processes that might be involved by addressing the question of what sort
of �uid motions can induce exponential growth of magnetic �eld at high magnetic Reynolds
number� This is one of a large class of singular problems with important physical implications
for which there is a need for a better understanding of the limiting behavior of complicated
processes� Natural questions that arise are� what if any relation holds between the limiting
and singular limit solutions� and what information about the limiting process can be gained
from the singular limit problem� In this paper we consider a conjectured growth rate bound
of Finn and Ott 	�
��� based on stretching properties of the �uid �ow and prove a slightly
generalized version of it�

The equations of dynamo theory are those of incompressible MHD 	see Roberts 	�

����
Denoting the magnetic �eld byB and the �uid velocity by u the magnetic induction equation

�B

�t
� u � rB � B � ru�

�

Rm
r�B� r �B � � 	��

can be derived from Ohm�s law and the Maxwell equations 	using the standard MHD ap�
proximation of neglecting the displacement current �E��t�� Rm� the magnetic Reynolds
number� is a dimensionless parameter measuring the relative strength of advective to di�u�
sive processes� Requiring r � u � � and setting the �uid density � � � the �uid momentum
equation is

�u

�t
� u � ru � �rp� �

MA

	r�B��B�
�

R
r�u 	��

where MA� the Alfven Mach number� is a dimensionless parameter measuring the typical
balance between �uid and magnetic energy and R� the �uid Reynolds number� is a di�
mensionless parameter measuring the typical balance between �uid advection and di�usion�
Equations 	�� and 	�� are supplemented by the appropriate boundary and initial conditions�

We will make the kinematic dynamo approximation of settingMA �� 	i�e�� the magnetic
energy is assumed small�� As the Lorentz force 	r � B� � B is quadratic in B this may
perhaps be justi�ed as a linearization of 	�� around B � �� Then the �uid momentum
equation 	�� is decoupled from the magnetic �eld and so the �uid velocity may be considered
to be prescribed independently of B 	thus the term kinematic�� Equation 	�� is now a linear
equation for B� The object of kinematic dynamo theory is to �nd linear dynamo instabilities�
that is� to determine for a given Rm which if any choices of u result in exponential growth
of B for some initial conditions B�� For our purposes� given u	x� t� we de�ne kinematic

�



dynamo action to occur when

p	Rm� � lim
T��

�

T
ln
Z
V
jB	x� T �Rm�jdx � � 	��

where V is the region containing magnetic �eld�
This paper addresses the kinematic fast dynamo problem 	Vainshtein and Zel�dovich

	�
����� A velocity �eld is de�ned to be a kinematic fast dynamo if

lim
Rm��

p	Rm� � �� 	��

	We assume that this limit exists� in principle one might instead use lim inf or lim sup�� Mo�
tivation for this de�nition comes from the solar magnetic �eld which shows activity 	e�g� the
�� year solar cycle� on time scales much shorter than the di�usive time scale 	� ���� years��
Hence the solar dynamo apparently functions in some sense independently of di�usion� The
object of kinematic fast dynamo theory is to characterize velocity �elds that support dynamo
action without direct use of di�usion� De�nition 	�� states roughly that dynamo activity
should not cease in the limit of the di�usive term becoming small compared to the advective
one�

� Statement of Result and Discussion

Finn and Ott 	�
��� proposed that the kinematic fast dynamo growth rate of a steady or
periodic �ow is bounded above by the topological entropy of the �ow� A proof in the C�

case was announced by Vishik 	�

��� In this paper we prove a more general result using in
a simple way standard techniques from dynamical systems�

Theorem � Let u and B� be divergence free vector �elds supported on a compact domain
D � Rd� We assume that u is of class Ck�� and B� is Ck for some k � �� Let f be the time
� map of the �ow generated by u� and let B	x� t�Rm� be the solution of equation ��� with
initial conditions B�	x�� Then

lim sup
Rm��

lim sup
n��

�

n
ln
Z
V
jB	x� n�Rm�jdx � h	f� �

r	f�

k
	��

where h	f� is the topological entropy of f �restricted to D� and

r	f� � lim
n��

�

n
lnmax

x�D
kDfn	x�k�

This upper bound is also valid for Rm ���

�



None of the arguments to be presented depend on dimension 	of course the higher dimen�
siona are not physically relevant�� We also note that a number of conditions in Theorem �
are easily relaxed or modi�ed� For example� u may be time periodic� and Rd can be replaced
by the d�dimensional torus 	in which case� additionally� B� need only be continuous�� etc�
See section ��

We state separately a version of Theorem � for maps� since maps have become popular
models for fast dynamos 	e�g� Bayly and Childress 	�
���� Finn and Ott 	�
���� Gilbert
	�

��� Soward 	�

���� Let f be a di�eomorphism of Rd and de�ne a velocity �eld uf �P�

n��� 	�	t� n�f�� Then at Rm �� equation 	�� has the formal solution

B	x� n� �� � 	f�B�	x� n�

� rf	f��	x�� �B	f��	x�� n��

This is the Cauchy solution� or in the language of dynamical systems� the pushforward of
B� Now let f��� � � �g be a family of probability densities on Rd with �� tending weakly to
�� � �	��� the delta function at �� as �	 ��

Theorem �� Let f be a Ck volume preserving di�eomorphism of Rd with f � Id outside
a compact domain D� and let B� be as in Theorem �� For n � �� � � � �� we de�ne Bn�� �
B	x� n� ��Rm� to be the convolution of f�Bn with �R��

m
� Then the conclusions of Theorem

� hold�

The case of particular interest here is when �� is a d�dimensional Gaussian density with
isotropic variance �� Then Bn is the formal solution to 	�� with u � uf as above�

Certain remarks are in order here� First� positive topological entropy implies chaos in a
topological sense � this will be further discussed in the next section� Thus Theorems � and
�� are essentially anti�dynamo theorems� if u	x� 	or f	x�� is C� and not chaotic then u	x�
	or f	x�� is not a fast dynamo� Second� in the case k �� the upper bound can be achieved
by Anosov systems 	Arnol�d et al�	�
���� Bayly 	�
�
�� Vishik 	�
�
�� Collet 	�

��� Gilbert
	�

��� Oseledets 	�

���� The two well known fast dynamo �ows of Soward 	�
��� and
Gilbert 	�
��� are not Ck� k � � and are not covered by Theorem �� singularities in the �eld
of Jacobian matrices are needed in an essential way� 	In such cases the methods of this paper
cannot be applied�� Lastly� in addition to the result of Vishik mentioned at the beginning
of the section� we mention that Oseledets 	�

�� has derived an exact growth rate for C�

maps on the � torus� His methods rely on special properties of ��dimensional magnetic �elds
	Zel�dovich 	�
�����

The proofs of Theorems � and �� are based on three basic ideas� First� magnetic �eld lines
at Rm �� are material curves� and the magnetic �eld grows because of stretching of these
material curves� Thus the �eld growth rate is bounded above by the material curve growth
rate� at least for Rm � �� Here we emphasize that we refer to the growth rate of curves
of �nite extent� As noted by Finn and Ott 	�
��� in�nitesimal line elements� i�e�� tangent
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vectors� grow more slowly in general� and their growth rate does not necessarily bound the
magnetic �eld growth rate� The second idea� due to Yomdin 	�
���� is that when a map is
iterated the growth rate of a material curve is bounded above by topological entropy plus a
possible correction due to a lack of smoothness� This bound can be understood heuristically
by discretizing a section of curve with a large number of points� The growth rate of the
curve is approximated by the growth rate of the number of points needed to resolve the
curve to a given tolerance� which in turn is� roughly speaking� bounded by the topological
entropy 	see section ��� But also� between the �ne discretization� lack of smoothness in the
map or �ow can cause the curve to locally �crinkle� in such a way as to increase the growth
rate by as much as r�k� The third basic idea is to exploit the fact that di�usion of the
magnetic �eld can be replaced by adding noise to the underlying dynamical system� This
allows us to consider random maps and to use a randomized version of Yomdin�s arguments�
We show that a small amount of noise does not increase the topological entropy� Thus� in
the limit� the same upper bound on magnetic �eld growth holds� 	The introduction of noise
as an analytical tool for studying fast dynamos can be found in Molchanov et al� 	�
��� and
Klapper 	�

��� it has also found use as a numerical method 	Klapper 	�

�����

To further highlight the relationship between topological entropy� the growth rate of
material curves� and the fast dynamo problem� we prove the following lower bound for
magnetic �eld growth at Rm ���

Theorem � Let D be a compact domain in Rd and let f � D 	 D be a C��� �� � �� volume
preserving di�eomorphism of D� Then 
q � d � � �
q � d � � if f is the time � map of a
�ow� we have

sup
B�

lim inf
n��

�

n
ln
Z
D
jB	x� n���jqdx � h	f��

where h	f� is the topological entropy of f and the supremum is taken over all C� divergence
free vector �elds B� with compact support�

We remark again that �ows are considered steady� a periodic �ow in dimension d can be
regarded as a steady �ow in dimension d� ��

The organization of the paper is as follows� Section � provides a brief introduction to
the relevant facts of topological entropy� In section � we prove Theorems � and �� in the
special case that Rm � �� While not of direct physical signi�cance this case provides an
opportunity to emphasize the �rst two basic ideas of the proof� Section � extends the results
of section � for maps fromRm �� to Rm 	� completing the proof of Theorem ��� Section

 is concerned with those technical details necessary to extend our methods from maps to
�ows and thus �nish the proof of Theorem �� Section � contains remarks concerning the
range of applications of the presented results to fast dynamos and related problems� and
section �� which is independent of the rest of the paper� contains a proof of Theorem �� the
Rm �� lower bound�

�
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� Topological Entropy

For the convenience of readers not familiar with this subject we present here two equivalent
de�nitions of topological entropy� For further details and background on this section see
Walters 	�
���� The �rst de�nition� due to Adler et al� 	�

��� is based on open covers
	hence the adjective topological�� Let D be a compact topological space� and let � be an
open cover of D� De�ne H	��� the topological entropy of �� by H	�� � lnN	�� where N	��
is the smallest cardinality of any �nite subcover of �� Given f � D 	 D a continuous map�
h	f � ��� the entropy of f relative to �� is de�ned to be

h	f � �� � lim
n��

�

n
H	

n���
i��

f�i���

Here f�i� is the open cover consisting of those sets f��A such that A is an element of ��
and the join �

W
	 of two open covers � and 	 is the open cover consisting of all sets of the

form A
T
B with A � �� B � 	� Finally� the topological entropy of the map f is de�ned by

h	f� � sup
�

h	f � ��� 	
�

The signi�cance of positive topological entropy can be intuitively understood in the
following manner� Consider a cover � with a �nite number of elements and let O be an
element of

Wn��
i�� f

�i�� Then O is of the form Ai�

T
f��Ai� � � �

T
f��n���Ain�� for some Aij � ��

i�e�� x � O i� x � Ai�� f	x� � Ai�� � � � � f
n��	x� � Ain��� We think of the trajectories of x

and y as indistinguishable with respect to � if f i	x� and f i	y� fall in the same element of �

i� The number N	

Wn��
� f�i�� then measures the number of trajectories of length n that are

pairwise distinguishable with respect to the labeling system given by �� and positive entropy
tells us that this number grows exponentially with n� We take this to be an indicator of
chaos� Positive topological entropy in di�erentiable dynamical systems is often detected
through the presence of horseshoes 	e�g� using Melnikov methods�� In dimension �� it has
in fact been shown that essentially all of the entropy of a system is carried by horseshoes
	Katok 	�
�����

Next we give a second de�nition of topological entropy due to Bowen 	�
��� for a con�
tinuous map f � D 	 D where 	D� d� is a metric space� We again assume that D is compact
	although this de�nition can be adapted to non�compact situations�� First we de�ne a new
metric dn dependent on f by

dn	x�y� � max
��i�n

d	f i	x�� f i	y��� 	��






Now� given � � � and an integer n � � we say that a set S � D 	n� ���spans D if 
y � D

x � S such that dn	x�y� � �� In other words for any y � D there is some x � S such that
the trajectories of x and y over n iterations of f are indistinguishable to resolution �� Let

n	�� be the smallest possible cardinality for any 	n� �� spanning set� Then 
n	�� measures
the number of di�erent trajectories of length n to resolution �� In terms of the metric dn�

n	�� is the minimum number of balls b	x� n� �� of radius � de�ned by

b	x� n� �� � fy � dn	x�y� � �g
needed to cover D� We now de�ne the topological entropy to be

h	f� � lim
���

lim sup
n��

�

n
ln 
n	��� 	��

In the previous language� this is the growth rate in n of the number of distinct trajectories
measured at �ner and �ner resolution �� For compact spaces it is easily shown that for any
metric that induces a given topology de�nition 	�� is independent of metric and equivalent
to the open cover de�nition�

We now state without proof 	see Walters 	�
���� some properties of topological entropy
that will be of use later�

Property � h	fm� � mh	f��

The quantity diam	��� the diameter of �� is de�ned to be the supremum of the diameters
of the elements of ��

Property � If �n is a sequence of open covers of D with diam	�n�	 � as n	��then

h	f� � lim
n��

h	f � �n��

Property �


n	�� � card 	
Wn
i�� f

�i��

where diam	�� � ��

The notion of entropy generalizes to random maps� Let C	D�D� be the set of continuous
maps fromD toD and let � be a probability measure on C	D�D�� De�ne g�n� � gn�� � ��g��g�
where g� � Id and gi � C	D�D� 	and de�ne g��n� � g��� � g��� � � � � � g��n �� We note
that the de�nitions 	
� and 	�� generalize to sequences 
 � fg��g��g�� � � �g chosen iid with
distribution � where f i is replaced by g�i� and 
n is calculated using balls b	x� n� �� de�ned
by

b	x� n� �� � fy � d	g�i�	x��g�i�	y�� � �� � � i � ng� 	
�

�



In particular the limits exist and are nonrandom 	i�e�� independent of 
� 	Kifer 	�
�
���
When working with random maps of Rd problems could arise with the use of topological

entropy since Rd is not compact� Note however that Bowen�s de�nition continues to make
sense if we limit our attention to orbits that originate from a compact set D� When consid�
ering 	non�random� maps f de�ned on all of Rd but with f	x� � x 
x �� D� we denote the
topological entropy of f restricted to D by h	f jD��

� Growth of Magnetic Field at Rm ��

We begin with the Rm � � case of Theorem � 	which as will become evident is identical
to the Rm � � case of Theorem ���� Let f be the time � map of the �ow u� and let the
initial conditions B� be a Ck vector �eld supported on D� When Rm � � the solution to
equation 	�� is given by

B	x� n� � J	f�n	x�� n�B�	f
�n	x���

the Cauchy solution� where J	f�n	x�� n� is the Jacobian matrix of the time n map of the
�ow evaluated along the trajectory of the point f�n	x�� We will abbreviate J	�� n� by Dfn	��
	and in general Dl denotes the tensor of �th order derivatives�� Since for Rm � � the
magnetic �eld is a material vector �eld� it is reasonable to suggest that the �eld growth rate
p	Rm ��� is related to the growth rate of material curves� This is the subject of Claim ��

De�ne a Ck curve ��� in D to be a Ck map ��� � ��� ��	 D and let k���kk � max��l�k kDl���k�
We will often confuse ��� with its image and use �	���� to denote the length of the image�

Claim � If Rm �� then for every Ck initial condition B��

lim sup
n��

�

n
ln
Z
D
jB	x� n�jdx � lim sup

n��

�

n
ln�sup

�
�	fn��� 	���

where the supremum is taken over Ck curves ��� � ��� ��	 D with k���kk � ��

Proof� Using the Cauchy solution this is equivalent to showing that

lim sup
n��

�

n
ln
Z
D
jDfnB�	x�jdx � lim sup

n��

�

n
ln�sup

�
�	fn����

Choose a Ck vector �eld B� with support contained in D� The natural way to demonstrate
this inequality would be as follows� divide D into a number of �ux tubes 	or �ow boxes� of
B� and track the stretching rate of these tubes� Having done this we can bound the growth
rate of the magnetic �eld by the maximum stretching rate of a �ux tube� which is in turn
bounded by the maximum growth rate of a material curve� Unfortunately� this argument
is problematic because dividing B� into �ux tubes becomes di�cult near null points of B��
Instead we will use the following trick to accomplish much the same plan� Let X be an

�



arbitrary constant vector �eld on Rd with jXj � ���max jB�	x�j� Then neither X nor
B� �X has null points and

lim sup
n��

�

n
ln
Z
D
jDfnB�	x�jdx � lim sup

n��

�

n
ln
�Z

D
jDfnX	x�jdx�

Z
D
jDfn	B� �X�	x�jdx

�

� max
�
lim sup
n��

�

n
ln
Z
D
jDfnX	x�jdx�

lim sup
n��

�

n
ln
Z
D
jDfn	B� �X�	x�jdx

�
�

In fact� both X and B� �X point so uniformly in one direction that we may think of the
active region D as being contained in a single �ux tube� More precisely� let �B� � X or
B� � X� and let P be any hyperplane roughly perpendicular to X� For x � P � let ���x be
the integral curve of �B� with ���x	�� � x� Choose r� large enough so that D is contained in
� � fy � ���x	s� for some x � P and jsj � r�g� Then

lim sup
n��

�

n
ln
Z
D
jDfn �B�	x�jdx � lim sup

n��

�

n
ln
Z
�
jDfn �B�	x�jdx

� lim sup
n��

�

n
ln
Z
���

T
P
�	fn���x�dF 	x�

� lim sup
n��

�

n
ln

�
sup
x��

�	fn���x�

�

where dF is the �ux 	or transverse measure� of �B� across � and ���x is understood to be
de�ned on ��r�� r��� We here have used the fact that �B� is divergence free and thus the total
�ux is independent of the choice of cross�section�

To �nish it remains to observe that the right side of inequality 	��� remains unchanged if
the supremum is taken over curves ��� de�ned on intervals of length � C and with k���kk � C
for a �xed C� This is true because by subdividing and reparametrizing� each ��� can be
decomposed into ��� � ����

S
� � �

S
���p where each ���i is normalized according to the requirements

of claim ��

Next we relate the growth rate of material curves to topological entropy following Yomdin�

Claim �

lim sup
n��

�

n
ln	sup

���
�	fn����� � h	f� �

r	f�

k

where ��� is as in Claim � and r is de�ned as in the statement of Theorem ��

Proof� This is a slightly stronger statement than that made by Yomdin 	�
��� but it follows
immediately from Yomdin�s proof� The idea is as follows� let

b	x� n� �� � fy � d	f i	x�� f i	y�� � �� � � i � ng






so that 
n	�� is the smallest number of sets of this form needed to cover D� Given a curve ����
let

V 	f � ���� �� � sup
x�D

�
h
fn���

�
b	x� n� ��

i
�

Then
�	fn������ � 
n	�� � V 	f � ���� ��

In other words we distinguish between � types of growth� The growth rate of 
n	��� i�e��
topological entropy� bounds the growth rate of �	fn���� as detected up to resolution � 	uniformly
in ����� whereas local crinkling � crinkling that occurs in smaller scales but which can in
principle pile up exponentially fast � is measured by the growth rate of V 	f � ���� ��� Yomdin
proved that

lim
���

lim sup
n��

�

n
ln�sup

���
V 	f � ���� ��� � r	f�

k

if f is Ck� Appendix A contains an outline of his argument� �

Claims 	�� and 	�� together prove the Rm �� cases of Theorems � and ���

We close this section with a discussion of growth rates of �nite material curves versus
growth rates of in�nitesimal line elements� Let ��� � ��� �� 	 D be such a curve� and suppose
for the sake of argument that for almost every s � ��� ���

lim
n��

�

n
ln jDfn����	s�j � ��

Integrating� we obtain

� � lim
n��

�

n

Z �

�
ln jDfn����	s�jds

� lim inf
n��

�

n
ln
Z �

�
jDfn����	s�jds

� lim inf
n��

�

n
ln �	fn�����

If the vectors Dfn����	s� converge to their eventual growth rate nonuniformly for di�erent s�
then the above inequality could be strict� This is in fact generally the case� metric entropy�
which for volume preserving di�eomorphisms is the sum of the positive Lyapunov exponents�
is almost always strictly smaller than the topological entropy� This means that the growth
rate of a curve is often dominated by stretching at exceptional points�

As far as the dynamo problem goes� it has been observed that Lyapunov exponents do
not necessarily bound the growth rates of magnetic �elds� The proof of Theorem � will shed
further light on how �eld growth rates are tied to growth rates of curves� which in turn are
tied to the growth rates of in�nitesimal line elements at certain exceptional points�

��



� Upper Bound on the Growth Rate for Maps in the

Limit Rm ��

In this section we complete the proof of Theorem ��� The main point of consideration is the
growth rate of curves under the action of random maps most of which are small perturbations
of f� We show that in the zero�noise limit this growth rate has the same upper bound as
that for growth of curves under the action of f�

Denote by � the set of Ck volume preserving di�eomorphisms on Rd and let f � � be
such that f is equal to the identity outside of the compact domain D� We consider a one
parameter family of probability measures �� on � with � � � such that

�� jjDlgjj � C� � � l � k� for �� a�s� g� where C is a constant independent of ��

�� 
� � � we have ��fg � jjg� f jjCk � �g 	 � as � 	 ��

	The Ck norm of h� jjhjjCk � is de�ned to be max jjDshjj� � � s � k� and should not be
confused with the norm jjhjjk � max jjDshjj� � � s � k�� For a given B� de�ne Bn�� by

Bn�� �
Z
	
	Dg Bn�������	dg�

�
Z
	n

	Dg�n�B���
n
� 	dg�� � � � � dgn�

where g�n� � gn � � � ��g�� �n� � ��� � � ����� The aim of this section is to prove the following�

Proposition � Let �� and Bn�� be de�ned as above� Then

lim sup
���

lim sup
n��

�

n
ln
Z
Rd
jBn��jdx � h	f� �

r	f�

k

where h	f� is the topological entropy of f restricted to D�

To prove Theorem ��� let �� be the distribution of f �


 where 


 is a d�dimensional vector
distributed according to ��� Then

Bn��	x� �
Z
	Df Bn�����	f

��	y����	y� x�dy�

If in addition �� gives a distribution consisting of d dimensional vectors with independent
gaussian entries of variance ��� then Bn��	x� formally solves the magnetic induction equa�
tion 	�� with the ��function �ow de�ned in section ��

��



We begin the proof of Proposition � with the following observation�

Z
Rd
jBn��jdx �

Z
D

����
Z
	n

Dg�n�B�d�
n
�

���� dx
�

Z
	n

�Z
D
jDg�n�B�jdx

�
d�n�

and� by identical reasoning to that used in the previous section�

lim sup
n��

�

n
ln
Z
	n

Z
D
jDg�n�B�jdxd�n� � lim sup

n��

�

n
ln
Z
	n

Z
�
jDg�n��B�jdxd�n�

� lim sup
n��

�

n
ln
Z
	n

�Z
�
�	gn�x�dF 	x�

�
d�n�

where � is a �ux tube of some vector �eld �B� 	that depends only onB�� and � is a transverse
section of �� Moreover we can interchange limits again to obtain

Z
	n

�Z
�
�	g�n����x�dF 	x�

�
d�n� �

Z
�

�Z
	n

�	g�n����x�d�
n
�

�
dF 	x�

� F 	�� sup
x��

Z
	n

�	g�n����x�d�
n
�

where F 	�� is the �ux of �B� through � 	a constant�� For the rest of the proof let us assume
that D is enlarged to contain � and that f � Id in a neighborhood of the boundary of D�
The proof is then reduced to the following claim�

Claim � Given �� � �� 
�� � � such that 
� � �� 
N such that 
n � N and 
��� � ��� ��	D
with jj�jjk � � Z

�	gn�����n� 	dg
n� � en	h	f� � r	f��k � �����

Proof of Claim ��
Step �� Preliminary choices�

�a� For each � � �� let �� be a covering of Rd by 	round� balls of diameter � �� We assume
that �� is uniformly spaced so that

�i� no element of �� intersects more than Cd other elements of ��� and

�ii� 
�	�� � � such that 
x � Rd� the �	���ball centered at x is contained in some
element of �� 	i�e�� �	�� is a Lebesgue number for ����

The subcollection fA � �� � A
TD �� �g will be denoted by ��jD�

�b� We choose � � � such that

��



�i� h	f jD� ��� � h	f jD� � ��� and

�ii� if g�	x� � 	����g	x���� then for ���a�e� g� kDlg�k � kDg�k for l � �� � � � � k

	�i� is possible by property � in section �� and �ii� is possible because of our �rst
requirement on �� 	see also appendix A���

�c� For a sequence 	g�� � � � �gn� with g� � Id� we will estimate �	g�n����� by

�	g�n����� � 
n	g
�n�� �� � V 	g�n�� ���� ��

where 
n	g�n�� �� is the minimum number of sets of the form

b	x�g�n�� �� � fy � Rd � d	g�i�	x��g�i�	y�� � � � � i � ng
needed to cover D and

V 	g�n�� ���� �� � sup
x�D

�	g�n����
�
b	x�g�n�� ����

�d� There are � types of g�s that will result in di�erent estimates for 
 and V � They are
those �near� f and those �far away�� we distinguish between them through the use of
the parameter 	� For 	 � �� let

�� � fg � � � kf � gkCk � 	g�
A suitable choice for 	 will be determined later�

Step �� Estimation of 
 �
The main point here is that su�ciently small noise does not increase the growth rate of
distinct trajectories 	and large noise is too rare to be of importance��

�a� Let n� be chosen so that

�

n�
lnN	

n����
�

f�i	��jD�� � h	f jD� � ���

and let C� be a subcollection of
Wn���
� f�i	��� that covers D and achieves the minimum

cardinality� The number n� will be �xed throughout� and we will be thinking in terms
of blocks of maps fg�� � � � �gng of length n�� A block is called a good block if gi � ��


i� it is called a bad block if at least one gi �� ���

�b� If necessary we move the elements of �� slightly so that for any � elements A and B ofWn���
� f�i	���� eitherA

T
B �� � or their closures do not intersect 	i�e�� they do not touch

along the boundary�� We assume 	 is su�ciently small so that if fg�� � � � �gn�g is a good
block� then there is a ��� correspondence between the elements of

Wn���
� f�i	��� and

those of
Wn���
� g��i�	���� Moreover� the subcollection of

Wn���
� g��i�	��� corresponding

to C� covers D�

��



�c� Let g��g��g�� � � � be given 	and �xed for the rest of this step�� For j � �� �� � � � we will
pick a subcollection Cj of

Wjn���
� g��i�	��� which covers D� The rules for constructing

Cj from Cj�� are as follows� let �A�� � � � � A�j���n���� represent an element of Cj��� i�e��
Ai � �� and A�

T
g����A�

T
� � �

T
g���j���n����A�j���n��� is in Cj��� Then

Case �� fg�j���n� � � � � �gjn���g is a good block and A�j���n��� � D� In this case we
may attach any �A�j���n�� � � � � Ajn���� in C� to the given sequence and consider the
resulting sequence as an element of Cj � 	Of course� many of these elements may
be empty�� In this case the random maps are acting very much like f�

Case 	� fg�j���n� � � � � �gjn���g is good and A�j���n��� �� D 	i�e�� previous noise has
caused a drift out of D�� In this case we attach a sequence of the form �A� � � � � A�
where A

T
A�j���n��� �� �� The number of such elements is � Cd 	see Step �	a�	i���

and since f � Id outside of D� we know from Step �	a�	ii� that if 	 is su�ciently
small� then for every x � A�j���n���� 
A � �� such that g�j���n��i�� � ��g�j���n�x �
A 
i � �� � � � � n� � ��

Case �� fg�j���n� � � � � �gjn���g is a bad block 	i�e�� a large noise event occurs in this
block�� In this case we may attach sequences of the form �B�� � � � � Bn���� where
g��j���n����A�j���n���

T
B� �� �� g��j���n��B�

T
B� �� �� g��j���n����B�

T
B� �� ��

etc� The number of these new elements is di�cult to control� however large noise
events are rare�

Note that the Cj so obtained is a cover for D� i�e�� every possible trajectory has been
accounted for�

�d� We view the sequence of maps g��g�� � � � �gjn��� as a concatenation of n��blocks�

Claim � For some C� independent of j we have for almost every sequence g��g�� � � �

card Cj � en�	h� �����
�
j en�C��

�
j

where ��
j is the number of good blocks and ��j the number of bad blocks among the �rst

j blocks�

Proof� We proceed by induction� counting at the jth stage the maximum number of
sequences that can be attached to each sequence in Cj��� In case �� this number is
� en��h����� by �	a�� In case �� this number is � Cd 	see step �	a��� which we may
assume is � en��h����� if n� is chosen su�ciently large� In the last case� since there is a
uniform Lipschitz constant �� a�s�� we have that for every A � ��� giA is contained in
a ball of �xed radius� By step �	a�� this ball intersects � eC� elements of �� for some
C�� �

We conclude step � by by noting that� using property � of section �� 
jn� 	g
�jn��� �� �

card Cj � the number in claim ��

��



Step �� Estimation of V�

�a� The crucial observation is that Yomdin�s proof 	see appendix A� works equally well for
compositions of random maps� and that the estimates involved depend only on the �th
derivatives� � � � � k� of these maps� Let g��g�� � � � be such that 
i� kDlgik � C�
� � l � k 	condition � on ���� Assuming the scaling condition in step �	b� and that
n� is su�ciently large� we see from the argument in appendix A that

�

jn�
lnV 	g�jn��� ���� �� � �

kjn�
ln kDg�jn��k� ��


j � some j��

�b� Claim �

V 	g�jn��� ���� �� � en��
�
j 	r	f��k � ����en�C��

�
j

where C� is a constant independent of j and fgig� and ��
j and ��j are the number of

good and bad blocks respectively among the �rst j blocks of length n��

Proof� Write

�

jn�
ln kDg�jn��k � �

j

jX
i��

�

n�
ln kDg�in����i���n����

k

where g
�in��
��i���n����

denotes the composition gin� � � � � � g�i���n���� Assuming that 	 is

su�ciently small� we have 	��n�� ln kDg�jn����j���n����
k � 	��n�� ln kDfn�k��� � r	f�����

if fg�i���n���� � � � �gin���g is a good block� In general all we can say for a bad block is

that kDg�in����i���n��
k � Cn�

� for some C�� �

Step �� The count
Summarizing� we have shown that for �N� �a�e� g��g�� � � � and su�ciently small �� if we
partition this sequence into blocks of length n�� then the contribution to the 
 �term of the
jth block is � en��h����� for a good block and � eC�n� for a bad one� Also the jth block
contributes � en��r�f��k����� to the V�term for a good block and � eC�n� for a bad one� Since
the blocks are i�i�d�� we conclude that

E	�	g�jn������� �
	
Pge

n�	h� r�k � ���� � Pbe
C�n�


j

where E	�	g�jn������� is the expected value of �	g�jn������� Pg is the probability of a good block�
Pb is the probability of a bad block� and C� � C��C�� This bound is clearly� ejn��h�r�k�
���

if Pb is smaller than some �� and such a circumstance can be guaranteed by choosing � small
enough so that �� 	��	����

n� � �� �

��



� Upper Bound on the Growth Rate for Flows in the

Limit Rm ��

In this section we adapt the methods of section � to �ows� thereby completing the proof of
Theorem �� Consider again the magnetic induction equation

�B

�t
� B � ru� u � rB�

�

Rm
r�B 	���

where u is a Ck��� k � � divergence free vector �eld with compact support on Rd� For
simplicity of notation write � � ��Rm� In order to use the methods of section �� we need to
produce a family of probability measures f��� � � �g on �� the space of Ck volume preserving
di�eomorphisms of Rd� so that f��g satis�es the conditions at the beginning of section � and
also such that given B�� Bn�� � R

Dg�n�B�d�
n
� is the solution of 	��� with initial conditions

B��
We will describe two di�erent ways of obtaining f��g� one using stochastic �ows and the

other a product formula for operators� Since the techniques involved are fairly standard� we
will state the results here and give the proofs in the appendices�

��� The stochastic di�erential equations approach

Let u be as above� 	For technical reasons this method requires that u be of class Ck���� for
k � �� � � ��� Consider the SDE

dXt � udt�
q
�� dbt 	���

where bt is standard Brownian motion on Rd�  From the theory of stochastic �ows 	see e�g�
Kunita 	�

��� it follows that X	x� t�
� can be chosen in such a way that for each 	�xed�

� t �	 Xt�� is a continuous path in the space of Ck di�eomorphisms of Rd�

Lemma � Given an initial condition B�� de�ne

B	x� t� � E
h
DXt��	X

��
t��	x��B�	X

��
t��	x��

i
�

Then B	x� t� is the solution of ���� with initial condition B��

	Remember that D	�� here as elsewhere in this paper refers to spatial derivative� i�e�� deriva�
tive with respect to x�� See Appendix B for a proof�

Let �� be the distribution of Xt����� It follows from the Markovian property of the
solution of 	��� that the distribution of Xn�� is the same as that of gn � � � � � g� where the
gi�s are iid with law ��� Condition � at the beginning of section � follows from the fact that
the Brownian term has constant coe�cient� Condition � is a standard fact about stochastic
�ows 	see e�g� Kunita 	�

���� Theorem � now follows by the arguments of section ��

�




��� The product formula approach

We now consider the product formula construction� Let Nt be the time t propagator of the
equation

����

�t
� ��� � ru� u � r���

	the Cauchy solution� and Mt the time t propagator of the di�usion equation

����

�t
� �r�����

We approximate the solution of 	��� after time t by the product formulaB���	�� t� � 	M�N���t���B�

where B� is the initial magnetic �eld and � is the size of each time step� The convergence of
this scheme� a standard result� is the subject of the following lemma�

Lemma � For �xed t and �

lim
���

Z
Rd
jB	x� t��B���	x� t�jdx � ��

where B is the solution to equation �����

The proof is sketched in Appendix C�
Let us now return to calculating with maps� For �xed � � ��m� m a large integer� let

���� be the distribution of

g � 	�� � 
m	��� � � � � � 	�� � 
�	���

where �s is the �ow generated by u and the 
i	�� are d�dimensional random vectors with
i�i�d� Gaussian entries of mean � and variance ���� An easy calculation shows that

B���	�� n� �
Z
	n

	Dg�n�B���
n
���	dg�� � � � � dgn��

We need the following lemma controlling the uniform dependence on � of ���� as � 	 �
to �nish the proof�

Lemma � For given � � �

lim
���

lim
���

����fg � jjg � ��jjCk � �g � ��

This statement takes the place of the previous Condition �� The proof can be found in
Appendix C�

We further make the following claim�

��



Claim � Given �� � �� 
 �� � � such that for any �xed � � ��� 
N� � Z� and �� � � such
that 
n � N�� � � ��� if ��� � ��� ��	D is a Ck curve with k���kk � �� then

Z
�	g�n������n���	dg

n� � en	h	f� � r	f��k � �����

The proof is identical to that for maps provided �� is chosen small enough to assure that the
probability of occurence of a �bad block� is su�ciently small� The existence of such an �� is
guaranteed by Lemma ��

To complete the proof of Theorem �� we �rst replace a given initial condition B� by �B�

as in section �� Then we argue as in the paragraphs preceding Claim � in section � that for
arbitrary �� �� and n�

Z
Rd
jB���	x� n�jdx � C sup

���

Z
	n

�	gn����d�n���

where C depends on B� but not on �� � or n� Let �� � � be given and let � � �� be as
in Claim 
� We now estimate the growth rate of

R jB	x� n�jdx as n 	 � for this �xed ��
Temporarily �x n � N� where N� is as in Claim 
� We choose � � �� such that the di�erence
in Lemma � is less than �� 	Note that � must be allowed to depend on n since there is no
uniformity in this approximation as time tends to ��� It then follows from Lemma �� our
estimate on

R jB���	x� n�jdx above� and Claim 
� that

Z
Rd
jB	x� n�jdx � � � Cen	h� r�k � �����

� Further Remarks

The range of applicability of Theorems � and �� can be extended in several important ways�
We note �rst that while we have been assuming that the map f or �ow u is deterministic� the
results also hold under mild restrictions for random maps and �ows such as the �renovating
�ow� dynamos 	Zel�dovich et al� 	�
���� Gilbert and Bayly 	�

���� The extension to random
systems of the key steps of the Rm � � results� namely de�nitions of topological entropy
and line stretching and the Yomdin upper bound can be found in Kifer 	�
�
� and Kifer and
Yomdin 	�
���� The arguments contained in this paper also extend to random distributions
in a straightforward manner� Furthermore the bound of Theorem � applies for any Rm with
h	f� replaced by h	g� where the distribution of g consists of Gaussian perturbations of f
with variance �R��m � Secondly the proof is easily modi�ed to apply to periodic boundary
conditions ! the main di�erence is that case � of step �	c� in section � is no longer necessary�
Furthermore for periodic boundary conditions B� need only be continuous� di�usion will
smooth the �eld after an arbitrarily small time� 	The same argument cannot be used for
the original case because of apparent technical di�culties arising from unboundedness of

��



the domain�� We note also that u may be time periodic� A periodic �ow in Rd can be
embedded as a steady �ow in Rd � S � Rd��� In this case di�usion acts only in the Rd

directions� In principle bounds involving topological entropy can also be given for more
general time�dependent �ows�

Certain restrictions on Theorems � and �� should be noted as well� As has already been
seen� for technical reasons we assume the initial �eld is contained in a bounded region� In
addition we assume that the di�usivity is constant in space� From the point of view of this
paper� a non�constant di�usivity would result in spatially varying noise� Thus di�usion could
stretch the magnetic �eld and in principle have a direct role in the dynamo process� For the
same reason issues concerned with fast dynamo action surrounded by an insulating region
	Hollerbach et al� 	�

��� are not addressed here�

The techniques of this paper can also be applied to the evolution of a passive scalar
gradient �eld� The equation for the evolution fo a passive scalar quantity � is

��

�t
� u � r� �

�

Pe
r�� 	���

where the Peclet number Pe is a dimensionless parameter measuring the relative strengths
of advective and di�usive processes� Taking the gradient of 	��� we get

�

�t
	r�� � u � r	r�� � �	ru�Tr�� �

Pe
r�	r��

where 	ru�T is the transpose of ru� When Pe � � this equation is identical in form to
the time evolution equation for a �eld of material area elements� To see this� let b� c be a
material area element� Abbreviating d�dt � ���t� u � r� by volume preservation we have
for any material vector a

� �
d

dt
	a � 	b� c��

� a �
�
	ru�T 	b� c� �

d

dt
	b� c�

�
�

Since a was arbitrary we obtain

d

dt
	b� c� � �	ru�T 	b� c��

As a Yomdin inequality holds for area elements as well as line elements� it can be shown
that at Pe ��

lim
n��

�

n
ln
Z
D
jr�jdx � h	f� �

�r	f�

k

where� as before� f is a Ck map 	or time � integration of a steady or period � �ow�� This
result might be interpreted as requiring h	f� � �r	f��k � � as a necessary 	although not
su�cient� condition for e�cient mixing at large Peclet number� If k �� then in fact chaos
becomes a necessary condition for e�cient mixing�

�




� Proof of the Lower Bound

The proof of Theorem � uses some basic techniques from smooth ergodic theory� These
techniques are standard to workers in the subject� but without a substantial amount of
notation and preliminaries it is di�cult to make precise statements� Instead of giving a
formal proof we will elucidate the main geometric ideas� referring the reader interested in
technical details to an expository article 	Young 	�

��� or Pesin�s original paper 	Pesin
	�
����� An argument similar to ours has been used by Newhouse 	�
���� Throughout this
section let f be as in Theorem ��

Idea �� Measures maximizing entropy
If � is an f �invariant Borel probability measure on D� let h		f� denote the metric
entropy of f with respect to � 	see Walters 	�
��� for a de�nition�� In much the same
way that topological entropy measures chaos in a topological sense� metric entropy
measures randomness in the sense of probability� The following variational principle is
well known�

h	f� � sup
	
h		f��

The supremum is taken over all f �invariant probability measures� it is also adequate
to only consider ergodic measures�

Our �rst step is to pick 	and �x throughout� an ergodic measure � with h		f� �
h	f� � ��� More likely than not� � is a singular measure� i�e�� it lives on a set of
� volume� The purpose of this proof is to show that points that are typical with
respect to �� exceptional as they may be from the point of view of volume� may have
a signi�cant in�uence on the growth rate of

R jBnjqdx�
Idea �� Lyapunov exponents and special coordinates

According to a theorem of Oseledets 	�

��� there exists a set of numbers �� � � � � � �r
with multiplicitiesm�� � � � �mr respectively such that at ��a�e� x the tangent space TxD
splits into TxD � E�	x�� � � � � Er	x� in such a way that 
v � Ei	x�

lim
n��

�

n
ln jDfn

x
vj � �i�

These numbers are called the Lyapunov exponents of 	f � ��� The subspaces Ei	x� vary
measurably with x ! they vary continuously if we are willing to disregard a set of
arbitrarily small measure�

In general Lyapunov exponents are asymptotic growth rates� but there are point de�
pendent changes of coordinates due to Pesin 	�
��� that allow us to see f locally as
small perturbations of linear maps with eigenvalues exp	�i�� More precisely� at ��a�e�
x there exists a di�erentiable change of coordinates "x � Nx 	 Ux� where Nx is a small
neighborhood of � in Rd and Ux is a small neighborhood of x� with the properties that

��



�� "x	�� � x and D"x	�� carries the splitting Rm��� � ��Rmr to E�	x��� � ��Er	x��

�� if �fx � Nx �	 Nfx is the representation of f in the new coordinates� then �fx is C�

near D�fx	�� and D�fx	�� is a linear map with jD�fx	��vj � exp	�i���jvj 
v � Rmi �

It should be noted that these change of coordinates distort distances by arbitrarily large
amounts 	depending on x� and that there are various technical problems of which one
ought to be aware when working with them 	see e�g� Young 	�

����

Idea �� The in�uence of ��typical points on dynamo growth
We will assume in this paragraph that we are working in our special coordinates so
that locally f resembles a linear map with multipliers exp	�i� of multiplicity mi� In
fact for a typical x let us think of Ux as a product of the form Uu

x
� U s

x
� where Uu

x
is

a disk contained in �Ei	x�� �i � �� and U s
x
is a disk contained in �Ei	x�� �i � �� As

before let b	y� � �n� � fz � d	f iy� f iz� � � 
 � � i � ng� Consider y very near the
center of Ux and assume that diam Ux � �� Then b	y� � �n� � C �U s

x
for some C with

cross�sectional area � exp�n	P��i mi�� �
�
i � max	�i� ��� 	This is true exactly if f is

locally linear� in our coordinates the nonlinearities are mild��

Next let h � h		f�� A property of metric entropy is that given any set U of positive
measure� for n su�ciently large there exists O	exp	nh�� points in U that are 	n� ���
separated� i�e�� 
x�� � � � �xk � U � k � exp	nh�� such that b	xi� � �n�

T
b	xj� � �n� � �

whenever i �� j� We pick these points in Ux very near x and let An �
S
i b	xi� ��n��

To complete the proof we now exhibit a vector �eld B� with the desired growth rate�
All that we really require of B� is that in Ux it points roughly in the direction of E�	x��
Then if q � dimUu

x
� we will have

Z
An

jDfnB�jqdx � eq
�n � 	Lebesgue measure of An�

� eq
�n � e��
P


�
i
mi�nenh

� enh�

and so

lim inf
�

n
ln
Z
D
jBnjqdx � h� 	���

If h � � there is nothing to prove� If h � � then h � P
��i mi by Ruelle�s inequality

	�
��� so �� � �� The same reasoning tells us that 	f � �� must have a strictly negative
exponent� hence any q � d� � will work in 	���� If f is the time � map of a �ow then
in addition to the negative exponent there is a zero exponent and so q � d� � su�ces�
�

��



Appendices

A Outline of the Proof of Yomdin�s Theorem

We present here a proof of Claim � following Yomdin 	�
���� The proof uses the following
approximation lemma which allows one to renormalize after each iteration�

Lemma � Let b	x� �� and b	x� �� be the balls of radius � and 	 around a point x in a Rd�
Let f � b	x� �� 	 Rd be a Ck map with jjDsf jj � M � � � s � k� and let ��� � ��� �� 	 b	x� ��
be a Ck curve with jj���jjk � �� Then there exist a constant � of the form � � �M��k �with �
depending only on k and d� disjoint intervals I�� � � � � I� � ��� �� such that

��

	f � ������b	f	x�� �� �

j

Ij � 	f � ������b	f	x�� ���

	� If �j is an a
ne contraction mapping ��� �� onto Ij then

jjDs	f � ��� � �j�jj � �� � � s � k�

Lemma � deals with the approximation of Ck maps by polynomials and has nothing to do
with dynamics� We will omit its proof�

Consider now f as in Theorems � or ��� We de�ne a map 	f by blowing up f to 	f �
	����f	�x�� For � su�ciently small�

max
s�������k

jjDs	f jj � jjD	f jj � jjDf jj� 	���

Choose � such that 	��� holds� Given a Ck curve ��� de�ne a Ck curve #�#�#� by blowing up ��� to
#�#�#� � 	������� and assume for the moment that jj#�#�#�jjk � �� We now apply the lemma to 	f and #�#�#�
to get the maps �j and thus see that for any x

�		f#�#�#�
�

#b	x� �� ��� � �

where � � �	k� d�jjDf jj��k� We now repeat this process again and again� de�ning a new
curve #�#�#�� from the previous curve #�#�#� by #�#�#�� � 	f � #�#�#� � �j 	summing over all the �j�s�� Then for
any x

�		fn#�#�#�
�

#b	x� n� ���� � �n�

This implies that

lim sup
n��

�

n
ln
h
�	fn���

�
b	x� n� ���

i
� ln�	k� �

�

k
ln jjDf jj� 	�
�

��



which is in the direction of the desired result�
We remark �rst that in the process of blowing up ���� kDs#�#�#�kk increases for s � �� We may

however subdivide #�#�#� into shorter curves #�#�#�j in such a way that� after reparametrizing� each
#�#�#�j satis�es k#�#�#�jkk � �� The number of subdivisions depends only on k and � 	and not on �����

To go from 	�
� to the desired result� we use the standard trick of working with a power
of f � Let �� be given� Select � � � and an integer p so that

�� 	��p� ln �	k� � 	������

�� 	��kp�� ln jjDfp� jj � r	f� � 	������ for p� � p

�� 	fp � fp blown up by ��� has property 	���

�� 	��p�h	fp� �� � h	f� � 	������ Here the � in h	fp� �� refers to the � in de�nition 	���

Then for n � � 	with b	x� n� �� calculated using the map fp�

lim sup
n��

�

np
ln �	fnp���� �

�

p
lim sup
n��

�

n
ln �	fnp����

� �

p
h	fp� �� �

�

p
lim sup
n��

�

n
ln
h
�		fp�n���

�
b	x� n� ���

i

� h	f� �
r	f�

k
� ��

independent of choice of ���� as was to be shown�

B Details on Stochastic Flows

Proof of Lemma �� Since Xt�� is in fact C
� B	x� t� as de�ned in Lemma � is at least C� in
x so the right side of 	��� is well�de�ned� For 	x�� t�� � Rd � ����� let

�B

�t
	x�� t�� � lim

t���

B	x�� t� � t��B	x�� t��

t
�

We will show that 
	x�� t�� this limit exists and is equal to the right side of 	���� 	To
conclude that �B��t really exists we will observe that as t	 �� the convergence is in fact
uniform in t� for t� in any �nite time interval� This fact together with the continuity of
t� �	 �B��t	x�� t�� proves that �B��t� � �B��t� 
t� � ���

To study �B��t�� consider the backward derivative process associated with 	���� More
precisely� consider �

dYt � �udt�p
��dbt� Y	�� � x�

dJt � �Du� J	�� � Id
	���

��



on Rd �GL	R� d�� and introduce the function

f	Y�J� � J��B	Y� t���

Then using the fact that X��
t and Yt have the same distributions� we have for t � �

B	x�� t� � t� � E
h
	DXt���X�t���x��B	X�t��	x��� t��

i
� E	f	Y	t��J	t���

so that
�B

�t�
� lim

t���

�

t
E�f	Y	t��J	t��� f	x�� Id���

Note that f is C�� Ito�s formula tells us that

f	Y	t��J	t��� f	x�� Id� � �
Z t

�

��f

�Y�
ds �

Z t

�

��
�f

�Y
�
�f

�J

�
�
� �u
�Du

��
ds �

q
��
Z t

�

�f

�Y
dbs�

Let us call the three terms in this equation 	i�� 	ii�� and 	iii�� Then E	iii� � �� Since 	i� and
	ii� are ordinary integrals� one veri�es 	using the uniform boundedness of B	x� t��� u� and
Du� and standard large deviation estimates for the trajectories of 	Y	t��J	t��� that

lim
t���

�

t
E	i� � �	r�B�	x�� t��

and

lim
t���

�

t
E	ii� � 	B � ru�rB � u�	x�� t���

�

C Details on Operator Splitting

Proof of Lemma 	� This is a standard and well�known result of operator splitting arising in
slightly di�erent forms in many di�erent contexts� For completeness we outline here a proof
using a particularly simple argument found in Chorin et al� 	�
��� p� ��
�

De�ne the operator Kt � Mt � Nt where Nt is the time t propagator of the evolution
equation

�

�t
��� � ��� � ru� u � r���

	we assume u is Ck��� k � �� and Mt is the time t propagator of the evolution equation

�

�t
��� � �r�����

��



Let Ft be the time t propagator for

�

�t
��� � ��� � ru� u � r���� �r�����

The object is to show that in the limit � 	 �� K �t���
� converges to Ft for any t� Two basic

properties are necessary to demonstrate convergence� First consistency requires that

d

dt
Ktjt�� � d

dt
Ftjt���

Consistency follows immediately from the limit

�

t
	Kt���� ���� �

�

t
Mt	Nt���� ���� �

�

t
	Mt��������

	 	
d

dt
Ntjt�� � d

dt
Mtjt������

as t 	 �� The second property required� stability� is boundedness of K �t���
� as � 	 � for

small t� Stability can be shown� for example� by expanding the Green�s function for K �t���
�

for small t� We will not carry out the expansion here although� in fact� this argument can
be found as part of the proof of Lemma ��

Using consistency and stability it is then easily shown that 	Ft �K
�t���
� ���� converges to �

for small t� The convergence for arbitrary T then follows from a compactness argument�

Proof of Lemma �� We will show for su�ciently small � and large m that the two equations

$x � u� x	�� � x�

$x� � u�
mX
j��

aj�	t� j�m�� x�	�� � x��

where aj are iid d�dimensional Gaussian random variables with mean � and variance ���m�
have solutions that remain uniformly close pointwise in x� as m 	 � with probability
approaching � as �	 �� The higher derivatives are left to the reader�

First we consider the linearization of $x�� $x around the trajectory x	t�� x	�� � x�� That
is� we consider the equation

$��� � 	ru� ��� �
mX
j��

aj�	t� j�m�� 	���

The �rst task is to estimate the �rst passage time for j���j� i�e�� to estimate the probability
that j���j � c �rst occurs �rst at time t� Now equation 	��� can be integrated to yield the
solution

���	t� �
�tm�X
j��

J	x	j�m� � ���	j�m�� t� j�m�aj � 	�
�

��



	showing that j���j is uniformly bounded with high probability�� Let � � sup kruk� Then
kJ	x	j�m� � ���	j�m�� t � j�m�k � e�� The probability of �rst passage of the sum 	�
� of
Gaussian random variables is less than or equal to the �rst passage probability of the sum
of Gaussian random variables

��� �	t� � e�
�tm�X
j��

aj�

In the limit of m 	 � the probability f	z� t� that j����j exceeds z � � is given by 	Feller
	�
����

f	z� t� �
ze�p
��t


e�	ze������t�

In particular for � � �

f	������� �� �
�	p
�
e�	�

�

where 	 � e������� which goes to zero as �	 ��
Now a straightforward computation 	using the �rst � derivatives of the �ow generated

by u� gives the result
x�	t�� x	t� � ���	t� �O	j���j����

which we have argued is small with high probability in the limit �	 ��

�
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