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Abstract. Three directions of research are proposed. The first two concern

the creation, detection and calibration of chaos in (1) high or infinite dimen-

sional systems and (2) stochastically perturbed systems. It is suggested that

existing ideas from parts of (finite dimensional) hyperbolic theory be extended

to these settings. The third topic has a statistical mechanics flavor. A better

understanding of nonequilibrium steady states of chaotic Hamiltonian models

is sought.

In this paper, I will discuss three directions – general directions rather than specific
problems – that I believe are relevant and important. I have hinted at these directions
in the title; let me elaborate a little more here. Our focus throughout will be on
complex dynamical phenomena, including mechanisms for producing chaos, statistics
of relevant observations, and significant changes in dynamical landscapes. We seek
both a theoretical understanding and ways to connect mathematical ideas to concrete
models. By “large” systems, I have in mind high and possibly infinite-dimensional
systems; “noisy” systems are processes governed by rules with stochastic as well as
deterministic components; and by systems that are “out of equilibrium”, I have in
mind systems that are driven out of their natural states, possibly by being put in
contact with larger sources (or “heat baths”).

These directions are far from novel; related articles have occupied many pages of
Nonlinearity. But with hyperbolic theory reaching maturity, there is all the more
reason for renewed interest. Hyperbolic dynamics is the part of dynamical systems
that studies chaotic behavior primarily in finite dimensions. The subject took off
with a very successful axiomatic approach (Smale’s Axiom A) in the 1960s, and has
undergone a great deal of expansion and generalization some of which I will discuss.
Over the years, quite sophisticated techniques have been developed and beautiful
results obtained, yet the research topics of large, random, and out-of-equilibrium
systems have remained wide open. To be sure, chaotic phenomena in these settings
have a different flavor and will require different approaches. I challenge here experts
in hyperbolic theory and other dynamicists to apply their knowledge – and to acquire
whatever additional skills that may be needed – to explore this less charted terrain.

In the pages to follow, I will discuss in more detail the types of systems and
questions I have in mind. Since these are vast topics, I can only illustrate through
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examples, and it is inevitable that I will draw from my own experience. Yet through
these examples, I hope the challenge will be made clear.

1 Chaotic Behavior in Large Dynamical Systems

To illustrate what I mean by “large” dynamical systems, I will describe separately
two classes of examples before proceeding to a discussion of how existing hyperbolic
theory may serve as a guide for future work.

A. Infinite dimensional systems defined by evolutionary PDEs

Setting. Consider, for definiteness, a dissipative evolutionary partial differential
equation with specified boundary conditions. Under suitable conditions, such an
equation leads to a well defined dynamical system defined by

du(t)

dt
= F (u(t)), u(t) ∈ H ,

where H is a Hilbert space of functions on Ω ⊂ R
d, the domain in which the physical

phenomenon occurs, and u(t) describes the state of the system at time t. To use
dynamical systems methods, one needs to track simultaneously the evolution of large
sets of solutions (as opposed to focusing on one solution at a time), so the semi-group
point of view is useful, i.e., we consider S(t), t > 0, where t 7→ u(t) = S(t)(u0) is
the solution with u(0) = u0. It is usually necessary to restrict to smaller subspaces
X ⊂ H to obtain the needed regularity properties for S(t).

Some known results.2 For many dissipative systems in physics and mechanics, the
existence of absorbing sets and compact global attractors have been shown. These
results imply that the dynamics of interest are captured on relatively small sets; see
e.g. [BV,H,T]. Basic tools of analysis such as center and stable manifolds have also
been developed for infinite dimensional systems.

These and many other works are concerned primarily with upper bounds on the
complexity of the system, which are important given the infinite dimensionality, but
they do not provide a great deal of information on the structures of the attracting
sets or the type of dynamics, such as whether or not they are chaotic.3 A number of
other results in the literature prove the presence of complicated behavior in various
PDEs as manifested in the existence of horseshoes and homoclinic solutions (which
suggest chaos); see e.g. [HM, LMSW]. In a recent work, my co-authors and I proved
a stronger form of chaos characterized by the existence of “strange attractors” with

2Here as elsewhere in the paper, I need to mention some known facts to lead up to the discussion
of proposed directions. I want to stress that the references given are not intended to be a complete

or unbiased account of what is known.
3“Chaos” in this paper refers exclusively to chaos in the time evolution of the system; it is not

to be confused with spatial chaos.

2



positive Lyapunov exponents “almost everywhere” in open sets of initial conditions.
The setting is that of periodic kicking of a system shortly after it undergoes a Hopf
bifurcation [LWY]. This result is not specific to any PDE; it is about a dynamical
phenomenon that can occur in any dimension, including infinite dimensions.

B. Composite systems via coupling of many small constituent systems

I have in mind here a loosely defined class of dynamical systems which I will not
try to make precise but will instead illustrate via three examples.

Coupled maps systems. These systems are discrete-time analogs of reaction-diffusion
processes. A typical setup is

xi(n + 1) = (1 − ε)f(xi(n)) +
ε

2
(f(xi−1(n)) + f(xi+1(n)))

where i ∈ Z denotes the site, n = 0, 1, 2, · · · is discrete time, xi(n) takes values in
R

d, f : R
d → R

d defines the local dynamics, and ε is the coupling constant. For
a summary of the state of the art as of 2005, see [CF]. When f has well controlled
chaotic properties, (e.g., it is expanding, piecewise expanding or hyperbolic), and ε is
small, it has been well documented that these properties are inherited by the coupled
dynamical system. Other situations have been studied, but to my knowledge there is
not yet a systematic understanding. Some obvious generalizations are: replacing the
lattice Z by more general graphs or networks, finite or infinite, and variable coupling
strengths, including those in intermediate ranges (see e.g. [K]). These setups can lead
to a great variety of behaviors. Local maps that support more than one type of
behavior provide candidates for phase transitions in the coupled systems.

Particle dynamics on lattices. I have in mind here extended phase spaces such
as those with lattice structures and moving particles whose dynamics are defined
by microscopic rules. These models appear naturally in statistical mechanics (see
Sect. 3). They are dynamical versions of particle systems in probability, which have a
similar setup but often without the internal degrees of freedom at each site. Examples
of results in this direction are [CD, KY, Le].

Networks of coupled oscillators. These systems appear naturally as paradigms or
simplified models in the physical and biological sciences. In Neuroscience, for exam-
ple, intrinsically active neurons are sometimes modeled as oscillators. As a neuron
“spikes”, it sends a signal to other neurons “downstream”, possibly modifying the
phase or behavior of the receiving neurons (see e.g. [GK]). These networks are usu-
ally finite in size, but can be very large. Not surprisingly, much attention has been
paid to simpler types of behaviors such as synchronization, while more complex dy-
namical behaviors are known to occur but not as well recognized. Viewed as models
of specific situations, the interpretation (and relevance) of chaotic phenomena will
depend on scientific context, but these systems are so ubiquitous that I believe they
are excellent training models.
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Relevant facts from hyperbolic theory

In low dimensional systems, it is generally accepted that chaos is created via
stretch-and-fold mechanisms. Does this continue to hold in higher dimensions? I will
discuss below different types of chaos, and give a brief summary of those parts of
hyperbolic theory that may be relevant for tackling problems in high dimensions.

1. Invariant cones. The simplest way to guarantee hyperbolicity is a priori knowl-
edge of invariant cones. This method of proof has been used very successfully in
geodesic flows on manifolds of negative curvature, billiards, hard balls etc. In the
examples above, invariant cones are defined everywhere. When they are available on
only part of the phase space, they can often still be used to prove hyperbolicity on
some invariant sets, such as horseshoes. Global invariant cones are used in proving
the existence of inertial manifolds in infinite dimensions.

2. Horseshoes. The existence of complex behavior is often symbolized by the
presence of horseshoes. Having horseshoes is a geometric condition that can be proved
by identifying directly the set that folds on itself. At other times it is proved via the
existence of transversal homoclinic points, which, in finite dimensions is well known
to imply the presence of horseshoes. In infinite dimensions, more care is needed due
to complications caused by the noninvertbility of the map.

While they symbolize the existence of complex behavior, it should be pointed out
that the presence of horseshoes in itself does not imply that “most” orbits are chaotic,
or that any observed chaos will persist. It is entirely possible for horseshoes and sinks
(or stable equilibria) to coexist. When that happens, we say the system has transient

chaos: Starting from an initial condition near a horseshoe, the trajectory is likely to
appear chaotic for some time as it follows the chaotic dynamics on the horseshoe.
But since only a very small set of points are actually attracted to the horseshoe, a
randomly chosen orbit is likely to leave the vicinity of the horseshoe after some time.
In the case of transient chaos, it is eventually attracted to a sink.

3. Strange attractors and SRB measures. In finite dimensions, positive
Lebesgue measure sets are often equated with observable events. With this interpreta-
tion, a form of chaos that is both observable and sustained in time (i.e., not transient)
is guaranteed by having positive Lyapunov exponents for a positive Lebesgue measure
set of initial conditions. This can happen for volume-preserving systems as well as
dissipative ones. In the latter, there is an attractor, and the orbits in question lie in
its basin of attraction. As a shorthand, I will refer to such a dynamical picture as a
strange attractor. The only known way to establish the presence of strange attractors
is to show that the system admits a special invariant measure called an SRB mea-

sure (see [Y] for more information). All this, however, relies heavily on the role of
Lebesgue measure, leaving the situation in infinite dimensions unclear. In a recent
work [LWY], my co-authors and I explained why SRB measures are likely to retain
their important role for large classes of dissipative parabolic PDEs.
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4. Center manifolds. I wonder if they can be exploited more effectively in situations
that are finite dimensional in character – such as in systems defined by parabolic PDEs
– even where no global center manifolds exist.

5. High vs low dimensional chaos. I refer here to the number of degrees of freedom
involved in the creation of chaos, or the number of positive Lyapunov exponents.
First, observe that if one equates chaos with unpredictability, i.e., entropy, then in
infinite dimensional systems, hyperbolicity is not a prerequisite for chaos. With regard
to detecting hyperbolicity, except where invariant cones are present, little is known
about high dimensional chaos. At the other end of the spectrum, there has been some
success in rank one chaos, i.e., the study of strange attractors with a single direction
of instability [WY]. These attractors are as simple as strange attractors can be; they
occur near the “boundary” of chaos, soon after stability is lost. At the present time,
we are more equipped to deal with low dimensional chaos, which occurs naturally as
we have discussed.

2 Chaos in Random Dynamical Systems

A second direction in which I would like to see more progress is chaotic phenomena in
random dynamical systems, by which I include general stochastically driven systems
as well as deterministic systems perturbed by small amounts of random noise modeling
uncontrolled fluctuations. My reasons for focusing on these systems are that (1) they
occur naturally, and (2) random systems are better behaved than purely deterministic
systems, as we will explain.

The formal mathematical framework I have in mind is that of compositions of
i.i.d. sequences of smooth maps. More precisely, one fixes a probability measure ν

on M(X), the space of maps from a manifold X to itself, and consider the dynamics
generated by compositions of the form

f (n) = fn ◦ · · · ◦ f2 ◦ f1, n = 1, 2, · · · ,

where f1, f2, · · · are chosen independently with respect to ν. For brevity, we will refer
to this setup as random maps. We are especially interested in the case where the fi

are smooth.
Random maps arise naturally. In the discrete-time case, given a map f : X → X,

one often represents a random perturbation of f as a Markov chain whose transition
probabilities are given by P (A|x) = Qf(x)(A) where {Qx, x ∈ X} is a family of
probability distributions on X with Qx concentrated near x. Not all Markov chains
of this type can be represented as random smooth maps, but in many situations, such
representations are feasible. Sometimes all the fi can be taken close to f in some Cr

topology. In the case of continuous time, it is well known that an SDE of the form

dxt = a(xt)dt +

n∑

i=i

bi(t) ◦ dW i
t
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gives rise to a stochastic flow of diffeomorphisms. Here a(·) and b(·) are smooth enough
vector fields, W 1

t , · · · , W n
t is a standard Brownian motion, and the Stratonovich in-

tegral is assumed.
By chaos in random maps, I refer to pathwise chaos, that is to say, chaotic be-

havior that arise by following individual sample paths. When the fi are smooth,
Lyapunov exponents {λi} for the random system are well defined and are nonran-
dom, i.e., corresponding to each ergodic stationary measure, the system is described
by a finite set of numbers. The following dichotomy tells us that the dynamical pic-
ture corresponding to positive and negative Lyapunov exponents are very different:
Letting ω = {fi}

∞

i=∞
, we may disintegrate any stationary measure µ into a fam-

ily of sample measures {µω} defined by conditioning on the past. That is to say,
µω = limn→∞(f−1 ◦ f−2 ◦ · · · ◦ f−n)∗µ. Omitting technical conditions, we state the
following theorem:

Theorem Assume µ is ergodic with Lyapunov exponents {λi}. Then almost surely:

(1) [LeJ] If λi < 0 for all i, then µω is supported on a finite set of points.

(2) [LeY] If µ has a density, and λi > 0 for some i, then the µω are random SRB

measures, i.e., they have smooth conditional densities on unstable manifolds.

These two results together tell us that except when the largest λi is equal to 0, the
system is either highly nonchaotic, with all solutions coalescing into a random sink, or
it has a random strange attractor. This clear dichomoty, together with the fact that
Lyapunov exponents vary continuously under mild conditions, is to be contrasted with
iterations of single maps, where the dynamical picture can vary in a very complicated
way with parameters. As an example, consider the logistic family fa(x) = 1−ax2, x ∈
[−1, 1]. In this much studied example, sinks occur for an open and dense set of
parameters, while for a positive measure set a, fa has a positive Lyapunov exponent;
see [Ly]. For another example of what I meant by the world of randomly perturbed
dynamics being nicer, see [LiY].

Yet in spite of these properties of random maps, few techniques are available for
proving the positivity of Lyapunov exponents. In the purely deterministic case, what
lies behind the difficulty in proving the positivity of Lyapunov exponents is the fact
that norms of matrices are submultiplicative. That is to say, if each of A1, A2, · · · , An

is hyperbolic, it does not imply that their product is hyperbolic. This is because
directions that have been expanded by one linear map may be contracted by another,
and vice versa. In other words, even when one is able to prove exponential growth for
individual segments of an orbit, there is no guarantee that when concatenated, the
orbit will have a positive Lyapunov exponent. This problem is present for random
maps as for iterations of single maps, but one would expect that randomness in the
directions of tangent vectors will make certain averaging arguments possible.

To develop basic techniques, it is probably necessary to begin with specific exam-
ples that are “quite obvious” (but for which no proofs exist at present). An eventual
goal is to show that if the geometry of a random map suggests that it may have a
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positive Lyapunov exponent, then it actually does. That is to say, if a system has
expansions on a large enough portion of its phase space and the randomness is strong
enough to overcome conspiracies to form sinks (through the “wrong” combination of
expansion and contraction described in the last paragraph), then positive Lyapunov
exponents are guaranteed. This type of results ought to be true.

3 Nonequlibrium Dynamics

Many of the ideas in this section are borrowed from nonequilibrium statistical me-
chanics. Attempts to explain heat conduction, for example, has led to interesting and
challenging problems in dynamical systems. Because of their wide range of applica-
bility, I propose to study these questions in broader contexts, to view them as generic
problems in dynamical systems with motivations from physics.

Consider a system defined by a map, a flow, or a stochastic process on a phase
space X, with no interaction with “the outside”. I call this a closed system, or a system
in isolation. Much of dynamical systems theory as it exists today is concerned with
the study of closed systems. By contrast, an open system is one that has contact with
some other systems external to the one in question. This contact permits exchanges
of various kinds. In physics, they are usually in the form of matter (mass), energy or
momentum. In a general study, one may think of it as some abstract quantity that
may enter or leave the system in question. The external systems can take on various
forms. It can, for example, be another system of a similar type. An often-encountered
situation is when the system in question is in contact with a much larger system, one
that is infinite, or large enough that it is not affected by the exchanges that take
place. I will refer to these large (insensitive) systems as heat baths.

Let us assume, for present purposes, that when a system is left alone, it relaxes to
a “natural state”. We then say a system is out of equilibrium when it is not in one of
its natural states. This can be arranged, for example, by putting it in contact with
multiple heat baths at different “temperatures”. Steady states reached under such
circumstances are called nonequilibrium steady states (NESS). The simplest example
is a rod the two ends of which are maintained at two different temperatures. As
in statistical mechanics, the challenges are to determine the properties of NESS for
systems that are out of equilibrium, and to explain macroscopic observations in terms
of the microscopic rules that define the system. It is not that transient behavior is
uninteresting; on the contrary, the routes to NESS are known to be complex and rich.
But in this brief discussion, let us focus only on NESS. We will assume the system is
large enough that one may think in terms of infinite-volume limits. This is roughly
what I mean by nonequilibrium dynamics.

I think it is useful to have a concrete example to which I can point – even though
the ideas I want to discuss are general and not at all specific to this example.

Example. The following is a toy model of particle and energy transport through
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a one-dimensional chain brought on by unequal boundary conditions. The physical
domain of this Hamiltonian system is a linear array of N identical “cells”. The energy
level in each cell is symbolically represented by the kinetic energy of a rotating disk.
Particles enter and leave the chain from the two ends. As they move about in the chain
bouncing off the walls of the cells, the particles do not interact with each other, but
exchange energy with the rotating disks as they collide (by e.g., swapping tangential
components of their momenta). The system is determined by (i) the rates at which
particles are injected at the two ends, and (ii) the kinetic energy distributions of the
injected particles. Systems along these lines were studied in [EY, LLM].

As noted at the beginning of this section, the discussion to follow is based on ideas
that are far from my own, although I will give them a bit of a dynamical slant. I will
assume throughout that the system in question is out of equilibrium. In the example
above, this means boundary conditions are fixed in such a way that (i) and (ii) are
unequal at the two ends. For example, the particles that enter from the right may
be “hotter”, and there is a flow of energy from right to left. For mathematicians, the
first questions are those of existence and uniqueness of NESS.

Next we identify the macroscopic quantities of interest. In the example above,
this may be particle density or the profile of mean energies (as stored in the rotating
disks). To get a handle on these quantities, it is necessary to understand the local
picture, for it is the microdynamics that determine the invariant measure. Consider
then a small piece of physical space located in the interior of the domain. Even when
boundary conditions are unequal, gradients should be nearly zero inside a tiny area, so
it may not be unreasonable to think of the system restricted to this tiny area as being
“in equilibrium”. But what is the nature of this equilibrium? In our example, this
amounts to picking a finite number of contiguous cells, located, say, a third of the way
from the left end of the chain, and asking about the marginal of the invariant measure.
Clearly, what goes on inside this subsystem is determined by what is injected into it,
so the answer is determined by the energy and particle fluxes through the one-third
point of the (long) chain given its boundary conditions..... There is a host of related
questions, such as correlations, large deviations, and so on.

Different types of dynamical interactions are likely to lead to different answers.
In our example, if we neglect (for a moment) the interaction between particles and
disks, then the problem is reduced to that of a billiard flow in a single cell, and we
know from billiard theory that the shapes of the cells play a crucial role: for example,
if the walls of the cells are concave (or scattering), then the movement of a particle
along the chain, when properly scaled, will tend to Brownian motion [BSC], while
certain polygonal walls can lead to anomalous diffusion. Now the energy exchange
between particles and disks cannot be neglected; that would be simplifying away the
most crucial ingredient of the system. It is easy to see that properties of the invariant
measure will depend strongly on the nature of this interaction. The more ”chaotic” it
is, the more the evolution of the energy will mimick a random process, and there has
been some success in the treatment of stochastic models of this type (see e.g. [KMP,
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KL]). Closing the gap between deterministic and stochastic dynamics is too much to
hope for. Still, I believe some headway can be made for dynamical models, although
one should perhaps aim for rougher and more partial qualitative results.

To summarize, in the first two sections, I was looking for mechanisms for producing
chaos and ways to detect it. Here I am trying to leverage what we know about chaotic
systems to shed light on nonequilibrium dynamics.

Remarks on Methodology

I strongly advocate the combined use of analysis and simulations to gain insight into
the types of dynamical systems discussed in this article, especially those discussed in
Sects. 1 and 3. When the degree of complexity of a system is sufficiently high, it is
natural to turn to numerics for exploratory purposes. But what I have in mind for the
role of numerical computation goes beyond that. There will be many exceptions to the
view I am about to express, but it seems to me that for these vastly complex systems,
while analytic methods alone can give results that are general and theoretical – and
such results are absolutely vital – it is hard to obtain a concrete, more “quantitative”
kind of understanding without the aid of simulations. I am, therefore, in favor of
multiple routes of attack using a range of methods from pure analysis to simulations,
with the gains from one used to the benefit of the others.

References

[BV] A.V. Babin and M.I. Vishik. Attractors of Evolution Equations, North-Holland, Am-
sterdam, (1992).

[BSC] L. Bunimovich, Ya.G. Sinai, and N. Chernov, Statistical properties of two-

dimensional hyperbolic billiards, Russ. Math. Surv. 46 (1991), 47106.

[CF] Dynamics of Coupled Map Lattices and or related specially extended systems, Ed. J.-R.
Chazottes and B. Fernandez, Lecture Notes in Physics 671, Springer-Verlag (2005).

[CD] N. Chernov and D. Dolgopyat, Galton board: limit theorems and recurrence, 2007
preprint.

[EY] J.-P. Eckmann and L.-S. Young, Nonequilibrium energy profiles for a class of 1-D

models, Comm. Math. Phys. 262 (2006), 237–267.

[GK] W. Gerstner and W. Kistler, Spiking Neuron Models, Cambridge Univ. Press (2002)

[H] J. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Mono-
graphs, 25. American Mathematical Society, Providence, RI (1988).

[HM] P. Holmes and J. Marsden. A partial differential equation with infinitely many periodic

orbits: chaotic oscillations of a forced beam, Arch. Rat. Mech. Anal., 76 (1981), 135-166.

9



[KY] E. Kobre and L.-S. Young, Extended systems with deterministic local dynamics and

random jumps, Commun. Math. Phys. 275, no.3 (2007), 709-720.

[K] J. Koiller, Ph.D. thesis, Courant Institute of Math. Sc., New York Univ., (2008).

[KL] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Berlin:
Springer-Verlag (1999)

[KMP] C. Kipnis, C. Marchioro, and E. Presutti, Heat flow in an exactly solvable model, J.
Stat. Phys., 27 (1982), 65–74

[LLM] H. Larralde, F. Leyvraz, and C. Mej́ıa-Monasterio, Transport properties of a modified

Lorentz gas, J. Stat. Phys. 113 (2003), 197–231.
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