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Abstract. This paper discusses coupled map networks of arbitrary sizes over
arbitrary graphs; the local dynamics are taken to be diffeomorphisms or expanding
maps of circles. A connection is made to hyperbolic theory: increasing coupling
strengths leads to a cascade of bifurcations in which unstable subspaces in the
coupled map systematically become stable. Concrete examples with different
network architectures are discussed.
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1. Introduction

This paper is about a class of multi-component dynamical systems we will refer
to as coupled map networks (cmn). Roughly speaking, a cmn is characterized by local
dynamics operating at each vertex or node of a graph, with these small constituent
systems interacting along the edges of the graph. That cmns are useful in applications
is beyond doubt: they appear naturally in models in engineering (e.g., electronic
circuits), in the physical and biological sciences (e.g., chemical reactions, genetic
regulatory networks, neuronal networks) and as various agent-based models in the
social sciences. These systems have also been studied from many different angles in
the mathematical literature, both pure and applied, ranging from coupled oscillator
networks to coupled map lattices. In a subject as vast and diverse as this one, without
substantially reducing its scope it is impossible to do justice to the literature through
a reasonable number of citations. We will from here on confine our discussion to
dynamical models closer to ours.

This paper contains a mathematical study of discrete-time cmns over arbitrary
finite graphs. To keep the local dynamics simple yet nontrivial, we take them to be
maps of a circle, such as rotations or expanding maps (simulating chaotic behavior),
and the coupling is taken to be a form of averaging (to simulate a diffusion). Our
models are therefore a close cousin of a much studied class of dynamical systems called
coupled map lattices (cml), which are discrete-time models of generalized reaction-
diffusion processes on homogeneous media [1, 2, 3, 4, 5, 6, 7, 18, 19, 20, 23, 24,
25, 28, 32]; see also [11] and the references therein. In a cml, the graph is a regular
lattice, usually Z or Zd, and the couplings, nearest neighbor or finite range, are usually
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assumed to be translationally invariant. By contrast, there is nothing homogeneous
about our network connections or coupling strengths, and one of the purposes of
this paper is to give concrete examples to demonstrate the wide range of dynamical
behaviors that arise from different network architectures.

Very weak coupling regimes were studied in great detail in a number of cml
papers related to ours (e.g., [7, 18, 23, 24]). The present paper differs in that we allow
a wide range of coupling strengths and study how they affect the dynamics. In this
regard, our paper is closer in spirit to [12] and [22]. Consider, for example, the case of
expanding local maps. Clearly, a weakly coupled system continues to be expanding,
but since averaging properties of the interaction translates into contraction for the
cmn (this will be made precise in the text), contractive directions appear as coupling
strengths are increased. Using an especially simple coupling, we show that as we
tune our coupling strengths up gradually, one sees a cascade of bifurcations in which
expanding subspaces systematically switch over to contractive subspaces, that is to
say, the system goes from expanding to hyperbolic or partially hyperbolic, acquiring
more and more contracting directions as the coupling gets stronger. While connections
to hyperbolic theory were noted before, the transparency of this connection has never
been brought out in the generality considered here. This connection also provides
hyperbolic theory with an abundance of natural examples.

To be precise, our models are not exactly hyperbolic or partially hyperbolic but
piecewise hyperbolic or partially hyperbolic, the discontinuities coming from the very
simple coupling we use. As is well known to be the case, discontinuities in a dynamical
system in dimensions greater than one can complicate dynamical behavior and lead
to intriguing geometry [8, 9, 10, 13, 14, 16, 27, 30, 31]. We begin to touch upon
these types of questions only in Section 5, where we point out some key differences in
geometry of the attracting set for different coupling graphs.

To summarize, our aims in this paper are twofold. One is to remind
mathematicians in the dynamical systems community of this useful and interesting
class of models called cmns which appears to be fertile ground for future research.
The second is to provide examples and discuss some basic issues. In a sequel, the
first-named author will discuss in greater depth the ergodic theory of a subset of these
systems, including the existence of physical measures.

2. Setting and preliminaries

We define a coupled map network (cmn) to be a triple (G, {fi}, A) where
• G is a graph specified by a finite or countable set Ω of vertices and a collection

of edges E ⊂ Ω× Ω;

• at each i ∈ Ω, which we call a site, there is a local space Xi and a local map
fi : Xi → Xi; and

• network dynamics are defined by the iteration of Φ : X → X where X =
∏

i∈ΩXi

is the product space and Φ = A ◦ F where F =
∏

i∈Ω fi is the (independent)
application of local maps and A : X → X is the spatial interaction or coupling;
for x = (xi)i∈Ω ∈ X, the i-th coordinate of A(x) depends only on xi and those
xj for which (j, i) ∈ E .
This paper is about cmns of the following type: G is an arbitrary finite graph

with d vertices, and the local systems fi : Xi → Xi are smooth circle maps, so that
the global phase space X is the d-dimensional torus Td. Our couplings are averaging
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operators intended to simulate diffusive behavior. The purpose of this section is to
make precise the setting for our results.

In the definitions to follow, the local maps fi play no role, and the focus is almost
entirely on the coupling operator A : X → X. We begin with the d = 2 case to provide
motivation and introduce notation. The general definition is given in Section 2.2, and
further properties of the coupling operator are discussed in Section 2.3.

2.1. Coupling of two maps

We let S1 ≡ R/Z, and use additive notation on S1. The aim of this subsection is
to introduce a class of admissible couplings for two maps fi : S1 → S1, i = 1, 2. The
following is one of the simplest rules for how to bring pairs of points in S1 closer: Fix
a number α, say α = 1

3 . For x, y ∈ S1, we move x a third of the way toward y along
the shorter arc connecting x and y, to a point called x′, and move y to y′, which lies a
third of the way toward x. The averaging map is then defined to be A(x, y) = (x′, y′)
(see Figure 1(a,b)). One sees immediately that there is a difficulty when x and y are
antipodal: they cannot decide which direction to move (Figure 1(c)). In other words,
this rule is not defined for antipodal points.
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(a) (b) (c)

Figure 1. The averaging map (x′, y′) = A(x, y). In (c), A(x, y) is undefined.

There are many ways around this. For example, the strength of attraction α can
be taken to be a function of distS1(x, y), the distance between x and y measured along
S1, tapering off to zero as distS1(x, y) → 1/2. Different couplings will lead to different
dynamical properties and technical considerations. As we will see in the next section,
the linear coupling above is in many ways the simplest, and this is what we will use
in this paper.

More formally, let P = { (x, y) ∈ T2 ; distS1(x, y) = 1/2 }. Given any coupling
strength α > 0, we define the coupling map A : T2 \ P → T2 by setting

A(x, y) =
(
x+ α⌊y − x⌋, y + α⌊x− y⌋

)
mod (1, 1), (1)

where ⌊z⌋ ∈ (−1/2, 1/2) is such that ⌊z⌋ = z mod 1 and “mod (1, 1)” is shorthand for
taking each coordinate mod 1. (Notice that for z = 1/2 mod 1, ⌊z⌋ is not defined—
and not needed— in (1).) Intuitively, ⌊y − x⌋ measures the “oriented distance” from
x to y in S1. In figure 1(a), ⌊y − x⌋ > 0, and in 1(b), ⌊y − x⌋ < 0.

The parameter α measures the strength of the coupling between the two local
maps. The case α = 0, which we do not consider, corresponds to f1 and f2 being
uncoupled, i.e., Φ is the product map. When α = 1/2, Φ collapses T2 onto the
diagonal {x = y}, i.e., the two local maps are fully synchronized in one step, and
effectively function as a single one-dimensional map from then on. For α > 1/2, the
analogy between (1) and a diffusion process breaks down; see Figure 2. In this paper
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we will limit our attention to α ∈ (0, 1/2), and write Aα where necessary to make the
dependence on α explicit.
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Figure 2. Behavior of Aα for different values of α. For 0 < α < 1/2, Aα behaves
as in (a); for α = 1/2, as in (b). If α > 1/2, Aα no longer behaves as a diffusion
process; it “overshoots” as in (c).

Since A is not defined on P , the coupled map Φ = A ◦ F is not defined on
S = F−1(P ), and we have only Φ : T2 \ S → T2. We call S the singularity set of Φ.

2.2. General case

We assume throughout that (i) G is a connected graph with vertices or sites
Ω = {1, 2, . . . , d}, (ii) no site is connected to itself, i.e., (i, i) ̸∈ E for all i, and (iii) the
edges are not oriented, i.e., for all i, j ∈ Ω, (i, j) ∈ E if and only if (j, i) ∈ E . To each
(i, j) ∈ E we assign a number cij = cji > 0 which represents the coupling strength
between sites i and j. If (i, j) ̸∈ E , i ̸= j, we set cij = 0; and for i = j, we set

cii = 1−
∑
j ̸=i

cij , for i = 1, 2, . . . , d;

the reason for this choice will become clear shortly. The symmetric d × d matrix
C = (cij) thus obtained is called the coupling matrix. Note that, ignoring diagonal
entries, C can be regarded as a weighted incidence matrix for the coupling graph G.
Clearly, the matrix C contains all the information given by the graph G and more:
for i ̸= j, cij > 0 if and only if (i, j) ∈ E .

Given a d×d coupling matrix C, we define the averaging map AC as follows. Let

P (C) =
∪{

Pij ; (i, j) ∈ E
}

where Pij = {x ∈ Td ; distS1(xi, xj) = 1/2 }, (2)

and define AC : Td \ P (C) → Td by(
AC(x)

)
i
= xi −

d∑
j=1

cij⌊xi − xj⌋ mod 1, (3)

for i = 1, 2, . . . , d. Note that the Pij are (flat) co-dimension one submanifolds of Td

which may intersect in a complicated way. Notice also that the diagonal entries of C
do not have any bearing on (3), since ⌊xi − xj⌋ = 0 if i = j.

Remark. We can rewrite (3) as(
AC(x)

)
i
= Rci1⌊x1−xi⌋ ◦Rci2⌊x2−xi⌋ ◦ . . . ◦Rcid⌊xd−xi⌋(xi),

where Rρ : S1 → S1 denotes the counterclockwise rotation by angle 2πρ. The rotation
map Rcij⌊xj−xi⌋ can be intuitively thought of as the “influence” or “force” of site j
over site i. Notice that any two of these maps commute. This representation shows
that the nature of the averaging map defined by equation (3) is truly that of a pairwise
spatial interaction.
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We now come to the analog of the condition α < 1/2 in the two dimensional case.
Away from the set P (C), the derivative of AC , denoted DAC , is constant. To make
this statement precise, we identify the tangent spaces at every x ∈ Td with Rd in the
canonical way. It is easy to check from (3) that with respect to this identification and
the usual basis of Rd, the matrix representation of DAC at every x ∈ Td \ P (C) is
in fact given by C itself. Here the condition that is consistent with AC having the
properties of a diffusion process is to require that DAC , or C, be positive definite.∥
This condition is discussed in more detail in the next subsection.

We finish by noting that as in the two-dimensional case, the singularity set of the
coupled map Φ = AC ◦ F here is S = F−1P (C), i.e., we have Φ : Td \ S → Td.

2.3. Positivity and spectral properties of DAC ≡ C

As mentioned in the previous subsection, it makes physical sense to assume that
DAC be positive definite. The main point of this subsection, Proposition 2.4, describes
the spectral properties ofDAC ≡ C under this natural hypothesis. We start with some
necessary and sufficient conditions for positivity.

Lemma 2.1. Let C be a d × d coupling matrix, and let V be the diagonal matrix
defined by (V )ii = vi =

∑
j ̸=i cij, i = 1, . . . , d. If v̄ = maxi vi 6 1/2, then DAC is

positive semi-definite. If the inequality is strict, then DAC is positive definite.

Proof. Let I be the d× d identity matrix. The matrices I −C and 2V are symmetric
and (non-strictly) diagonally dominant; therefore they are positive semi-definite. (A
matrix (aij) is said to be diagonally dominant if the absolute value of the diagonal
entry aii is greater than or equal to the sum of the absolute values of the other entries in
each row, and if the same holds for the columns.) Their largest eigenvalues are ∥I − C∥
and ∥2V ∥ respectively. The matrix 2V − (I − C) is also diagonally dominant, hence
also positive semi-definite. By [26] (Theorem 16, page 132), ∥I − C∥ 6 ∥2V ∥ = 2v̄.

Each eigenvector of C with eigenvalue λi is of course an eigenvector of I−C with
eigenvalue 1 − λi. Hence the least eigenvalue of C is equal to 1 − ∥I − C∥ > 1 − 2v̄,
which is non-negative if v̄ 6 1/2, and positive if v̄ < 1/2.

Another sufficient condition for positivity is

Lemma 2.2. Let C be a d × d coupling matrix. If c̄ = maxi ̸=j cij 6 1/d, then DAC

is positive semi-definite. If the inequality is strict, then DAC is positive definite.

The proof is postponed to subsection 3.2, where it fits more naturally, since this
lemma is motivated by the discussion there.

Lemma 2.3. Let v̄ be as in lemma 2.1, and c̄ be as in lemma 2.2. If v̄ > 1 or if
c̄ > 1/2, then DAC is not positive definite.

Proof. Suppose first that v̄ > 1. Without loss of generality, we may assume that
v1 > 1. Let w = (1, 0, . . . , 0)T ∈ Rd. Then the first entry of DAC · w = Cw is not
positive, hence wTDACw 6 0. Now suppose that c̄ > 1/2. Once again, we may
assume without loss of generality that c12 > 1. If z = (1,−1, 0, . . . , 0)T ∈ Rd, then
zTDACz 6 0.

∥ This is physically the most interesting case. Even though we discuss explicitly only this case,
many of the results in this paper continue to hold, with slight modifications, without this positivity
condition.
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The following result is central to our discussion:

Proposition 2.4. Let C be a d × d positive definite coupling matrix. Then the
eigenvalues λi of DAC satisfy

1 = λ1 > λ2 > λ3 > · · · > λd > 0. (4)

Moreover, DAC admits an orthonormal basis of eigenvectors {zi} corresponding to
the λi, and the eigenvector z1 is a multiple of (1, 1, . . . , 1)T ∈ Rd.

Proof. From the symmetry of C it follows that the λi are real and that C admits an
orthonormal basis of eigenvectors. The λi are positive since C is assumed to be strictly
positive definite. The eigenvalues of I−C are η1 = 1−λi. But I−C is positive semi-
definite (see the proof of lemma 2.1), so ηi > 0, and thus λi 6 1. By our definition of
cii, the entries on each row of I − C add up to zero. Therefore (1, 1, . . . , 1)T ∈ Rd is
an eigenvector of I − C with eigenvalue η1 = 0, equivalently λ1 = 1.

It remains to show that the eigenspace corresponding to eigenvalue λ1 is one-
dimensional. By lemma 2.3, v̄ < 1 (where v̄ is as in lemma 2.1), so the entries of C are
non-negative. The diagonal entries, in particular, are positive. With these facts, it is
easy to see that C is irreducible and aperiodic, i.e., there is n ∈ N such that all entries
in Cn are strictly positive. (This step uses the fact that G is connected.) Hence the
Perron-Frobenius Theorem applies to C to give the desired result.

3. Simplest examples

In this section we consider some situations for which technical estimates are kept
to a minimum, namely where the fi are linear and coupling constants are equal. The
coupling matrix C is assumed throughout to be positive definite.

3.1. Linear local maps, equal coupling strengths

We assume all the local maps are identical and linear, i.e., we fix k ∈ Z+ and
b ∈ R, and for all i, let fi : S1 → S1 be given by fi(x) = kx + b mod 1. (For k > 2,
the system is equivalent one in which b = 0 by a linear change of coordinates.) In this
linear case, DΦ ≡ kDAC ; hence it has the same eigenspaces as DAC and eigenvalues

k = µ1 > µ2 > µ3 > · · · > µd > 0 (5)

where µi = kλi, {λi} being the eigenvalues of DAC (see Proposition 2.4).
We will also restrict our attention to coupling graphs in which all edges are

assigned equal coupling strengths, which we denote by α. This provides a framework
in which to study the dependence of the spectrum of DΦα upon the single parameter
α, while keeping the graph fixed.

In this special case, the following notation is convenient: Let C̃ be the incidence
matrix, i.e., c̃ij = 1 if (i, j) ∈ E , c̃ij = 0 otherwise, and let Ṽ be the diagonal matrix
with ṽii =

∑
j ̸=i c̃ij (the valence of vertex i of G). In this notation, the coupling matrix

C introduced earlier is given by C = I − α(Ṽ − C̃), and if we denote the spectrum of
Ṽ − C̃ by {η̃j}, with the η̃j ordered from smallest to largest, then the eigenvalues of
DΦ are given by

µj = kλj = k(1− αη̃j), for j = 1, 2, . . . , d; (6)

in particular, η̃1 = 0 and has multiplicity one.
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The following facts follow immediately from (6): When α is small, all of the µj

are close to k. Thus for k > 2, Φ is expanding, more accurately piecewise expanding
(since there is a discontinuity set S) for small α. Figure 3(a) illustrates a possible
example of the positions of the µj for k > 2. As α increases, µ1 remains fixed at k,
while the other eigenvalues decrease (figure 3(b)). At some critical value of α, the
smallest eigenvalue of DΦ reaches 1; at this point Φ ceases to be expanding. As α
increases further, unstable eigenspaces switch to stable spaces, as their corresponding
eigenvalues move from the right to the left of 1 (figure 3(c)). It is important to note
that while the eigenvalues µj vary with α, the associated eigenspaces do not. These

eigenspaces are the same as those of Ṽ − C̃, which is a fixed linear map. In figure 3(d),
all but one of the eigenspaces of DΦ have become contracting under DΦ. This does
not always happen, however: As we increase α, there is a value αmax at which µd,
the smallest eigenvalue of DΦ, reaches zero. Beyond that point, DAC ceases to be
positive definite. Lemmas 2.1 and 2.2 provide lower bounds on αmax.

(a)

(b)

(c)

(d)

0 1 k

Figure 3. The eigenvalues µj (marked by ×’s) move left as α increases.

Nonlinear versions of the results above are discussed in Section 4.

3.2. Concrete examples

We compute here explicitly the eigenvalues for a few specific coupling graphs. All
coupling strengths are equal to α in the examples below. The distinct eigenvalues of
DΦ are denoted by {µ̄j}.

3.2.1. Complete graph, or all-to-all coupling. As a first example, we consider the
complete graph with d vertices, i.e., Ω = {1, . . . , d} and (i, j) ∈ E for all i, j ∈ Ω,
i ̸= j.

Figure 4. All-to-all (complete) coupling graph for d = 7.

Claim. DΦ = kDAC has exactly two eigenvalues, µ̄1 = k, with multiplicity 1, and
µ̄2 = k(1− αd), with multiplicity d− 1.
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Consider for definiteness the expanding case, i.e., k > 2. The assertion above
implies that as we increase α from zero, some “phase transitions” occur: Initially, Φ is
piecewise expanding in all directions. At α = (k− 1)/kd, a codimension one subspace
switches from unstable to stable. At α = 1/d, all but one of the eigenvalues become
0.

It is natural to wonder (for any k) what the eventual dynamics will be in the
case of a strong enough coupling. One possibility is synchronization, and for d = 2,
an easy exercise shows that for any α > (k− 1)/2k, regardless of initial condition the
system will eventually synchronize, i.e., the trajectory will tend to the diagonal. It
may be tempting to think that in the case of strong enough all-to-all coupling in any
dimension, synchronization is also inevitable independent of initial condition, but that
is not true ! See Section 5.3 for a detailed analysis of the case d = 3.

To prove the claim above, recall that C = I − α(Ṽ − C̃), where in this case

C̃ =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 and Ṽ =


d− 1 0 · · · 0
0 d− 1 · · · 0
...

...
. . .

...
0 0 · · · d− 1

 . (7)

The eigenvalues of Ṽ − C̃ are 0 (with multiplicity 1) and d (with multiplicity d− 1).
To prove this statement, let J be the d× d matrix

J =


0 1
1 0

1 0
. . .

. . .

1 0

 (8)

(where empty spaces represent zeros). Then Ṽ −C̃ = (d−1)I−J−J2−J3−. . .−Jd−1.
The eigenvalues of J are the d-th roots of unity ξj = e2πi(j−1)/d, j = 1, 2, . . . , d, hence

the eigenvalues of Ṽ − C̃ are d−1−
∑d−1

k=1 ξ
k
j , which is equal to zero if j = 1 and equal

to d otherwise. The assertion on the eigenvalues of DΦ follows.

One sees in the example above thatDAC is positive definite if and only if α < 1/d.
This is what motivates Lemma 2.2, the proof of which we now give. But first we need
the following general lemma (which applies to all coupling matrices).

Lemma 3.1. Let C1 and C2 be arbitrary d × d coupling matrices, let AC1 and
AC2 be the associated coupling maps, and λ1i and λ2i the eigenvalues of DAC1 and
DAC2 respectively. We list the λℓi with multiplicity and in decreasing order, i.e.,
λℓ1 > λℓ2 > · · · > λℓd, ℓ = 1, 2. If (C1)ij > (C2)ij for all i ̸= j, then λ1i 6 λ2i , for
i = 1, 2, . . . , d.

Proof. The argument is similar to that of lemma 2.1. We denote the eigenvalues of
I−Cℓ by η

ℓ
i , arranged in increasing order. The symmetric matrix (I−C1)−(I−C2) =

C2−C1 is (non-strictly) diagonally dominant with non-negative diagonal entries, hence
it is positive semi-definite. Once again, it follows immediately from [26] (theorem 16,
page 132) that η1i > η2i , for i = 1, 2, . . . , d. Since the eigenvalues of DACℓ

= Cℓ are
λℓi = 1− ηℓi , we have λ1i 6 λ2i .
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Lemma 3.1 validates the intuition that stronger couplings lead to more contraction
in DAC (the eigenvalues λi decrease). Given a maximum coupling strength c̄, the
“most contractive” coupling matrix is, therefore, the complete graph with all coupling
strengths exactly equal to the maximum c̄. This idea is used in the following proof.

Proof of lemma 2.2. Let C1 be the d×d coupling matrix defined by C1 = I− c̄(Ṽ −C̃),
where Ṽ and C̃ are as in (7), i.e., C1 is the coupling matrix associated with all-to-all
coupling with strength c̄. Then (C1)ij > (C)ij for i ̸= j, so Lemma 3.1 implies that
the smallest eigenvalue of DAC is greater than or equal to the smallest eigenvalue of
DAC1

, which is 1 − c̄d (see the proof of the claim above). Since c̄ 6 1/d, DAC is
positive semi-definite, and positive definite if the inequality is strict.

3.2.2. Cycle. Our second example is when the coupling graph is a loop with d
vertices, labeled counter-clockwise for definiteness. The eigenvalues of DΦ in this

Figure 5. Cycle coupling graph for d = 6.

case are µj = k − 2kα
(
1 − cos(2π(j − 1)/d)

)
, j = 1, . . . , d (warning: written in this

form, the µj are not ordered as in (5)). This is shown by the same method used in the

previous example; observe that in the present case we have Ṽ − C̃ = 2I − J − Jd−1,
where J is as in (8).

The eigenspaces of DΦ can be described as follows. If U is the d×d matrix given
by (U)(i+1),(j+1) = cos(2πij/d) + sin(2πi(d− j)/d), for i, j = 0, 1, . . . , d− 1, then the
j-th column of U is an eigenvector of DAC corresponding to the eigenvalue µj . (It is
easy to see that U has full rank, its columns being orthogonal).

The eigenvectors of DΦ are thus simply (discrete) sinusoids. The sinusoidal
eigenvectors of higher frequencies correspond to smaller eigenvalues, and therefore
expand less (or contract more) than eigenvectors of lower frequency. This fits nicely
with our understanding of AC as a discrete diffusion or heat process. Indeed, the
eigenvalues and eigenvectors we obtain in this case are exactly those of the discrete
heat equation on a uniform circle (with uniform grid).

Finally, recall that for all coupling matrices, the most expanded direction is
y1 = (1, 1, 1, . . . , 1)T . Thus in the case k > 2, perturbing any configuration
(x1, . . . , xd) ∈ S1 × . . . × S1 by adding (the same) δ to each coordinate is the fastest
way to get the two Φ-orbits to diverge. By the same token, perturbations that result
in the slowest divergence are those in the least expanded direction. In the case of a
loop with an even number of vertices, yd = (1,−1, 1, . . . ,−1)T , which makes intuitive
sense, for the alternating pattern maximizes the averaging effects of AC .

Examples in which piecewise expanding interval maps are coupled along cyclic
graphs were studied in [22], with results similar to ours.

3.2.3. Path. Not surprisingly, the “chain” or “path” (as in Figure 6) is very similar
to the previous example. The eigenvalues of DΦ are µj = k−2kα

(
1−cos(π(j−1)/d)

)
,
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Figure 6. Path coupling graph for d = 6.

j = 1, . . . , d, and the associated eigenvectors are the columns of the matrix given by
(U)(i+1),(j+1) = cos(π(1/2+ i)j/d), for i, j = 0, . . . , d−1. The same remarks as in the
previous case apply.

3.2.4. Complete bipartite graph. The final example is rather interesting, in that
it gives further insight into the relationship between coupling and contraction. We
consider complete bipartite graphs, which for definiteness we assume to have an even
number of vertices with exactly half in each of the two groups (as in Figure 7). The

1

2

3

4

5

6

Figure 7. Complete bipartite coupling graph for d = 6.

eigenvalues of DΦ are µ̄1 = k, µ̄2 = k − kαd/2 (with multiplicity d − 2), and µ̄3 =
k−kαd. As before, this is proved by showing that Ṽ−C̃ = d

2I−J−J
3−. . .−Jd−3−Jd−1

where J is as in (8) and the vertices are labeled as in Figure 7. The eigenvectors
corresponding to µ̄1 and µ̄3 are y1 = (1, 1, . . . , 1)T and y3 = (1,−1, 1, . . . ,−1)T

respectively. Intuitively, y3 is the natural candidate for the direction with the strongest
contraction, for it maximizes the averaging effects of AC .

From Lemma 3.1, we see that for a given coupling strength, the more edges a graph
has, the stronger the contraction. It follows that the strongest contraction occurs in
the all-to-all case. But notice that k(1 − αd), the smaller of the two eigenvalues in
the all-to-all example, is also an eigenvalue for the complete bipartite graph. In other
words, adding edges with coupling strength 6 α connecting vertices within each of
the two groups will not produce a stronger maximum contraction. (One way to see
this is via the following small computation, details of which we leave to the reader:
consider the case d = 3 and α < 1/3, and notice that the strongest contraction remains
unchanged as one goes from the path to the triangle.)

4. Robust hyperbolicity of the non-linear coupled map

Given the spectral properties of DΦ when the local maps are all equal to some
f(x) = kx+ b mod 1, it is to be expected that Φ will retain some form of hyperbolic
behavior when the fi are not too far from linear. In this section, we make precise
these ideas with estimates.

Setting for this section. We assume that the local maps fi : S1 → S1, i = 1, . . . , d, are
of the form fi = f + εgi + bi mod 1 where f(x) = kx mod 1 for some positive integer
k, the gi are C1 maps of degree zero on the circle with |g′i| 6 1, and bi ∈ R. If ε is
small enough, then the fi are orientation-preserving local diffeomorphisms of degree
k. Aside from being positive definite, no other conditions are imposed on the coupling
matrix C, and Φ = AC ◦ F as before.
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Our main results are Propositions 4.1 and 4.2, which establish the existence of
filtrations of invariant “stable” and “unstable” subbundles when ε is small enough.
These propositions lead immediately to invariant splittings of various kinds; the results
are summarized in Theorem 4.4.

4.1. “Stable” and “unstable” filtrations

We denote the distinct eigenvalues of DAC by

1 = λ̄1 > λ̄2 > λ̄3 > . . . > λ̄r > 0,

and the eigenspace corresponding to λ̄i by Vi. Since our goal in this section is to
construct subbundles invariant under DΦ = DAC ·DF when DF is uniformly close
to the homothetic map kI, it is natural to work in coordinates compatible with the
spaces Vi.

For each fixed ℓ ∈ {1, 2, . . . , r − 1}, we define V + = V +
ℓ and V − = V −

ℓ by

V + =
ℓ−1⊕
i=1

Vi and V − =
r⊕

i=ℓ

Vi, (9)

and let ∥ · ∥∨ be the maximum norm with respect to V +⊕V −, that is, for w = (u, v) ∈
V +⊕V −, we have ∥w∥∨ = max{∥u∥ , ∥v∥}, where ∥ · ∥ represents the Euclidean norm
in both V + and V −.

Identifying the tangent bundle over Td with Td × Rd, we observe that Td × V +

and Td × V − are DAC-invariant subbundles. Our first result gives conditions for
the existence of a DΦ-invariant subbundle E−

ℓ corresponding to Td × V −. Since our
construction involves infinite forward orbits of Φ, E−

ℓ (if it exists) will be a subbundle
of Y + × Rd where Y + = Td \ S∞ and S∞ =

∪∞
n=0 Φ

−n(S). It is easy to check that
Φ−1(Y +) = Y + and Φ(Y +) ⊂ Y +. The fiber of E−

ℓ over x ∈ Y + is denoted E−
ℓ (x).

Recall the meanings of k and ε at the beginning of this section.

Proposition 4.1 (Existence of “stable” subbundles). If ε < k(λ̄ℓ−1 − λ̄ℓ)/4, then
Y + × Rd admits a Borel-measurable subbundle E−

ℓ with the following properties:

(i) E−
ℓ is DΦ-invariant, that is, DΦ(x) · E−

ℓ (x) = E−
ℓ

(
Φ(x)

)
.

(ii) dimE−
ℓ (x) = dimV −.

(iii) If w ∈ E−
ℓ (x), then

∥∥DΦ(x) · w
∥∥∨ 6 (kλ̄ℓ + 2ε) ∥w∥∨.

This proposition is proved in Section 4.3. As usual, the proof uses the idea of
invariant cones. Define the negative cone with respect to the splitting V + ⊕V − to be
C− = { (u, v) ∈ V + ⊕ V − ; ∥u∥ 6 ∥v∥ }. We say C− is (DΦ)−1-invariant if for every

x ∈ X,
(
DΦ(x)

)−1
C− ⊂ C−. We show in Section 4.3 that C− is DΦ−1-invariant;

in fact, we show that it is strictly uniformly (DΦ)−1-invariant, meaning there exists

δ > 0 such that for all x ∈ Y +, the distance between
(
DΦ(x)

)−1
C− and ∂C−, the

boundary of C−, is at least δ. See Section 4.3 for more detail.
The fiber E−

ℓ (x) at x = x0 ∈ Y + is constructed as follows: If xn = Φn(x) for
n ∈ N, then

E−
ℓ (x) =

∞∩
n=0

(
DΦ(x0)

)−1 ◦
(
DΦ(x1)

)−1 ◦ · · · ◦
(
DΦ(xn)

)−1
C−.



Coupled Map Networks 12

Remark. In the proposition, we have referred to the subbundle E−
ℓ as “stable” even

though vectors in it are not necessarily contracted underDΦ. Their rates of expansion,
however, are bounded above by kλ̄ℓ + 2ε. As we will see, vectors outside of E−

ℓ will
have a strictly larger asymptotic growth rate in a sense to be made precise.

The next proposition is completely analogous to Proposition 4.1, except that it
deals with the construction of “unstable”, rather than “stable”, subbundles. This
means that we need infinitely long backward orbits of Φ. Since Φ is not necessarily
onto, not all points have inverse images, so we restrict to the set of points that do.
In addition, if k > 2, then Φ is not one-to-one, and it is necessary to work with its
natural extension. We recall the basic idea (see [29]).

We first specify the the subset Y ⊂ Y + of points that have at least one infinite
backward orbit, that is, Y =

∩∞
n=0 Φ

n(Y +). It is easy to check that Φ(Y ) = Y and

Φ−1(Y ) = Y . The natural extension of Φ : Y → Y is the dynamical system Φ̂ : Ŷ → Ŷ
where Ŷ is the set of histories of x ∈ Y and Φ̂ is the time shift. More precisely,

Ŷ =
{
x = (. . . , x−1, x0) ; xn ∈ Y and Φ(xn−1) = xn for all n ∈ Z−} (10)

and

Φ̂(. . . , x−1, x0) =
(
. . . , x−1, x0,Φ(x0)

)
. (11)

Then Φ̂ is invertible and there is a natural projection π : Ŷ → Y with π(. . . , x−1, x0) =
x0. For x ∈ Ŷ and n ∈ Z+, we define DΦ̂n(x) : Rd → Rd to be the linear map

DΦ
(
π(Φ̂n−1(x))

)
DΦ

(
π(Φ̂n−2(x))

)
· · ·DΦ

(
π(Φ(x))

)
DΦ

(
π(x)

)
,

and DΦ̂−n(x) : Rd → Rd to be
(
DΦ̂n(Φ̂−n(x))

)−1
.

Proposition 4.2 (Existence of “unstable” subbundles). If ε < k(λ̄ℓ−1 − λ̄ℓ)/4, then
Ŷ × Rd admits a Borel-measurable subbundle E+

ℓ−1 with the following properties:

(i) E+
ℓ−1 is DΦ̂-invariant, that is, DΦ̂(x) · E+

ℓ−1(x) = E+
ℓ−1

(
Φ̂(x)

)
.

(ii) dimE+
ℓ−1(x) = dimV +.

(iii) If w ∈ E+
ℓ−1(x), then

∥∥DΦ̂(x) · w
∥∥∨ > (kλ̄ℓ−1 − 2ε) ∥w∥∨.

The proof is given in Section 4.3. The fiber E+
ℓ−1(x) at x = (. . . , x−2, x−1, x0) ∈ Ŷ

is given by

E+
ℓ−1(x) =

∞∩
n=1

DΦ(x−1) ◦DΦ(x−2) ◦ · · · ◦DΦ(x−n)C
+,

where C+ = { (u, v) ∈ V + ⊕ V − ; ∥u∥ > ∥v∥ } is the positive cone with respect to
the splitting V + ⊕ V −, and we show that C+ is strictly uniformly invariant under
DΦ. As explained earlier, vectors in E+

ℓ−1 are not necessarily expanded under DΦ
(or contracted under backward iterations), only more so than vectors not in this
subbundle.

4.2. Invariant splittings

Abusing notation slightly, we use E−
ℓ to denote also the corresponding stable

subbundle of Ŷ ×Rd. Taking intersections of E+
ℓ and E−

ℓ for different values of ℓ, we
construct in this subsection a set of invariant subbundles; the expansion or contraction
rates of DΦ in each one lie within specified intervals. Our main result is summarized
in Theorem 4.4. First we give a special case. Recall once again the meanings of λ̄i, k
and ε at the beginning of the section.



Coupled Map Networks 13

Proposition 4.3 (Hyperbolic splitting). If there is an ℓ with

kλ̄ℓ + 2ε < 1 < kλ̄ℓ−1 − 2ε, (12)

then Φ̂ : Ŷ → Ŷ is hyperbolic. More precisely, Ŷ × Rd = Eu ⊕ Es where Es = E−
ℓ

and Eu = E+
ℓ−1 are the subbundles given by Propositions 4.1 and 4.2 respectively. As

the notation suggests, vectors in Eu uniformly expand and vectors in Es uniformly
contract under DΦ̂.

This follows directly from the propositions. Note that the inequalities in (12) are
strict, so that (i) the angles between vectors in Eu and Es are uniformly bounded
away from zero (recall that x 7→ E+

ℓ−1(x), E
−
ℓ (x) need not be continuous if Φ is only

piecewise smooth), and (ii) there is some δ0 such that
∥∥DΦ̂(x) · w

∥∥∨ > (1 + δ0) ∥w∥∨

if w ∈ E+
ℓ−1(x), and

∥∥DΦ̂(x) · w
∥∥∨ 6 (1− δ0) ∥w∥∨ if w ∈ E−

ℓ−1(x0), where the norm
here is the same as that of Propositions 4.1 and 4.2, i.e., it is the maximum norm with
respect to V +

ℓ ⊕ V −
ℓ = V + ⊕ V −.

To state the general case, we need some terminology:

Definition. Let A = {a1, a2, . . . , an} be a finite set of real numbers, and assume they
are indexed in decreasing order, i.e. ai > ai+1. Given δ > 0, the δ-bunching of A is
the partition given by

A1 = {ai1 = a1, a2, . . . , ai2−1}, A2 = {ai2 , . . . , ai3−1}, . . . , Am = {aim , . . . , an}
where ai − ai+1 6 δ if ai and ai+1 are in the same Aj , and aij − aij−1 > δ for
j = 2, 3, . . . ,m.

Theorem 4.4. Given C, k and ε > 0, let A1, . . . ,Am be the (4ε/k)-bunching of the
{λ̄i}, and let Φ be as in the setting for this section. Then there exists a DΦ̂-invariant
Borel-measurable decomposition

Ŷ × Rd = L1 ⊕ . . .⊕ Lm (13)

and a constant c > 0 such that for every j ∈ {1, . . . ,m}, n ∈ Z, x ∈ Ŷ and w ∈ Lj(x)
with w ̸= 0, we have

1

c

(
k
¯
σj − 2ε

)n 6
∥∥DΦ̂n(x) · w

∥∥
∥w∥

6 c
(
kσ̄j + 2ε

)n
(14)

where
¯
σj and σ̄j denote, respectively, the smallest and greatest elements of Aj.

The norm used in (14) is the usual Euclidean norm. This theorem also follows
directly from Propositions 4.1 and 4.2. In fact, for x = (. . . , x−1, x0) ∈ Ŷ , the space
Lj(x) is given by E+

ij+1−1(x) ∩ E
−
ij
(x0).

Remarks. Let both the hypotheses and notation be as in Theorem 4.4.

(i) (Dominated splitting) Notice that for any j, 1 6 j < m, if we let L+ =
⊕

i6j Li

and L− =
⊕

i>j Li, then the splitting L+ ⊕ L− satisfies a domination condition

(see e.g. [17], Chapter 4): (i) angles between vectors in L+ and L− are uniformly
separated, and (ii) growth rates of vectors in L+ are strictly higher than those in
L−, since there is a δ0 > 0 such that k

¯
σj − 2ε > kσ̄j+1 + 2ε+ δ0. Notice that we

have used the term here in a slightly more general setting than usual, namely for
maps that are piecewise smooth and not necessary one-to-one.
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(ii) (Partial hyperbolicity) Supposing there exist j, j′, 1 6 j < j′ 6 m, such that
k
¯
σj − 2ε > 1 > kσ̄j′ + 2ε, we let Eu =

⊕
16i6j Li, E

c =
⊕

j<i<j′ Li and
Es =

⊕
i>j′ Li. If Ec = {0}, then Eu ⊕ Es is the uniform hyperbolic splitting

of Proposition 4.3. If Ec ̸= {0}, then we may view Eu ⊕ Ec ⊕ Es as a partially
hyperbolic splitting of Ŷ × Rd (see e.g. [17], Chapter 1). As above, we have used
the term here in a slightly more general setting than usual.

(iii) Finally, we remark that while the subbundles Lj depend on the choice of gi, the
number of factors in the splitting (13) and the bounds in (14) depend only on
C, k and ε.

It is interesting to visualize how the local dynamics of Φ change with ε. For ε = 0,
Φ is piecewise linear, so the subbundles Lj in (13) are simply the eigenspaces of DAC ,
and the rates of expansion or contraction in each Lj are the eigenvalues µ̄j = kλ̄j of
DΦ. This is illustrated in Figure 8(a). When ε > 0, the directions of Lj may vary
from point to point, as may the expansion and contraction rates within each Lj , but
as long as ε is small enough, the splitting in the ε = 0 case persists (Figure 8(b)). As
ε increases, some of the previously invariant subbundles may “coalesce” into higher-
dimensional invariant subbundles, as illustrated in Figures 8(c),(d).

(a)

(b)

(c)

(d)

Figure 8. Illustration of the process by which the invariant sub-bundles Lℓ

“coalesce”. The parameter ε increases from (a) to (d).

4.3. Proofs of propositions 4.1 and 4.2

Suppose once again that the eigenvalues λi of DAC are written in decreasing
order, and let {zi} be a basis of orthonormal eigenvectors, with zi associated to λi.

In this subsection, DΦ, DAC , and DF will denote the matrix representations
of these derivatives with respect to the basis {zi}. A diagonal matrix with entries
ai ∈ R along the diagonal will be represented by diag ai (or, when more precision is
required, by diag {ai ; i = 1, . . . , j}). Hence we have DAC = diag λi, and if we write
DF (x) = kI + εG(x), we have G(x) = O−1diag g′i(xi)O, where O is the orthogonal
matrix whose columns are the zi.

Recall that the positive cone with respect to the splitting V + ⊕ V − (see (9)) is
given by C+ = { (u, v) ∈ V + ⊕ V − ; ∥u∥ > ∥v∥ }, and the negative cone C− is defined
analogously. We also define C+

δ = { (u, v) ∈ V + ⊕ V − ; ∥u∥ > (1 + δ) ∥v∥ } and
C−

δ = { (u, v) ∈ V + ⊕ V − ; (1 + δ) ∥u∥ 6 ∥v∥ }, for δ > 0. Note that projectively, the
distances between C+

δ and ∂C+ and between C−
δ and ∂C− are positive.

Lemma 4.5. If ε < k
(
λ̄ℓ−1 − λ̄ℓ

)
/4, then the positive cone C+ is strictly uniformly

forward invariant and the negative cone C− is strictly uniformly backward invariant



Coupled Map Networks 15

under DΦ, that is, there exist δ1 and δ2 > 0 such that DΦ(x)C+ ⊂ C+
δ1

and(
DΦ(x)

)−1
C− ⊂ C−

δ2
for any x ∈ Td \ S.

Proof. Let n be such that span {z1, . . . , zn} = V + and span {zn+1, . . . , zd} = V −. We
write DAC and G, in block form, as

DAC =

(
A1 0
0 A2

)
and G =

(
G11 G12

G21 G22

)
,

where A1 = diag {λi ; i = 1, . . . , n}, A2 = diag {λi ; i = n + 1, . . . , d}, G11 is n × n,
G12 is n× (d−n), G21 is (d−n)×n and G22 is (d−n)× (d−n). With this notation,

DΦ = DAC ·DF = k

(
A1 0
0 A2

)
+ ε

(
A1G11 A1G12

A2G21 A2G22

)
. (15)

Now let (u, v) ∈ C+ ⊂ V + ⊕ V −. Fixing any x ∈ Td \ S, and letting
(ũ, ṽ) = DΦ(x) · (u, v), we have

∥ũ∥ > λnk ∥u∥ − ε ∥A1∥ · ∥G11∥ · ∥u∥ − ε ∥A1∥ · ∥G12∥ · ∥v∥
> λnk ∥u∥ − 2ε ∥u∥ (16)

and

∥ṽ∥ 6 λn+1k ∥v∥+ ελn+1 ∥G21∥ · ∥u∥+ ελn+1 ∥G22∥ · ∥v∥ (17)

6 λn+1k ∥u∥+ 2ε ∥u∥ . (18)

We have used ∥u∥ > ∥v∥ (that is, (u, v) ∈ C+), ∥A1∥ = 1, ∥A2∥ = λn+1 < 1, and
∥Gij∥ 6 1. This last fact is not hard to prove. By our choice of n, we have λ̄ℓ−1 = λn
and λ̄ℓ = λn+1, so from (16) and (18) we get

∥ũ∥
∥ṽ∥

> λ̄ℓ−1k − 2ε

λ̄ℓk + 2ε
= a > 1, (19)

if ∥u∥ > 0 (otherwise, (u, v) = (0, 0)). At this point we set δ1 = a− 1 > 0.

The assertion that
(
DΦ(x)

)−1
C− ⊂ C−

δ2
for all x ∈ Td \ S follows by similar

arguments, but the computations are slightly trickier. We leave them as an exercise.
(Hints: (DΦ)−1 can be written as (k−1I + ε′H) · (DAC)

−1, where ∥H∥ 6 1 and
ε′ = kε/(k−ε). The value δ2 =

(
k(λ̄ℓ−1−λ̄ℓ)−4ε

)/(
λ̄ℓ−1λ̄ℓ(kλ̄

−1
ℓ−1+ελ

−1
d )

)
works.)

Lemma 4.6. Suppose that ε < k
(
λ̄ℓ−1 − λ̄ℓ

)
/4. The following statements hold

for any x ∈ Td \ S. If w ∈ C+, then ∥DΦ(x) · w∥∨ >
(
kλ̄ℓ−1 − 2ε

)
∥w∥∨. If

w ∈
(
DΦ(x)

)−1
C−, then ∥DΦ(x) · w∥∨ 6

(
kλ̄ℓ + 2ε

)
∥w∥∨.

Proof. Suppose that w = (u, v) ∈ C+, and let (ũ, ṽ) = DΦ(x)·(u, v) as before. We have
∥(u, v)∥∨ = ∥u∥ and since, by lemma 4.5, (ũ, ṽ) ∈ C+, we also have ∥(ũ, ṽ)∥∨ = ∥ũ∥.
Hence inequality (16) (with n is chosen as before) can be rewritten as

∥(ũ, ṽ)∥∨ >
(
kλ̄ℓ−1 − 2ε

)
∥(u, v)∥∨ .

Now suppose that (u, v) ∈
(
DΦ(x)

)−1
C− ⊂ C−, and once again let (ũ, ṽ) =

DΦ(x) · (u, v) ∈ C−. In this case, we have ∥(u, v)∥∨ = ∥v∥ and ∥(ũ, ṽ)∥∨ = ∥ṽ∥.
Inequality (17) still holds, but not (18), which is replaced by

∥(ũ, ṽ)∥∨ = ∥ṽ∥ 6
(
kλ̄ℓ + 2ε

)
∥v∥ =

(
kλ̄ℓ + 2ε

)
∥(u, v)∥∨ .
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Propositions 4.1 and 4.2 follow from the lemmas above and standard arguments
(see, for instance, [21, proposition 6.2.12]).

5. Some topological and measure-theoretic considerations

Section 4 contains the beginning of a hyperbolic theory for cmns of the type
studied in this paper. The relatively simple analysis there, however, does not tell
the whole story. The maps Φ = AC ◦ F are piecewise (partially) hyperbolic and
not necessarily one-to-one; moreover, the discontinuity sets, which are determined by
the coupling graphs, occur in a particular way. This combination of hyperbolic and
discontinuous behavior leads to interesting and nontrivial geometric and dynamical
properties. In a forthcoming article, the first-named author will discuss the ergodic
theory of some of these maps, including the existence of physical measures.

We finish here with a few observations that we hope will give the reader a glimpse
into the range of possibilities these coupled networks are capable of exhibiting. Define
the attracting set of Φ = AC ◦ F to be the set

Λ =

∞∩
n=0

Φn
(
Td \

∪n−1
i=0 Φ−i(S)

)
where S = F−1

(
P (C)

)
is the singularity set for Φ, Td \

∪n−1
i=0 Φ−i(S) is the set on

which Φn is defined, and the bar over the expression means closure. It follows from
its definition that Λ is closed, Φ(Λ) = Λ, and for all x ∈ Td for which Φnx is defined
for all n > 0, Φnx→ Λ as n→ ∞.

5.1. Measure and topology of Λ: easy observations

For definiteness, consider here local maps of the form fi(x) = kx + εgi(x) +
bi mod 1. As in Section 4, we assume ε is small enough that they are local
diffeomorphisms.

Proposition 5.1. Let AC be a coupling map and Φ = AC ◦ F .

(a) If k is large enough (depending on C), then Λ = AC

(
Td \ P (C)

)
. In particular,

Λ is the closure of its interior and has positive Lebesgue measure.

(b) If, on the other hand, |detDΦ(x)| < 1 for all x ∈ X, then Λ is nowhere dense
and has Lebesgue measure zero.

We may think of (a) as the case where the expansion is strong and coupling weak,
while (b) corresponds to stronger coupling and not as strong expansion.

Proof. Since AC

(
Td \ P (C)

)
is an open set, F

(
AC

(
Td \ P (C)

))
= Td if k is large

enough. This proves (a). We leave the rest as an easy exercise.

5.2. Connectedness of Λ

In the regime of Proposition 5.1(a), Λ is the closure of AC

(
Td \P (C)

)
. We focus

next on the connectedness of this set. Notice that AC

(
Td \P (C)

)
is connected if and

only if its closure is.

Proposition 5.2. Let AC be a coupling map and G its associated coupling graph.

(a) If G is a tree, then AC

(
Td \ P (C)

)
is connected.
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(b) If G contains a 3-cycle, then AC

(
Td \ P (C)

)
is not connected.

Proof. Since AC is a homeomorphism onto its image, AC

(
Td \ P (C)

)
is connected if

and only if Td \ P (C) is connected, so we consider the latter. For the length of this
proof, we consider S1 as the unit circle in C, so that x and −x ∈ S1 are antipodal.

(a) It suffices to show that given any point x ∈ Td \ P (C), there is a continuous
path in Td \ P (C) that starts at x and ends at a point in the diagonal ∆ of Td. This
implies immediately the assertion in (a) since ∆ is connected and ∆ ⊂ Td \ P (C).
These paths are constructed by induction on the vertices of G:

To start, pick a leaf, i.e., a vertex of valence 1, of G (see e.g. [15]). We call it i, and
let xi be be corresponding coordinate of x. Suppose i is adjacent in G to the vertex
j. We move xi in S1 continuously along the shortest path to xj until xi = xj . Such a
path remains in Td \ P (C) because no condition other than xi ̸= −xj is imposed on
xi. From this point on, xi and xj will always move together, so we may consider the
graph obtained from G by deleting the vertex i and the edge (i, j). We replace the
label “j” of vertex j with (j, {i, j}).

In general, let G′ be the graph obtained from previous steps. We choose a leaf
of G′, and suppose it is labeled as (i, I), where I = {i1, . . . , im}. Suppose also that
the adjacent vertex in G′ is (j, J), where J = {j1, . . . , jn}. We move the vertices in
I in tandem along the shortest path to xj . Once again the reader should check that
such a path is legal. The graph G′ is updated by deleting the leaf (i, I) and replacing
(j, J) with (j, I ∪J). Since G is finite, the process ends when G′ is reduced to a single
vertex, at which point all the coordinates of x are equal.

(b) We leave it to the reader to check that it suffices to prove the assertion for a
system whose coupling graph is a 3-cycle: If T3 \P (C) is disconnected for this system,
then any larger coupling graph with a 3-cycle embedded in it will automatically lead
to a disconnected Td \ P (C).

Let x1, x2, and x3 be the coordinates of x ∈ T3 \ P (C). For each location of
x1, x2 can be anywhere in S1 except for −x1, and for each admissible configuration
of (x1, x2), x3 can be anywhere other than −x1 and −x2. These two points partition
the set of possible locations for x3 into two disjoint arcs: the one containing x1 and
x2 and the one that does not. In Figure 9, x3 is in the latter. We move the 3 points
continuously along S1 keeping all configurations admissible, and try to maneuver x3
to the other component of S1 \ {−x1,−x2}. Using coordinates relative to x1, we may
assume x1 is fixed at 0 (as shown). We see that x2 is now confined to the upper
half-circle: it cannot cross −x1, and cannot cross x1 either because that would force
x3 onto −x1. With x2 locked in this half-circle, x3 cannot move out of its initial
component of S1 \ {−x1,−x2}, proving that T3 \ P (C) is not path connected, hence
not connected.

x1−x1

x2

−x2

x3

Figure 9. There is no admissible way to maneuver x3 out of its component of
S1 \ {−x1,−x2}, proving that T3 \ P (C) is disconnected.
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Thus in the situation of Proposition 5.1(a), for example, the attracting set Λ is
disconnected. Notice that Λ becomes disconnected as soon as the coupling constants
become positive, no matter how small, while for the uncoupled map, Λ = Td.

5.3. Decomposability of dynamics on Λ: an example

Disconnectedness of the attracting set does not in general imply decomposability
of the dynamics, but that can happen as well. We present here an example in the
strong coupling regime in which (i) Λ is disconnected, and (ii) the dynamics of Φ on
Λ are not topologically transitive.

In this example, the local maps are f(x) = 2x mod 1, the coupling graph is a
triangle, and the coupling strengths are all equal to some α ∈

(
1
4 ,

1
3

)
(the upper bound

on α is from Section 3.2.1; the lower bound can be relaxed and is chosen to simplify
the argument; see later). Thus Φ is piecewise linear, and by our choice of α, DΦ has
a two-dimensional contracting (stable) subspace. As observed in Section 3.2.1, the
diagonal ∆ = {x1 = x2 = x3} ⊂ T3 is an invariant set on which Φ is expanding. Since
every point on it has a 2-dimensional stable subspace, it follows immediately that ∆
attracts all points in an open neighborhood. The attracting set Λ, however, is strictly
larger than ∆. Figure 10 shows two other points, x = (x1, x2, x3) = (0, 1/3,−1/3)
and x′ = (0,−1/3, 1/3), in Λ: Here F (x) = x′ and F (x′) = x, and AC leaves both
points fixed. We will show that configurations of this type are also stable in a sense
to be made precise.

x1 = x′1

x2 = x′3

x3 = x′2

Figure 10. Examples of off-diagonal points in Λ.

The dynamical picture vis a vis the attracting set can be summarized as follows:

Proposition 5.3. In the example above,

(a) Λ is the union of three disjoint circles ∆, Ξ1 and Ξ2, where ∆ is the diagonal and
Ξ1 and Ξ2 are symmetrically placed with respect to ∆ and parallel to it;

(b) Φ(∆) = ∆, Φ(Ξ1) = Ξ2, and Φ(Ξ2) = Ξ1; Φ maps each circle as a degree 2
covering onto its image;

(c) every point in Td \ ∪n>0Φ
−n(S) is attracted to either ∆ or Ξ1 ∪ Ξ2; the basin of

each of these two attractors includes an open neighborhood of the attractor.

Proof. Our plan of proof is as follows: We will introduce new coordinates on T3\P (C)
with respect to which both AC and F are product maps on a space D × S1 where D
is a subset of a plane, S1 has length

√
3 (a benign abuse of notation) and the fiber

maps Φ on S1 are degree 2 coverings. The problem is then reduced to studying how
these maps act on the base D. We will show that on D, the forward limit set consists
of exactly three points, corresponding to the three circles in the proposition.

Let P ⊂ R3 be the plane through the origin orthogonal to (1, 1, 1)T , and let D be
the open subset of P with three connected components D0, D1, D2, each of which being



Coupled Map Networks 19

the interior (in P) of the convex hull of the set of vectors shown (see Figures 11(b)

and 12(a)). Here a =
(
1
2 ,−

1
2 , 0

)T
, b =

(
− 1

6 ,−
1
6 ,

1
3

)T
, c = (a+ b)/2 and d = (a− b)/2.

We now introduce a mapping ψ : D × S1 → T3 \ P (C) that will be the coordinate
change in the first paragraph.

Claim. Denoting coordinates on D × S1 by (x̃, ρ) and letting ( · )i be the i-th
(Cartesian) coordinate in R3, we let ψ : D × S1 → T3 \ P (C) be the mapping given by(

ψ(x̃, ρ)
)
i
=

(
x̃+ 1√

3
ρ · (1, 1, 1)T

)
i

mod 1.

Then ψ is a volume-preserving bijection.

Rather than giving a formal proof, it is more interesting to show how T3 \ P (C)
can be broken up and “reassembled” into D × S1. The set T3 \ P (C) is illustrated in
Figure 11(a), where the shaded planes represent P (C), and the thick line represents
the diagonal connecting the origin to (1, 1, 1)T . The unit cube representing T3 is
broken up along P (C) and reassembled (respecting the identifications on the faces
of the cube) into a intermediate object resembling the solid in Figure 11(b) but
with a jagged top and bottom. If we take each line segment parallel to (1, 1, 1)T

in this intermediate object and rigidly slide it in the direction parallel to (1, 1, 1)T

until its lower end touches P, we get Figure 11(b) exactly. These translations
leave T3 \ P (C) invariant, since the line segments correspond to circles inside T3

that do not intersect P (C). (To see step-by-step illustrations of this process, see
www.impa.br/~koiller/reassembly.html.) A quick check shows that the area of D
is

√
3/3 and |detDψ| = 1, so D × S1 has the correct volume.

a′
a′′

b′

b′′

c′

c′′d′

d′′q
q

q
q q

q
q

q

a −a

b

−b

c

−cd

−d

P

D0D1 D2

(a) (b)

Figure 11. Two representations of the set T3 \P (C) in R3. The points x′ in (a)
are projected orthogonally to the points x ∈ P in (b), while the x′′ are projected
to −x.

The (x̃, ρ) coordinates can be understood intuitively as follows. Let D × S1 be
identified with a subset of R3 in the canonical way, i.e., D × {0} is identified with
D ⊂ P, and S1-fibers are orthogonal to P. The resulting subset of R3 as shown in
Figure 11(b) is a representation of T3 \P (C). With D× S1 seen in this way, the map
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π : D × S1 → D, π(x̃, ρ) = x̃, is the projection onto D ⊂ P along S1-fibers. Notice that
the boundary ∂D would have been the image of P (C) under this projection except
that this set is not in D. It is important to note that for x ∈ P (C), the S1-fiber
through x lies entirely in P (C).

We leave it to the reader to check that both ψ−1◦AC ◦ψ and ψ−1◦F ◦ψ (wherever
it is defined) preserve the S1-fibers in D× S1, and that the fiber maps are degree two
coverings as claimed. Let Φ̃, ÃC and F̃ be the induced maps on D, defined on their
respective domains. It remains to study the limit set of Φ̃ = ÃC ◦ F̃ . As we will see,
it is simpler to look at iterations of F̃ ◦ ÃC rather than ÃC ◦ F̃ . We will show that
F̃ ◦ ÃC is a contraction taking D into itself, its successive images converging to three
points. That Φ̃n(D) will converge to the same 3 points then follows easily.

Leaving out (straightforward) computational details, we claim that ÃC is a
piecewise linear contracting map that sends each Di into itself, contracting equally
in all directions by 2 − 6α (see Section 3.2.1). Moreover, it leaves the centers of
each Di, denoted ξi, fixed. See Figure 12(a,b). Now F̃ expands all directions by
2, but our lower bound on α was chosen so that ÃC is sufficiently contracting that
F̃
(
ÃC(D)

)
⊂ D. Denoting D′

i = ÃC(Di), we have F̃ (D′
0) ⊂ D0, F̃ (D′

1) ⊂ D2 and

F̃ (D′
2) ⊂ D1. Moreover, F̃ (ξ0) = ξ0, F̃ (ξ1) = ξ2 and F̃ (ξ2) = ξ1. See Figure 12(b,c).

The map Θ̃ = F̃ ◦ ÃC , which is overall piecewise contracting, is seen by going from (a)
to (c) in Figure 12. It is now clear that the attracting set for Θ̃ consists of the points
ξi, i = 0, 1, 2.

(a)

(c)

(b)

a −a

b

−b

c

d

−d

−c

D0D1 D2

ξ0ξ1 ξ2

↘ÃC

↙
F̃

Figure 12. Each Di is contracted and mapped into itself under ÃC . Call the
images D′

i. Under F̃ , D′
1 is expanded and moved rigidly from D1 to D2; similarly,

D′
2 is expanded and moved from D2 to D1. (The figures are not to scale.)

The assertions in Proposition 5.3 are obtained by interpreting the results above
back to T3.
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