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0. Introduction.
We study maps T, 5 : R* — R? defined by

T.p(z,y) = (1 —az* +y,br), 0<a<2 b>0.

In [BC2] it was proved that for a positive measure set of parameters (a,b), T, has a
topologically transitive attractor A = A, on which there is some hyperbolic behavior.
The aim of this paper is to study the statistical properties of these attractors. Using the
machinery developed in [BC2] we prove the following

THEOREM. There is a set A C R?* with Leb(A) > 0 such that for all (a,b) € A, T =T,
admits a unique SBR measure \*. Moreover, supp (A\*) = A and (T, \*) is Bernoulli.

A T-invariant Borel probability measure y is called a Sinai-Bowen-Ruelle (SBR) measure
if there is a positive Lyaponov exponent p-a.e. and the conditional measures of p on
unstable manifolds are absolutely continuous with respect to the Riemannian measure
induced on these manifolds. (A more precise definition is given in Section 3.4.1.) This
notion is due to Sinai [S1], [S2]. See also [LS]. The significance of these measures is
evident in the following corollary.

COROLLARY. For(a,b) € A, T =T, 3 has the following property: Let U be a neighborhood

of A. Then there is aset U C U with positive Lebesgue measure such that for all continuous
functions ¢ : U — R,
n—1
1 .
- g poT'(x) — /c,od/\*
n
=0

for every x € U.

This corollary follows from our theorem and general nonuniform hyperbolic theory (see
[PS,Thm.1] or Section 4.1.2). The property expressed in this corollary is often assumed
to be true in physics; it is also taken for granted in numerical experiments. In the case of
Axiom A attractors, mathematical justification of this property is provided by the theory
of Sinai, Bowen and Ruelle (see e.g. [B], [Rul] and [S2]). It has been conjectured that
many other attractors admit SBR measures, but as far as we know, the Hénon family and
similar examples (see next paragraph) are the only nonuniformly hyperbolic attractors for
which SBR measures have been constructed.

Mora and Viana [MV] proved recently that in homoclinic bifurcations of surface dif-
feomorphisms, very small attractors with high periods appear for a positive measure set
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of parameters. These attractors have the same qualitative estimates as those in [BC2].
Since our proofs rely only on these qualitative estimates, our results apply there also.
This paper is organized as follows. We assume throughout that T' = T}, j, where (a,b)
is a pair of “good” parameters, meaning the ones selected in [BC2]. We do not concern
ourselves with how these parameters are selected. In Section 1 we give a summary of the
results from [BC2] that are relevant to this work. The primary focus of [BC2] is on a
certain set of points called “critical points”. These points live on a curve W that is the
unstable manifold of a fixed point. In Section 2 we shift our attention from the critical
points to the action of T on all of W. Our Main Proposition establishes a near complete
correspondence between the dynamics of T|W and that of certain interval maps. An SBR
measure is constructed in Section 3, where Lebesgue measure on a small piece of W 1is
pushed forward. The ergodic properties of this invariant measure are studied in Section 4.

1. Dynamics of certain Hénon maps: results from [BC2].

In this section we try to give a self-contained summary of what is known about the
“good” Hénon maps. For conceptual simplicity, we will isolate for separate discussion
several aspects of their dynamics. The reader should be aware that many of these properties
are related, in the sense that their proofs are very delicately intertwined. Some of the ideas
in [BC2] will be expressed here in slightly different language. For instance, we will speak of
orbits and vectors as being “controlled” (see sections 1.4 and 1.5). We will also introduce
the notion of “generalized tangential position” (Section 1.6).

1.1 The one-dimensional model (Section 2 of [BC2]).

The b-values considered in [BC2]| are extremely small and the entire analysis there is
modeled on that of a certain class of 1-d maps. These are maps of the form f = f, :
[—1,1] O, where f,z = 1 — az? and a is very near 2. In addition the following conditions
are imposed on f:

(1) Thereis ¢ > 0 (¢ &~ log2) such that [Df™(f0)| > e for all n > 0.
(2)  There is a small real number o > 0 (e.g. a = 107%) such that |[f"0] > e~*" for all
n > 1.
It is proved in [BC2] that the set of parameter values A = {al|f, satisfies (1) and (2)}
has positive Lebesgue measure.

To study the growth of (f™)'x for @ € [—1, 1], we have three types of derivative estimates
given in sections 1.1.1 — 1.1.3. First some notation: Let 6 > 0 be a small real number that

is nevertheless > 2 — a. We assume that 6 = e7#° for some po € Z". For bookkeeping
purposes write

(~60)= | L.
[1]2> o
where I, = (e e=#) for y > 0 and I, = —I_, for u < 0. Each I, is further
subdivided into u? intervals {I, ;} of equal length.

For a € A, f = f, has the following properties:



1.1.1. Derivative estimates away from the critical point.
There is ¢y > 0 and M, € Z" such that
(i) ifa,...,f77led (=6,8) and j > My, then |Df7(x)| > eco/;
(i) ifa, fo,..., fFled (=6,68) and fFx € (—6,6), any k € Z+, then |Df*(x)| > ecok.
(iii) ifa, fo,..., f*7ted (=6,6), then |[Df*(x)| > seok.

1.1.2. Derivative estimmates when bound to the critical orbit.
Let 8 = 14a. For « € (—6,6) define p(x) to be the largest integer p such that

Ifle— 70l < e Vj<np.

Then

(i)  Hul <ple) <5Blul  Veel,;
(ii) |DfP(x)] > e P for some ¢’ > 0.

The orbit of z is said to be bound to the critical orbit during the period j < p. We may
assume that p is constant on each I, ;.

1.1.3. Distortion of Df".

Let P be the partition of [—1,1] into [-1,—¢] U [6, 1] U, ; Lu;. For J € P, let J"
denote the interval consisting of J and its two adjacent intervals in P. Then the following
holds: Assume that w C [—1,1] is such that for all £ < N, f*o C J*t for some J € P.
Then there is a constant C', independent of N such that

|DfN ()]
—_— < Va w.
IDfN(y) = e

1.2. Some geometric properties of Hénon maps.
The material in this subsection is quite elementary and is valid for T' = T, ; where (a, b)
belongs to a set A’ of the form {(a,b): a1 <a <az <2,0<b< by}

1.2.1. The unstable manifold W.

T has a unique fixed point 2 in the first quadrant. This fixed point is hyperbolic. Its
expanding direction has slope of order —b/2 and eigenvalue &~ —2. Its contractive direction
has slope & 2 and eigenvalue ~ b/2. The global unstable manifold at Z is called W. It will
play the role of the interval [—1,1] in our 1-d model.

1.2.2. Attracting sets.

To guarantee that T has a compact attracting set, we first choose ag < a3 < 2 with ag
sufficiently near 2. Then there exists by > 0 sufficiently small compared to 2 — ay such that
for all (a,b) € A" :=[ag,a1] x (0,by], W stays in a bounded region. Moreover, if A = Ay
is the closure of W, then there is an open neighborhood U = U, of A such that for all
z e U, dist (T"z,A) — 0 as n — oo ([BC2], Thm 4; see also [BM]).
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1.2.3. Hyperbolicity and resemblance to 1-d behavior outside of (—¢,6) x R.

Let 6 > 0 be at least as small as needed in our one-dimensional analysis and assume
that by < 2—ag < 6. Let s(v) denote the absolute value of slope of the vector v. A simple
calculation shows that if z = (2,y) ¢ (=6,¢) x R and s(v) < ¢, then

which we assume to be < ¢. ([BC2], Lemma 4.5.) This defines invariant cones outside of
(—06,6) x R.
For z = (a,y) ¢ (—6,0) x R and unit vector v with s(v) < ¢, we have essentially the
same estimates as in 1-dimension. That is, there is ¢ > 0 and M, € Z" such that
(i) ifz,..., 7771z ¢(=6,6) xR and j > My, then |DT? v| > e;
(i) ifz,Tz,...,T* 12 ¢ (=6,6)xRand T*z € (—6,6) xR, any k € Z+, then |DTF* v| >
ecok;

(iii) if 2,Tz,... , T* 12 ¢ (=6,6) x R then |DT*v| > ek,

1.2.4. Curvature estimates.

Tangencies between stable and unstable manifolds of T" are inevitable. In order to show
that some of these tangencies are quadratic, we will need to control the curvature of W.
In [BC2], a curve v in R? is called a C?(b) curve if s(y') < 10b and its curvature k < 10b.
The following lemma is used to verify the C*(b) property.

LEMMA (proved in Section 7.6 of [BC2]). Lett +— ~(t) be a smooth curve. Write~,, = T"y
and let k,, denote the curvature of v,,. Assume there is a ¢ > 0 such that for all t

(1) ko(t) <1 ‘
(i) v/ )] Z e Vi <ny
(ii1)  yn—j(t)g (—6,0) x R and s(yg_j(t)) <éforj=1,....,4.
Then k,(t) < 10b for all t.

The discussion from here on applies only to T = Ty p, where (a,b) belongs in an induc-
tively constructed set A C A'. The set A has the property that for each sufficiently small
b>0,Ap:={a:(a,b) € A} is a Cantor set and has positive Lebesgue measure.

1.3. The critical set (mostly Sections 5 and 6 of [BC2]).

We use the following notation. For A € GL(2,R), if v — |Av|/|v| is not constant, let
e(A) denote the unit vector that is contracted the most by A. Write e, (z) = e(DT?) if it
makes sense. For z € W, let 7 € T.R? denote a unit vector, tangent to W.

A certain subset C of W called the critical set is singled out in [BC2] to play the role
of 0 in 1-d. This set is constructed according to the rule in 1.3.1. Each zy € C has the
property that 7(zo) is the most contracted direction, i.e. lim, .o €,(20) = 7(20). This can
be thought of as the moral equivalent to f/(0) = 0.

1.3.1. Location and rule of construction of C.
C is located in W N ((—10b,100) x R). It seems likely that it does not lie on any smooth
curve. To give a more precise description of where points of C are located, we divide
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W into segments of different “generations”: First, there is a unique point zy € C on the
roughly horizontal segment of W containing the fixed point 2. In [BC2], the segment of
W between T2z, and Tz is called G, the leaf of generation 1. Leaves of generation ¢ > 2
are defined by

Gg = Tg_lGl — Gg—l-

We assume (a, b) is sufficiently near (2,0) so that Ug<27 G, consists of 22¢ roughly horizon-
tal segments linked by sharp turns near x = 1, y = 0, and that (Ug§27 Gy)N((—96,6)xR)
consists of 22¢ C?(b) curves (see Section 1.2.4). If C; :=CnN Ui<g G, then Cy7 contains
226 points, one on each of these C'*(b) curves. -

For ¢ > 27, the following rule is used. Let p be a number with b < p < ¢~ %, and
assume C,_; is already defined. Consider a maximal piece of C'*(b) curve v C G4. If v
contains a segment of length 2p9 centered at z{ = (x(,y(), and there is a critical point
zo = (x0,Y0) € Cy—1 with 2 = ¢, and |y; — yo| < 97, 0 = %,
point Zg € Cy N ~y. Moreover, |2y — 2| < |y, — y0|%. These are the only points of C,.

then there is a unique

1.3.2. Remarks on the construction of C.

Roughly speaking, certain points z on W with e,(z) = 7 are picked out as approximate
critical points. Once a point is designated an approximate critical point, parameters are
excluded to ensure that a point in C is eventually constructed nearby. The construction
of C itself involves an inductive procedure that is guaranteed to work only for the “good”
parameters.

As to when to initiate the construction of a critical point, the rules in Section 1.3.1
are obviously quite arbitrary. There are two guiding principles. The first is that each
“distinguishable” critical orbit of length n causes a certain measure set of parameters to
be discarded, so we cannot afford to have too many critical points. On the other hand, as
in 1-d, when a critical orbit returns to (—é,¢) x R, we want it to be “bound” to a suitable
critical point of earlier generation. So we must be sure there are enough of these “suitable”
critical points. These issues are discussed in Sections 3 and 6 of [BC2].

1.3.3. Dynamical properties of C.
The parameter selection procedure is also designed to guarantee that every zg € C has
the following properties:

(1)  Forall n >0,

[DTZ ()]
| DT,

" for some ¢ & log 2,

> e
< (CH)" for some C independent of b;

(2)  there is a small real number «, say o = 107%, such that T"z, stays a distance of
> e~ " from certain points of C.

The uniform hyperbolicity expressed in (1) is analogous to condition (1) in Section 1.1.
We will elaborate on (2) and other dynamical properties of C later on.
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1.3.4. Contracting fields in neighborhoods of a critical point.

Let zo € C. When an orbit comes near zy, the course of its interaction with zy in the
next n iterates is determined to a great extent by the contracting field e, and expanding
field e;- near zy. The following facts are proved in Section 5 of [BC2]*:

(i) ey is defined everywhere and has slope = 2ax + O(b).

(ii)  There is A with b < A < 1 such that for all zy € C, e, is defined on B,(z¢) := the
disk of radius (A/5)" about zy. Moreover,

IDT" ¢,| < (CH)", Yz € By,

(iii)  There is a constant C' > 0 such that for all z;, zo € B,
len(21) = en(22)] < Cla1 — 22|
(iv)  For (z1,vy1),(22,y2) € By with |y1 — y2| < |v1 — 22|
len(21,y1) — en(22,92)| = (20 + O(b)) |21 — 2.

(v)  Form < n, |e, —en| <OB™) on By(z).
Suppose zg lies on a C%(b) curve 5. Then it follows from (i)—(v) that there is a unique
2y in v N Bp(zo) at which e, = 7, and that |zJ — z| = O(b").

1.4 Controlled orbits.

1.4.1 Definitions.

(i)  Let zo = (w0, yo0) be a critical point lying on a piece of C*(b) curve v C W, and let
Co = (€0,m0) be an arbitrary point in (—6,60) x R. We say that (y is in tangential
position with respect to zg if there is 2y = (2o, 90) € v with &g = & and |go — no| <
|i’0 — X |4.

(ii)  Let (o € W, and let ¢, = T"(y. We say that the orbit of (o is controlled on the
time interval [0, N), N < oo, if the following holds. If (o4 C, let ny < nz < --- be
the times when (, is in (—6,6) x R. If {y € C, take ny > 0 to be the first time (,
returns to (—6,6) x R. Then for every n; € [0, N), (», is attached to a critical point
with respect to which it is in tangential position. This critical point is denoted by
z((n;) and is called the binding point of (,,. See 1.4.3 for a further requirement on
the assignment (,;, — 2((y;)-

1.4.2 Control of critical orbits.
A key idea in [BC2] is that through parameter exclusion, it is arranged so that for every
z0 €C
(i)  the orbit of z is controlled on the time interval [0, c0);
(ii)  |zn; — 2(2n,)| > €7 Vi > 1;
(iii)  gen(z(zn,)) < 8- n; for some small 6 > 0.

*The slight difference between the definition of e, here and that in [BC2] is unimportant.

6



(ii) is the precise statement of (2) in 1.3.3. To explain the availability of binding points,
consider first the following ideal situation: Suppose that z, is a free return, and that
Ug<9n G, contains 21"~ C%(b) curves stretched across (—6,6) x R, each containing a
critical point. In this case one needs only to consider the curve nearest to z,. Most
locations of z, are in tangential position relative to the critical point on this curve; bad
locations of z, correspond to deleted parameters. In general, some of the 2[f"1=1 pieces
of W are missing or partially missing. What is true is that at free returns, z, is always
surrounded by a “fairly regular” collection of C'*(b) segments {v,} of W. “Fairly regular”
here means that gen(v;) ~ 37, length(v;) ~ p* and dist(z,,7;) ~ ¥ (37 < 6n). Tt
is then shown that such a family contains enough critical points for our purposes. (See

sections 6 and 7 of [BC2].)

1.4.3 Bound periods.
Let zp € C, and let (y be in tangential position with respect to zg. As a first approxi-
mation we define the bound period p((p, zo) to be the largest k such that

IT7¢o — TP 2| < e P Vj<k.

(Recall that § = 14a.)

Now consider ¢, whose orbit is controlled on [0,00), and let p; = p((n,,2((n;)). Note
that it is entirely possible for (,, with n; < n < n; + p; to return to (—é,6) x R, so that
bound periods can be initiated in the middle of bound periods. It is shown in Section
6.2 of [BC2| that by modifying slightly the definition of p, bound periods can be made
“nested”. More precisely, one can choose {p;}5°, in such a way that for all ¢,

(1) ps < pi and |TP (. — TP 2(Cp, )| > =972 for some B* ~ 3,
(i) if n; is such that n; < n; < n; + p;, then n; + p; < n; + p;.
The bound period between (,, and z((y,) is then defined to be p;. It is further required

that if the bound relation between z,; and z(zy, ) is still in effect at time n; > n;, then we
must have 2(z,; ) = 2(T" """ 2(zp,)).

1.4.4 Bound and free states.
Conceptually, it is convenient to divide a controlled orbit into “free” and “bound” states.
Let (y be as above.

For n < ny, (, is free.
For ny <n <nji+p1, (, is said to be in bound state. (During this period (,, may
make multiple returns to (—4,6) x R, at which times new bindings are formed. But
by our definition of p;, these “secondary bound periods” expire at or before ny +ps.)
e Let n; be the first return to (—4,6) x R after ny + p;. Then (, is free for ny +p; <
n < n;, and (,, is called a free return.
o (, is in bound state again during the period n; < n < n; 4+ p;, and so on.

1.5 Keeping track of derivatives.
Throughout this subsection we assume that the orbit (y is controlled on [0, c0), with
return times ny < ng < ... and binding points ¢, < 2((y,) as defined in 1.4.1.
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1.5.1 The fold period.
For each n;, the fold period of (,; with respect to z((,;) is defined to be a number /;
with 2m < [; < 3m, where

(50)™ < ]2(Cn;) = Cus] < (BD)™ .

For convenience we will choose I; such that n; + ; # n;, nj + 1 for any j. (The precise
definition is given in [BC2], Section 6.3 and does not particularly concern us.) We mention
three facts about fold periods:

(i) The fold period initiated at a return to (—6,60) x R is very short compared to the
bound period initiated at that time. In fact, {/p < const /log(1/b), which tends to
0asb— 0.

(ii) It follows from (i) above and Section 1.4.2 that every zy € C has the following
property: for every m € ZT, there are integers m; and ms, with m; < m < ms and
mg —my < const. m/log(1/b), such that z,, and z,,, are outside all fold periods.
(See Lemma 6.5 in [BC2].)

(iii) If n; < n; < n;+1; then nj+1; <n; +1;, i.e. afold period initiated within another
fold period does not extend beyond that fold period.

The role of the fold period will become clear in 1.5.4.

1.5.2 The splitting algorithm (section 7.1 of [BC2]).
Let v € T;,R? be a tangent vector. The following algorithm is devised in [BC2] to keep
track of w,((o,v) := DT v. For each n, we decompose w,((p,v) into

wn(C()? U) = w:;(CO? U) + En(Cov U),

where w’ and E,, are defined according to the following rules. (We will omit all references
to (Cp,v) from now on.)

o For n < ny, let w) = w,.
e At time nq, let e = ¢;, be the contractive vector field around z((,, ). Write

Wy, = Ap,e+ By, (2)
and let
wr = By, <0>, E, =A, e

n1 1

e For n > ny, if n # any n;, define

En= Y DT " (An,e1,).
nE<n
s.t. np+ilpz>n

This of course defines w}, as well.
o If n = n,; for some ¢ > 1, we let e = ¢;,, write

DT, ,whi_; = Ane + B, (})
and let



This algorithm has no geometric meaning for arbitrary ((p,v). See 1.5.4 for a discussion
of the situation for which it is designed.

1.5.3. Controlled derivatives along controlled orbits.

Definition. Let (o = W and let v € T;,R*. We say that the pair ((o,v) is controlled on the
time interval [0, V) if the orbit of (y is controlled on [0, N) and whenever (,, € (=6,¢) xR,
the splitting algorithm in Section 1.5 gives

(*) 3[Cn — 2(Cu)| < [Bnl <5[Ch — 2(Cn)l, M <n<N,
where

_ B,
B, = S—
|DTCn—1wTL—1|

If (%) holds, we say that the vector v, = DTE v splits correctly.

One of the most important properties of T' proved in [BC2] is that
for every zy € C, (zo, (2)) is controlled during the time interval [0, 00).

It is also proved that if (y is bound to zy € C then ((p, (2)) is also controlled during the
bound period [0, p).

1.5.4 1-dimensional behavior in 2-dimensions.

We now give some idea of how the splitting algorithm is used to study D¢ v where
0

0,v) is controlled on [0, 00). For definiteness consider ¢, € C and v = (°). We claim
1

that {w’}°° , is essentially 1-d in character, and has properties similar to (f™)(f0) for
flx) =1— az?.

As before, let ny < nz < ... be the return times of (y to (—6,6) x R. First w] = (é)
For 0 < n < ny, {|w}|} behaves qualitatively like {|(f™)'(f0)|}; see 1.2.3. Let us consider
n =mny, and let w,, = A,e + By, (2) be the decomposition given by the splitting algorithm.

Ignoring the A-term for now, and using the fact that ((o, (2)) is controlled, we see that

|w:;+1| = |w:;| = |§n| ) |DTCn_1w:;—1|
~2a|Cn — 2(Ca)| - [DTE ],

which has an obvious resemblance to |(f")'(f0)|. Moreover, since w} , = B, (é) , the
action of DTV on w ., for j < ny —ny is again essentially 1-d. The vector DT™ "y,
is split at time n2, and the new B-term is treated similarly.

The general philosophy is that the A-terms can, in some sense, be neglected. Let us
consider a simple situation, where the fold period [ at time n = n; expires before the next
return to (—6,6) x R. We claim that DTén A, e is extremely short compared to DTén B, <0>,

1
so that the effect of adding this term at time n + [ is negligible. This is because

DT, Ane| < |DT¢,_,wy |- (5b)",
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whereas

1

DT, Bu (V)| = [DT¢, -y wy | 16a = 2(Ca)l - IDTE (D)1,

and we know that |, — 2((,)| > (58)/? by the definition of I, and also that |DTén_j1 ()=
dec=1) by 1.2.3(iii).

In general, the computation is more complicated, but if ((p,v) is controlled one has
|B;| > |¢; — 2(¢;)] at all returns, and the rejoining of the A-terms to w?* at the end of fold
periods has negligible effects. (See Section 7.3 of [BC2].)

We have made a point of comparing w(zo, (2)), zo € C, to (f™)(f0). This parallel is
not complete unless we could guarantee, through parameter exclusion, that for all zy € C,
|w¥ (2o, <2>)| > " for some ¢ > 0. This is not exactly what we stated in 1.3.3, but it is in
fact true.

1.6. Dynamics near the “turns”.

1.6.1. Bound state estimates.

Assume that (p is in tangential position with respect to zp € C, and let p and [ be
its bound and fold periods. We now record some estimates from [BC2] pertaining to
the bound states {(;}” j=o- These estimates rely on the fact that critical orbits have the
properties in sections 1.3.1 and 1.5.3.

(i) [T/60 =TIz ~ |G — = |IDTL, (1) forI<j<p.

(For a precise statement, see Section 7.5, in particular Lemma 7.4, of [BC2].)
(i1)  If [Co — zo| me™#, u >0, then 1y < p < 5p.

(This follows essentially from (i) and Section 1.3.1.)
(iii) ‘D )"|C0—Zo|260p for some ¢’ > 0.

(See Lemma 7.5 of [BC2].)

Two points are to be noted here. The first is the striking resemblance between these
estimates and those in 1-d. Assertion (i), for instance, says that (, experiences a quadratic
contraction from its interaction with zy. The second observation we wish to make is that
unlike the situation in 1-d, not all the points near zy have this “quadratic” behavior. For
instance, (o may lie on a piece of stable manifold through 2, and be attracted to zy forever.
Or, if (p is directly above zq, then we will have |TV(y — TV zo| & |0 — zo| - |DTZ, (})| instead
of (i) for the first few iterates.

1.6.2 Generalized tangential positions.

We wish to say more precisely for which region the estimates in 1.6.1 hold. For z € W,
we say that (2',y') is the natural coordinate system at z if (0,0) is at z, the 2'-axis lines up
with 7(z), and the y'-axis with 7(z)®. The following definition is not contained in [BC2]
but will be useful for us in the next section.

Definition. Let ¢ > 0 be a small number < 2a, say ¢ = 100, and let zo € C. A point (
near zg is said to be in generalized tangential position with respect to z¢ if in the natural
coordinate system at zg, (o = (&', ') with |n'| < €.

Clearly, if (o is in tangential position wrt zg, then it is in generalized tangential position,
because the segment of W containing 2o is a C%(b) curve tangent to the z'-axis at (0,0).
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While it is not explicitly stated this way, the proofs in [BC2] show in fact that the bound
estimates in 1.6.1 hold for all (y in generalized tangential position wrt zo € C. Let us recall
briefly why this is so:
Let p be the bound period between (y and zy. From 1.3.4 we know that there is a
contractive direction field defined on a small ball about zy. The integral curves of e, are
!

roughly parabolas of the form y' = const + a(z' — l’p)z, and have a unique tangency with

the z'-axis at Z(p) i= (x},,0). Since |Z(()p) — zo| = O(B?) < |z9 — (o, for our purposes we
(p)

may as well confuse z; ' with zy. With this simplification we can think of zy and (y as
lying on the graph of a function ¢ : 2'-axis — y'-axis with |¢'(2")| < 2¢|2’|. The estimates
in sections 7.4 and 7.5 of [BC2] apply to points on such a curve. What really matters is
that all the tangent vectors to graph(y) split correctly wrt e,, which a priori is defined
only in a small ball about zy but is shown in a local induction in [BC2] to be defined on
the entire segment of graph(y) between zy and (y. These estimates imply those in 1.6.1.

1.7 Distortion estimates during bound periods.
In the course of proving some of the estimates in the last few subsections, the following
estimates are used.

(i) For all zy € C, if (y is bound to zy with bound period p then
* 0

1 ’ 9 .

L@,

27 Jwi(zo, (1))l

This is Assertion 4(a) in [BC2]. It is proved in Lemmas 7.8, 7.9 and on p. 151.

(ii) There is a constant Cy > 0 such that ¥z, € C, if {; and ({ are bound to z; during
[0, v], then

(6o (DI { A,(60.G) }
—_— ex C ,
TN Z de(=

where A;(Go,Co) = Orgggjléi - Ci| and

lz;| i z; = (zj,y;) and |z;[ >0

de(z;) 32{

|zj —2(z;)] if |x;)] <6 and =z(z;) 1is the binding point.

b (] (6o (9) ) (61, (2))) < 2634,

These estimates are proved the same time (i) is proved.

(iii) There is a constant C|, > 0 such that if zy, (o and ({ are as in (ii) and in addition
o and ¢} lie on a curve all the tangent vectors of which split correctly with respect
0 g p y p
to zo (compare 1.5.3) then

07C0 » 1¢o — Col
]z:: de(z C|C0—Zo|

This is proved on p.p. 151 and 163 of [BC2].
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The constants Cy and C{ above remain uniformly bounded as § — 0.

2. Dynamics on the unstable manifold .

2.1. Statements of results.

Let T' = T, be as in Section 1. The purpose of this section is to use the dynamics of
points in C to help us understand the dynamics of all points on W. We will prove that the
derivative estimates for DT, ¢ € W, are completely parallel to those for (f™) « where

f:[=1,1] O satisfies the conditions in Section 1.1.

As usual, {(,}52 _ denotes the orbit of (;. Before we begin we need to modify or
extend slightly a couple of our definitions from Section 1. First we relax our definition
of “control” for the orbit of (y to requiring only that whenever (, € (=6,6) x R, there
is a critical point z((,) wrt which (, is in generalized tangential position. (See 1.6.2.)
Second, we say that the pair ((p,v) is controlled on the time interval [j, N), —oco < j < N,
if (Cj,DTgov) is controlled on [0, N — j), and that ((op,v) is controlled on (—oo, N) if it
is controlled on [7, N) for all j < N. Note that for all (, € W,(; tends to the unique
hyperbolic fixed point Z as j — —oc.

2.1.1 Main Proposition and Main Corollary.

PROPOSITION 1. (Main Proposition). For all (o € W, if (; ¢ C for all © < N, then the
pair (Co,7(Co)) is controlled on the time interval (—oo, N).

Proposition 1 enables us to describe each (;,: < N, as being in a “free state” or “bound
state” as discussed in 1.4.4. (Technically one needs to specify a starting point for this to
make sense, but since (; — Z as ¢ — —o0, we can think of our trajectory as starting from
(; for some negatively very large j.

COROLLARY 1. (Main Corollary). Let ¢, € W, and assume that (;¢ C for all ©. Then (;
is in a “free state” infinitely often, and the following holds for 7; := DT 7:

I Ezpansion outside of (—6,6) x R.

There is ¢ > 0 and M, € Z" such that

(i)  if (; is free and (;, ... , G, & (—06,0) x R, then
(ii)  if ¢ ¢ (—06,0) x R is free, and k > ¢ is the first time (; € (—6,0) x R then
|75 > eeolk=i)|

| 7]

II. Bound period estimates.
There is ¢1 ~ log 2 such that the following holds: if (; € (—6,0) x R is free and becomes
bound at this time to z((;) € C with bound period p, then

(i) e " <G - 2(G)] < et then jpu < p < 5p;
(i) il Il = 316 — =(G)l - ‘DT;](@)(?)‘ > |G =2l 0<j<p:

() |rigpl/|7i| = ezerr.
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2.1.2. Global distortion estimates.
We will need the following distortion estimate for DT" 7. Let P = {I,;} be the partition
of (—=6,6) as described in Section 1.1, i.e.

(_67 6) = U IN?

[1]2> o

where I, = (e=+D =) for y > 0, I, = —I_, for yu < 0, and each I, is further
subdivided into p? intervals {I,;} of equal length.

For g with |zo| < ¢, we let P, denote a copy of P with 0 “moved” to x¢. More
precisely, let h : (=06,60) — (—6,0) be the piecewise linear homeomorphism taking the
points —8, —e~ (ot D) go e=(rot1) § to —§ —e~ (ot g e=(rotl) § respectively and let
77[350] = h 1P,

Furthermore, if v is a roughly horizontal curve and zo = (xg, yo) is such that |zo| < 6,
then Pp.;] = Pz is the obvious partition on y N ((—6,0) x R). Once v and 2, are specified,
we will speak about I,; as though it was a subsegment of v. Also, for J = I,,;, let J7T
denote the union of J with its adjacent intervals in 7.

We will use the following notation: if g is a curve segment then v; = TY~¢; (; denotes
T7¢, and 7;({o) = DTgOT etc.

PROPOSITION 2. Let v9 C W N ((=6,6) x R) be a curve segment, and let 0 = t; < t; <
-+ <ty = N be its free return times. More precisely, for all k < ¢,

(1) all points in 7, have a common binding point, which we denote by 2B and ~;, C
JT for some J € P_a);

(2) if pi is the bound period between vy, and Z(k), then tyyq is the smallest 7 >ty 4 pi
such that v; N ((—6,6) x R) # 0.

Then for all {y, ¢} € 7o,

for some C; independent of vy or N.

2.1.3 Remarks on the critical set.

Recall that in [BC2], the critical set C is constructed according to some seemingly
arbitrary rules. We wish to point out here that C in fact admits certain intrinsic charac-
terizations. For instance, Corollary 1 gives the following dynamical characterization of C:

Let zp € W. Then

zp lies on a critical orbit <= limsup|DT} 7| < co <= lim DT 7| =0.
n—oo

n—oo

In fact, zo € C iff
DT 7| < (5b)) ¥j >0 and |DT.  7|>1.

13



We mention also that C admits geometric characterizations. For instance, it is straight-
forward to verify using the curvature computations in Section 7.6 of [BC2] that zy € C
iff

K(zg) <1 and k(z,)>b"" VYn>1.

2.2 Some lemmas.
The lemmas in Section 2.2 are not explicitly stated or proved in [BC2], but their proofs

resemble those in [BC2|. We will repeat the shorter arguments and refer the reader to
[BC2] for the longer ones.

We will write w;(z) := wj(z, (2)) and 7;(z) 1= w;(z,7), and let wj(z) and 77(z) have
the obvious meanings. When we say that a segment v C W is “free”, it will be assumed
implicitly that ¥z € v, (z,7) is controlled during the time interval (—oo0,0). The absolute
value of the slope of a vector is denoted s(v).

2.2.1 Slope, curvature and derivative estimates.
The purpose of this subsection is to prove the following three lemmas:

LEMMA 1. Let v be a free segment of W. Then

(i) Vz €9, s(7(2)) < 2b/é;
(ii) Yz € yN((=6,6) xR), s(7(z)) < 10b.

LEMMA 2. Let v be a free segment of W in (—6,6) x R. Then r(v) < 10b.

It follows immediately from these two lemmas that free segments of W in (—6,6) x R
are C%(b) curves. The next lemma is needed in Section 3.

LEMMA 3. There exists ¢; > 0 such that if z € W N ((—=6,0) x R) is in a free state, then
|IDTr| < e VWj>0.

We begin with the following sublemma:

SUBLEMMA 1. Let zy be a point in Gy near the fixed point Z, and assume that (z,7) is
controlled on [0,7). If z; ¢ (—6,6) x R then, s(7](z)) < 2b/¢.

PROOF: Proceed by induction exactly as is done in the proof of LI(+')(a) in Section 7.3

of [BC2]. O
PrROOF OF LEMMA 1: (i) follows immediately from Sublemma 1. To see (ii), note that
T~z is outside of all fold periods. Apply Sublemma 1 and Section 1.2.3. L]

SUBLEMMA 2. Let (o be in generalized tangential position with respect to zy € C. Let p be
the bound period between (y and zy, and let n be the first free return of (y to (—6,0) x R.
Then there is ¢ > 0 such that

(@) hey(Co)| 2 e ¥ <ps
(ii) M > ec(n_j) \V/] <n.

[w;(Co)| —
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PROOF: (i) If z; is outside of all fold periods, then

w;(Co)| = |w}(Co)] Z |wi(z0)] > .

(See 1.7.1. for “=” and 1.5.4 for the inequality.) If not, choose k > j such that zj is
outside of all fold periods and k — j < (C/log(1/b))j. (See 1.5.1.) We then have

w;(Co)| > 5 (C/Mos(1/DNige™k > ced,

(ii) If j > p the estimate follows from 1.2.3(ii) so we only need to consider j < p
Case 1. zj is outside of all fold periods. We have

[wa(Co)l _ Jwn(Co)l  [wh(20)]
wi(Co)l ™ wp(Co)l |wi(z0)l"

To see that the second factor > ec(p_j), let ny < ny < --+ < ng be the times between
J and p when z; returns freely to (—6,6) x R. Write w;(z9) = DT, ,w!_,(z0). We know
from 1.2.3, 1.5.4 and 1.6.1 (iii) that every factor in

[wp(zo)l @, (z0)l [y (20)

[@ni(20)] [Wni_y(20)] 7 wi(z0)]

is exponential.

Case 2. z;j is in a fold period. Let k be the last time it was outside all fold periods.
Because of the rule for construction of the fold periods (see 1.5.1(iii)) (; must still be in
fold relation to z((x). Let p' and I’ be the length of the bound period and fold period resp.,
initiated at time k. Then p’ < n — k since z, is free and

. , Cp' C(n—k)
I RS TS 5078 S Tog(iyb)
Cln—j)  Cli—F)
= Tog(1/b) " Tog(1/b)

We move the second term to the left and conclude that

oo
ik S d)
log(1/b)
The same argument as before finishes the proof. L]

PROOF OF LEMMA 3: Let z € v. If T7z ¢ (—6,6) x R Vi > 0 our exponential estimate
follows directly from (1.2.3)(ii). Otherwise suppose (; = T~ "z is the previous free return.
It 1s enough to verify

|ﬂ%®)|26qm—ﬁ 0<j<n.

|75(Co)
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(If there is more than one free return between 7772 and z, repeat the argument and use
the chain rule.)
From Sublemma 2 (i) we know that e,((o) is well-defined. We write

7(Co) = Aen(Go) + B(})

and let [ be the fold period between (p and zy = z((p).
Case 1. j > I. Since 7 splits correctly at (y, we have

IDTE B(0)| > |B| % > |DTE Ae,,|

Vk > [, and so
[7n (Gl _ Bl 1wal(Co)l o cin—j)
|73 (Co)l Bl |w;(Co)l —

by Sublemma 2 (ii).
Case 2. j < I. At most we have |7;((o)| < 5'. Since I < (C/log(1/b)) n, we are still
guaranteed that

|7 (o) e > per(n=j)

|75 (Co) = 5(C/log(1/b))n =

This completes the proof. L]

PrOOF OF LEMMA 2: Choose n so that (; = T "z is on the first generation G; of W

close to the fixed point. Then £((p) < 1 and the curvature estimate follows immediately
from Lemma 3 and 1.2.4. L]

2.2.2 Abundance of C?(b) segments of W near free returns.

LEMMA 4. Let (o € WN((—6,8) xR) be free. Then for every m € I with 3m < gen((o),
Im’ with m < m' < 3m and two C?*(b) curves v and v’ in W with the following properties:

(i) Co is sandwiched between v and ' extending > 3p™ to each side of (y;
(ii) dist(Co, ), dist(Co,~') < (CDY™, C = 5e7?;
ii1) if n and n' are the two points in v and ' resp. with the same x-coordinate as (g,
Ui Ui Y Y
then |7(n) — 7(Co)l. [7(n") — 7(Co)| < (CB)™/%;
(iv) gen(y) =m'+1, gen(y') <m'.

The proof of Lemma 4 is virtually identical to that of the corresponding result in [BC2]
for z, (instead of (p), where zy € C and z, is a free return to (—6,6) x R. (See Section
1.4.2.) We sketch here the main steps of the proof, referring to [BC2] for more details:

OUTLINE OF PROOF OF LEMMA 4:

Step 1. Show that Im' € [m, 3m] such that (_,,/ is in a “favorable” position relative to
Co. This means that (_,,/ is outside of all folding periods, and that Yk < m', [(—pqr —
2(C_mrsr)] > e735% whenever (_prqx € (—6,8) xR. (See Lemma 6.6 in [BC2] for a proof.)

Step 2. Show that |DT£“_m/T| > e730% Yk < m/. Idea of proof: Let t; < --- < t; be

the free return times of (_,, . First note that s(7((_n)) < 2b/6 (Sublemma 1), so that
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|DT£ 7| > e“*. Between t; and t;11, use the fact that 7 splits correctly, and apply
Sublemma 2(i) and 1.6.1(iii). (This is also proved in Lemma 7.2 of [BC2].)

ep 3. Show that there is a contractive vector field ¢ = ¢,,» defined on a strip containin
Step 3. Show that there i tracti tor field defined trip containing
(—m such that
(i) |DT7e| < (Cb)Y Vj<m, C=>5e"?
i ere is an integral curve joining (_, to two points an on Gy and Gy
ii) there i integral joining to two points ni and n? G d G
respectively;
iii ou r = ere is a segmen C extending > o each side o
ii1) About 7y, 1,2, there i g t 7 C W extending > 3p™ t h side of
ns such that each point on 4! (resp ~?) is joined to a point on Gy (resp G1) by an
integral curve of e.

This is proved in Section 5.3 of [BC2].

Step 4. Show Tm/’yl and Tm/’yz contain C?(b) curves with the properties as claimed.
Idea of proof: Again consider the free return times ¢; < --- <t; of (_y,s. Assuming that
4" is not so near the “tips”, we verify using the criteria in 1.2.4 that T"~" (r = 1,2) is
a C%(b) curve. Assume now that T%~" contains a C?(b) curve v™*, trimmed so that it
extends by 3,0’”/ to each side of n;.. We need to know that 7 splits correctly at every point
on 4™, Assuming that, we may view 7™ as being tied to (_,/4y, for the next t, 1, — #;
iterates, and the same argument as in Lemma 2 will tell us that y™'*1 is again C'%(b). To
see that T splits correctly on 4™, use the following facts: (i) 7 splits correctly at ¢_ity;;

(ii) |7(nf) — T({omrge,)] < (CB)4/ (see Lemma 7.3 in [BC2]), and (Cb)4/% < e7364 <
|C—m’+ti - Z(C—m’-l-ti) ) (iii) 7r’i 18 Cz(b) and has length < |C—m’+ti - Z(C—m’+ti)|' O

Let (o be as in Lemma 4. Then for every j with 3/T! < gen((p), there is m; with
37 < m; <397 and C?(b) curves v; and 7v; with the properties in Lemma 4. In the future

we will refer to {v;} and {7;} as “stacks captured by (o”.

2.3 Geometry of the critical set.
The purpose of this subsection is to establish some regularity in the structure of the
fractal set C.

2.3.1 A basic lemma.

LEMMA 5. Let zg € C be located in a C?(b) curve y C W. Assume that v extends to > 2d

to each side of zy and let (y € v be such that |(y — zo| = d. Then there are no critical
points in the disk Bg=((o) := {7 : |z — (o] < d*}.

PROOF: We will assume that there is a critical point Zy € Bg2((p) and try to obtain a
contradiction.

Let us first assume that zy lies on a C’z(b) curve ¥ C W that extends > d to each side of
Zp. Using the notation in Section 1.3, we choose m with ™ < d? and 2d < (A\/5)™, and
estimate |7((o) — em(Co)| in 2 different ways:

First note that e, is defined on all of Ba4(z¢ ), and that for purpose of comparing e,,(z)
with e, (o), we may assume e, (z0) = 7(z0) (see 1.3.4). We therefore have

[7(Co) = em(Co)| = (2a + O(b))d.
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Next, we let 50 be the point in 4 with the same z-coordinate as (y and write

[em(Co) = 7(Co)| < lem(Go) = em(Zo)| + lem(Z0) = 7(Co)l + 7 (Co) = 7(Co)l.

The first two terms are < 5d? (again see 1.3.4). As for the third term, since 4 and 7 are
nonintersecting C?(b) curves of length > d and |(y — Co| < d2, an easy computation gives
|7(Co) — T(§0)| < 2d. These three terms add up to 2d + 10d*, which is < (2a + O(b)) - d,
and we obtain a contradiction.

Now the C?(b) curve containing Z, may not be long enough. In that case we use the

rules of construction of C (see 1.3.1) to successively obtain critical points ,%(()1), ,%(()2)

éék) of lower and lower generation. Let G be such that p?¢ < d < p©, and let 7 be the
smallest integer with gen(%él)) < G. Then

9 ey

D M UG

j=gen(z\71)

which we may assume is < d* and ééi) lies on a C%(b) curve extending > 3p% > d to each

(1)

side on Z; . The previous argument can now be repeated with 2(()1) in place of Zy. L]
2.3.2 View of C from a point in the free state.

LEMMA 6. Let ¢ € G, N (—6,6) X R be free, and let zy and z{ be two critical points
wrt which ¢ is in tangential position. Assume that |( — z|,|( — 2| > bT05. Then the
z-coordinate of ( cannot lie between those of zy and z|).

PROOF: We assume this scenario occurs. Let d = [( — z|,d" = |( — z}|, and suppose
that d < d'. Let n be the point on W (%)) with the same z-coordinate as z;, and let
D = |n — z|. We will show that D < d* +d"”? < (d+ d’)z, which will contradict Lemma 5.

The difficulty in comparing W}"_(z0) and W} (z() directly is that the two C*(b) curves
may be too far apart and one of them may not be long enough. (We had a similar problem
in the proof of Lemma 5.) So again we rely on curves captured by (.

First we use ( to capture a segment Wy of W of length > d and with dist(¢, Wy) < d*.
(This is clearly possible, even with d ~ 575.) We further require that W, be on the
opposite side of ¢ as W% (z0). (See Lemma 4.) Let (., and (w, be the points on W (z)
and Wy respectively with the same z-coordinate as ¢. Then |(., — Cw,| < 2d*; and
17(Cs0) — T(Cwy)| < 2d? because Wi _(z9) and Wy are nonintersecting C?(b) curves that
extend > d to each side of (. Putting this together we have

Dy := dist(zg, Wy) < 2d* + 2d* - d + 20b - d* < d°.

Similarly we let W] be a segment captured by ¢ on the opposite side of W) (z;). We
require that W has length > d' and dist(¢, W) < d'*, so that

Dy = dist(n, W) < 2d"™ +2d” - d +20b- d* < d"°.
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Now D is easily estimated as follows: If W (z9) and W (z;) are on the same side of
¢, then D < max(Dy,Dy). If Wt .(z0) and W (z,) are on opposite sides of ¢, then
D < Dy + Dy. ]

Consider a point ¢ € (—=6,6) x R in the free state. Let {’yj}";le be a stack captured by
¢ as discussed in 2.2.2. We may assume that there is a critical point on v;. Let j({) be
such that ;. is the 7; of highest generation that contains a critical point, and call this
critical point 2((¢). We now fix some terminology to describe the location of C relative to
(: We say that C is “in the muddle” if there exists a stack {’yj}";le captured by ( with the

property that j(¢) = k and |( — 2({)] < boo8en(Q) | If this is not the case, then we say that
C is “on the left” (or “on the right”) if for every stack captured by ¢, 2(() lies on the left
half (resp. right half) of ;.

We remark that if C is not “in the middle”, then it has to be either “on the left” or “on
the right” of (, because ( is always in tangential position wrt 2((), and Lemma 6 applies.

2.4 Proof of Main Proposition.

2.4.1 General strategy.

Let G, be the leaf of generation n (see 1.3.1 for definition). We assume it has been
proved that for all {; € G, the pair ({p,7) is controlled on the time interval (—oc,0),
and will show that ((p,7) is controlled on (—o0,0]. Clearly, we need only to consider
Co € (—6,6) x R and may assume that (od T°C for any i > 0.

If (p is in a bound state, let (_; be the last time it was free and let Zy = z((_;). Then

o is in tangential position wrt z(Z;). Moreover, since ((_;, <(1)>) is controlled on the time

interval [0,7] (see Section 1.5.3) and 7((_;) splits correctly into A_;e + B_; <(1)> by our

induction hypothesis, the rejoining of the A_;-term (if it has already taken place) has
negligible effect. This proves that 7((y) again splits correctly and we are done.
The case where (j is free is handled in the following lemma:

LEMMA 7. Let v be a maximal free segment of G,,. If v N ((—6,6) x R) # 0, then there
is a critical point zy with respect to which every ( € v N ((—6,6) x R) is in generalized
tangential position. Moreover, if 7(() = A(()e + B(C)(g) is the splitting in 1.5.2 with
respect to our binding point zy := z(v), then

3¢ = zof < [B(Q)] < 5[¢ — =o.

Let v_ and 74 denote the left and right endpoints of v respectively. (This makes sense
since free segments are roughly horizontal.) If v4 € (=6, ¢) x R, then it is attached to some
Zy € C because it is also in a bound state. Similarly, let Z_ = z(y_) if v— € (=4,6) x R.
The following are all the possible geometric configurations:

Case 1. 7 is stretched across (—0,6) x R, i.e. neither v4 nor v_ is in (—6,6) x R. We
will show that zy lies on ~.

Case 2. v4 isin (—6,6) x R and Z; lies to the left of v4;v_¢ (—6,0) x R. As in Case
1, we will show that zy € ~.

Case 3. Both y_ and 74 arein (—6,0) x R; Z_ lies to the right of v_ and Z; to the left
of v4+. We will also show that zy € 7.
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Case 4. v+ € (=6,0) x R and Z4 is to the right of v4. In this case we will show that Z4
1s a viable candidate for zg.

2.4.2 Proof of Lemma 7.

We continue to use the terminology introduced in Section 2.3.2. Forn € ZT, let A,, > 0
be sufficiently small that the following holds: Let v be a free segment in G, N (—4,6) x R,
and let ¢ = (&,n) and (' = (¢',n') be two points on v with £ — A, < ¢ <€ I Cis “on
the left” of (, then it is either “on the left” or “in the middle” for ('. We assume also
the analogous statement if C is “on the right” of (’. The existence of A,, follows from the
proof of Lemma 6.

We now deal with the four cases discussed in Section 2.4.1.

Case 1. Since v N (—6,8) x R is a C?(b) curve (Corollary to Lemmas 1 and 2), once
we produce a critical point zy € 7, the rest of the assertion will follow. To produce zy we
start with ¢(©) on v with 2-coordinate = %5. Then é(C(O)) must be on the left. We move
left along v by steps of A, to obtain successively ¢V, ¢(®) ... If for some k,C is “in the
middle”, then we are done, because some point on v “sees” 2((¥)) (see Sublemma 3 below)
and the rules of construction of C says that a critical point must have been constructed on
~. Clearly we cannot move left indefinitely and continue to have C “on our left.”

SUBLEMMA 3. Let ¢ = (¥, where ('¥) and v are as above. Then vert dist(2(¢),v) < b,

PROOF: Let 5 be the point on v with the same x-coordinate as 2((), and let é be the point
on v;(¢) with the same z-coordinate as (. Then

12(¢) =l < 1¢ = C|+208[2(¢) — (|
< (CD)s +20b-b165 < h5i0,

|
Case 2. Let dy = |v+ — Z4|. We need the following simple estimate:

SUBLEMMA 4. Let v be as in Case 2, and let ( be a point on v with |( —~v4+| < dy. Then
dlSt(Cv VVlgc(g‘F)) < d?i-

PROOF: Use 74 to capture an unstable leaf 4; on the opposite side of Wit (Z4) with
length(v;) ~ dy. Let n; and /) be the points on 7; and W% (Z4) resp with the same
z-coordinate as y4. Then [} — y4| < di because y4 is in tangential position wrt Zg,
and [n; —y4| < (Cb)™ < di. Also, v; and W% (Z4) are long enough to guarantee that

[7(n;) — ()] < d%. So
ist(C. Wike(24)) < 24} + 2% - dy +(200)d2 < 2.

O
Let Ry = {z € v: |z — 74| < 2d+}. We note that if ( € Ry then C cannot be “in the
middle”. This is because d > e¢~*", which is > b9, and if |2(() — (| < bTos for any
stack, then we will have
horiz dist(2(¢), 24+) > %d_|_,
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and

dist(2(C), Wige(£4)) < df.,

which contradicts the geometry of the critical set.

We start with ((°) = 4. First we claim that C is on the left: “middle” has been ruled
out in the last paragraph, and “right” is not compatible with the position of Z; (Lemma
6). We move left by steps of A, as before until we reach ¢®) with C in the middle. Now
¢%) ¢ R, which guarantees that v extends > %e_a" > 2p" to each side of ¢((¥), and so a
critical point zyp on ~ is assured. The correct splitting of 7 wrt zp is automatic as before.

Case 3. We begin as in Case 2, taking ((°) = v, and moving left in small steps. We must
reach some (¥ with 2(¢(®) in the middle before arriving at v_, otherwise 2(y_) would
be on the left, contradicting the fact that Z_ is to the right of v_. Now ¢*) ¢ R, UR_,
where R_ has the obvious definition. So again a critical point on v is guaranteed.

Case 4. Let d = |y4 — Z4]|, and let n be the point on W (Z4) with the same a-
coordinate as 4. Then | — 4| < 2d* and |7(n) — 7(74)| < d* (an exercise: c.f. the proof
of Sublemma 4). We need to show that every point in 7 is in a generalized tangential
position with respect to Z4. Let (2',y") be the natural coordinate system at Z; (see 1.6.2)
and let ¢ be the function whose graph is the curve 4. Then

lp(—d)| < 2d* + (10b)d* < 1i=d?,
o' (—=d)| < d* 4+ (10b)d < 135,

and |¢"'| < 10b. This proves that [p(z')] < tiz2' for all the relevant '
We also need to know that 7 splits “correctly” at every point on . ThlS is true because
7(v4 ) splits correctly (it is in a bound state) and 7 is a C%(b) curve.
This completes the proof of Lemma 7. L]
We remark that an alternate proof of Lemma 7 is to try to carry out the “capture”

argument in Lemma 4 simultaneously for all points on .

2.4 Proof of Corollary 1.

Part T of Corollary 1 follows from Lemma 1 and Section 1.2. Part II follows from the
correct splitting guaranteed in Proposition 1, the properties of C as discussed in 1.3.3, the
distortion estimates in 1.7.1, and the bound period estimates in 1.6.

2.5 Proof of Proposition 2.

A proof of Proposition 2 is given in sections 2 and 8 of [BC2|; see Lemma 8.9 in
particular. Because the arguments there are a bit sketchy, and this estimate is of central
importance in the construction of SBR measures, we are going to fill in some details. We
will assume the distortion estimate for DT(])< ) durlng bound periods (see 1.7.1), and try
to explain how these estimates can be used to control the distortion of 7; over arbitrarily
long periods of time. The fact that ((, 7) is controlled for all ¢ in question is used implicitly
throughout.

We write

k<q k<q
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where
‘Ttk+1 —DPk (Ctk +Pk )‘

|75 (Ct,)|
(G|

First we show that > S}/ < some C{'. Consider j with t; +pr < j < tg41. Since v, is free
and free segments have uniformly bounded slopes and curvatures, it follows that

Sk = log and Sy = log

‘Ttk+1_]9k (Cék—l—pk)‘ ‘

‘DTCJ, 7 — DT T‘ < const |7,].

“ol! DTy 7 - DTyt

Sis >

J=tr+pi

1
< b const 3l

J

DTQ/ T

which is < const |y, ,,| because Corollary 1 (part I) tells us that
[t | Z e .
Using Corollary 1 again (both parts I and II) we conclude that

"Ytk+1 ‘ > |7tk+pk| > 2 |7tk | :

Hence
Z Si < const |yn| < some CY.

To estimate S}, we first prove the following

SUBLEMMA 5. Let ng, n, € W lie in the same I,; with respect to some Z, € C, and let p

be their common bound period. Then there is C > 0 not depending on 1y, 1|, or zy such
that

o
1Og |TP( ): §0|T/0 770|

770
7p(5) e

Throughout the proof we will use ¢ to denote a generic constant that is positive and
very small.

PROOF OF SUBLEMMA 5: Split

T(no) = Ae + B(g)
) = A+ B (),

where e and €' are the contractive (unit) vectors for the period [0,p]. We will use the
notation

Y

= DTj, e
n

o D7 ¢
e;j = DT} e, '

!
J
wy=DT},(0).  w = DT, (),

o M
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Let Rg be rotation by 6, and let 6 be chosen such that Ry carries w, to a positive multiple
of w),. We will write

:?EZO%: < (D) + (IN) + () + (IV) + (V)

where (I)<(V) are defined and estimated as follows:

‘Rngp + ABuwp| g1or

0 [BTwi [ ©p _ | Bw,|
‘B’w;—I—A’eH |B'wy |’
where B | /|
o — Mo
< 10 = Yol
B[ = 1+5 p—

because of the way 7 and e change with z, and

by 1.7.1(ii), (iii). (Note that the constants Cy and C{ are purely numerical so

!
COC(I) |770 770|
e H

is small if g is chosen sufficiently large.)

1 | Bw,| | Bw,|
(IT) = : ‘ P Ale, — Alel | <le, — €,
)| || Brwy| ™ By [T P
which is < ¢|no — ny| by Lemma 5.5 of [BC2].
1 | Bw,| | Buw,|
III) = |A'e, — PeAle,| < |1 - P
w0 = e = e <

which is < const |no — nj|e” (same as (I)).

1
|7 (9]

which is < eA, < eC{|no — nlet by 1.7.1 (ii) and (iii).

(IV) =

: |R9Alep - Alep| < 16|,

1
(V) = |7_ (77/)| ) |R9A6P - ReAlep| < C|Al - A| < c|770 - 77(l)|
»\"lo
Together these estimates prove the sublemma. L]
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Applying this sublemma to each S}, we obtain

where v, C I, ;.- To estimate this sum, we let m(p) = max{ty : pux = p} for each p, and
use the fact that |y, | > 2|74, | to conclude that

724 | (ol 1
Z < e%/ik < const Z (N) < const zﬂ:?

k<q

This completes the proof of Proposition 2. L]
3. Construction of SBR-measures.

We continue to assume that T' = T}, j, where (a, b) is one of the “good” parameters. Our
strategy is as follows. Put Lebesgue measure m on a piece of W. Transport m forward
by T, and take the ergodic averages of these measures. We will show that any limit point
of these ergodic averages contains at least one component that has absolutely continuous
conditional measures on unstable manifolds. This construction is standard for Axiom A
attractors. The piecewise uniformly hyperbolic case is dealt with in e.g. [Y2], which
contains a simple version of what is done here.

3.1. Bookkeeping on the unstable manifold.

We showed in Lemma 7, Section 2, that every maximal free segment v in WN((—6,6)xR)
is assigned to a critical point with respect to which it is in generalized tangential position.
This critical point will be denoted by z(7y). On ~, it is natural to consider the partition
Pr(4)], where P[q is the partition defined in Section 2.1.4. In the construction below we
will often speak of I;,; on v without explicit mention of P,y

We select a piece of W on which to begin our construction. Let, for instance, zy be
the critical point on Gy, and let A C G1 N ((=6,8) x R) correspond to (e~(Hot1) e=ro),
Let Py = Pp.1|A. We will describe in the next few paragraphs a sequence of partitions
Py < P1 < Py..., such that each P, divides A into a countable number of intervals
— or curve segments rather. Points in P,(z) can be regarded as having trajectories
“indistinguishable” from that of z up to time n.

We consider one element w of Py at a time. Regarding w as bound to z(w) = zg, we let
71 > 0 be the first time when T7w is free and intersects (—¢, ). (We may assume that all
points in 77w become free simultaneously.) If 77w contains some I,,; then we let k; = j;
and go to the next paragraph. If not, then we consider T7*w as bound to z(T7'w) and
wait for it to return again in a free state, say at time j;. From Corollary 1 in Section 2
it is clear that ‘Tj%u‘ > 2 ‘lew‘, so repeating this process for at most a finite number of
times, there will be a free return at time j;, when 77w O some I,;. Set k; = j;.

We now define P,|w for n < ky. Let P, = Py for n < ky. For n = ky, we first let
P lw = T_kl(P[Z(Tklw)] U{(=1,-6),(6,1)}), and obtain Py, from P; by adjoining each
of the two end intervals on Py, |w to its neighbor unless the T*1 -image of this end interval
lies outside of (—¢,¢) and has length > |1, ;.
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We then repeat the argument in the last two paragraphs for each element w’ of Py, .
That is, if ko is the first time after k; when part of T*2w' returns freely to (—6,¢) and
T*w' O some I,; then we cut up w' again at this time according to the locations of T*2z.

Next we introduce a sequence of stopping times 5 < ¢; < ... on A. Let AT and A~ be
the rightmost and leftmost intervals in the partition P of (—6,6). (We may assume that
AT and A~ are fixed intervals not depending on the location of critical points.) Let t; = 0.
For z € A, we define ¢;(2) to be the smallest k¥ > 0 such that T* (P;_;(z)) contains either
AT or A7, t5(2) to be the smallest & > ¢;(z) when T* (Py_1(z)) contains either AT or
A7, and so on. Note that #,(z) could take on the value oo, since it is possible for a point
to keep returning to the shorter intervals which get cut before they get a chance to grow
long. We will prove in Section 3.3, however, that this is an extremely improbable event.

Our construction on P, is virtually identical to that of a similar partition in Section
1 of [BC2] — except of course that our construction takes place on W whereas the one
in [BC2] is carried out in parameter space. Our t,,’s correspond essentially (though not
exactly) to the “escape times” in [BC2].

3.2. Derivative estimates.
Let m denote Lebesgue measure on W, i.e. if v C W is a curve segment, then m(y)
is equal to the arc length of 7. Let TY(m|A) denote the measure with TJ(m|A)(E) =

m(T~7E N A). Clearly the density of T!(m|A) on T?A is given by

j
7dT* (m|A) (z) = ‘DT_jT‘ )

dm N
Our first task is to study how T;Z(m | A) is distributed along W for j = 1,2,.... For this
we use the derivative estimates in Corollary 1. The distortion estimate in Proposition 2
is crucial for controlling local fluctuations in densities along certain segments of W. This
will be important in our construction. Lemma 3 will also be used.

3.3. Frequency of returns.
The aim of this section is to show that a positive measure set of points in A return with
positive frequency to AT UA-.

3.3.1. First escape time estimates.

Consider first the 1-d map f : [—1,1] O satisfying the conditions in Section 1.1. Let ~
be an interval in [—1, 1]. We assume that ~ is either &~ I,; for some r, j, or yN(=6,6) = 0.
(The notation v ~ I,; means that I,; C v C I;'},
I; and its two adjacent intervals.) We define the first escape time function t|. exactly as
t1 1s defined in Section 3.1 — except that we start from ~. This definition is related to
our earlier definition of stopping times t; < 2 < ... on A (had we defined them for our

interval map) by

where I;'} is defined to be the union of

(o) = ti(@) = (s, (o)) (@)

Note that if v = f% (Py,(x)) for some x and does not intersect (—¢,6), then it has é or
—& as one of its end points and has length > |AT|. We claim that for such an interval ~,
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t|, is constant on v and is < M for some M independent of 4. To see this let &y be the
first time f¥14 D some I,;. Using bound estimates similar to those for A% it is easy to
verify that k1 < M = C'log(1/§) and that f/y > C/log(1/§) > 26. Therefore f¥1+ must
contain either AT or A~ and t|, = k1.

When v = I, the following large deviation estimate for ¢|, is proved in Section 2.2 of

[BC2].
LEmMMA 8. ([BC2]). For v ~ I,; and n > 6r

mie €5 tly(@) = n} < e m(y),

Because of the close correspondence between the derivative estimates in 1 and 2 di-
mensions (see Corollary 1), these first escape time estimates apply without change to free
segments v C T*A. We now derive from these estimates the main lemma of Section 3.3.

3.3.2. A lemma.

LEMMA 9. There is a constant C'* such that for all 1 > 0,
A

PRrOOF: For ¢ > 1, let P, be the partition of A into “distinguishable orbits” up to time
t; — 1, i.e. P; refines the partition of A by values of ¢; and

Piltii=ty = Pretlri=)-

This means in particular that for each w € ﬁi, Ttw > AT or A™. Also, since
m{t; = oo} = 0, P; is a genuine partition of A up to a set of measure 0. It suffices
to give a uniform upper bound for

1

We fix w € P; and let v = T%w Then
/(ti+1 —ti)oT " dm < Z/ t
v T,j Ir,j

where y_ and v are those parts of v in (—1,—¢) x R and (4,1) x R resp. From Lemma
8, we see that

Irj ‘|'/ t+_ ‘|‘/ g
¥ T+

oo
Z/ tlr, ;dm < ZZm{z €Lt (z)>n}
T,J Irj r,j n=0
oo
< Z m U Ir,j ‘|‘€_2n_0m U Ir,j ,
n=0 > ri<

— 6
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so that

1 1 n n
Y

m(7) —
< some C.

Our desired estimate then is given by

% /(ti-l-l - tl)dm = % /(ti-l-l — ti) oT % d (Tt’(m|w)>

S ClC,

where C is the distortion constant in Proposition 2. The case ¢ = 0 is simple. L]

3.3.3. A lower bound on the frequency of returns to A*,
Let Ppat = U{w € Py : T"w = AT or A7}

LEMMA 10. There exists a constant a® > 0 such that
1 N

lim N Zmpn,Ai > a* > 0.

N—oo n—0

ProOF: From Lemma 9 we know that

/ thodm < C*n
A

and so

This means that

2nC™*
Z m{z € A:k=t;(z) some it} >n-
k=1

Now for each w € Pir_y with k& = t;(w), there is w' € P, w' C w, such that TFw ~
A" or A~. Moreover
AT
m(w') > m(w) - |2—| . o

These estimates together give the desired result. L]
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3.4. SBR measures as limits of Lebesgue measure on W.

3.4.1 Definition of SBR measures. In this subsection we define precisely what we
mean by SBR-measures. Let F' : M O be an arbitrary C? diffeomorphism of a finite
dimensional manifold and let ¢ be an F-invariant Borel probability measure on M with
compact support. We will assume throughout that at p-a.e. point, there is a strictly
positive Lyaponov exponent. Under these conditions, the unstable manifold theorem of
Pesin [P1] or Ruelle [Ru2] tells us that passing through p-a.e. a there is an unstable
manifold which we denote by W"(z).

A measurable partition @ of M is said to be subordinate to W (with respect to the
measure ) if at p-a.e. x, Q(x) is contained in W*(x) and contains an open neighborhood
of  in W*(x). On each Q(x), there are two measures that are of interest to us. One is the
restriction to Q(z) of the Riemann measure induced on W*(z); let us call this m@. The
other is 4%, where {2} is a canonical family of conditional measures of ;1 with respect to
the partition Q. (For a reference see e.g. Rohlin [Ro].)

Definition. Let F : (M,p) O be as above. We say that p has absolutely continuous
conditional measures on unstable manifolds if for everly measurable partition Q@ subordinate
to W, u€ is absolutely continuous with respect to m€ for p-a.e. .

For ease of reference, we will in this paper refer to invariant probability measures with
absolutely continuous conditional measures on unstable manifolds as Sinai- Bowen-Ruelle

measures or simply SBR-measures™.

3.4.2. Pushing forward Lebesgue measure on W.

Let
Mg = M|A
and
-1
1 "
My = — Tf mo.
n
k=0

We define i} to be the restriction to AT X R of

1
il Tt
LY T mol)
weP;
ti(w)<n

and let /. be defined similarly. From lemma 10 we know that for either {ri}t} or {r}
— let us say {7t} — there is a sequence Ny < Ny < --- such that

a*

m}i(HZ) > for all .

*SBR measures are sometimes defined differently. All the definitions are equivalent for Axiom A attractors,
but not all of them have been shown to be equivalent in the nonuniformly hyperbolic setting.
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Passing to a subsequence if necessary, we may assume that

“ weakly o
mj\} —" some A

and

weakly

m ——" some \.

N;

The following are immediate:

(1) A is a T-invariant Borel measure, whose support is contained in the attractor
A=W;

(2)  the total mass of A is > a*/3;

(3) A is the sum of \ and another Borel measure.

Our plan is to use the geometric properties of A to show that A has at least one component
with absolutely continuous conditional measures on unstable manifolds.

3.4.3. Geometric properties of A
Let ¢1 be the constant in Lemma 3, and let

I={:eAN(AT xR):Jv=0€ T.R* with |[DT7v| <e™/  Vj >0}

Since ‘det DT_I‘ = b~! and the contraction above is uniform, it follows easily that I is
compact, and that for z € T, if v. is the direction contracted by DT~/ in the definition of
', then z — v, is continuous. Moreover, by Lemma 3 we know that supp 7} C T for all
n and that 7(z) = v,.

SUBLEMMA 6. Let z be an accumulation point of | J, supp (/i;}). Then there is a C'-curve
v(z) passing through z such that

(1) v(z) = graph(y) for some ¢ : AT — R;

(2) v(2) C T and its tangent vector at z' is v,s.

PrOOF: Let z; € |J, supp (1)) be such that z; — z. For each z;, let ¢; : AT — R be
the function whose graph is the component of W N (AT x R) containing z;. By the C?(b)-
property of free segments the sequence of second derivatives {¢!} is uniformly bounded.
Hence a subsequence {¢} } of {¢{} converges uniformly. It follows immediately that ¢,
converges in the C'! sense to some ¢ with the properties in Sublemma 6. 0

JFrom Oseledec’s theorem we know that Lyapunov exponents are well defined A\-a.e.
Sublemma 6 tells us that one of the exponents is positive. We also know from general
theory (see [P1] or [Ru2]) that for a.e. point, its local unstable manifold is the unique
curve passing through that point that contracts exponentially in backward time. Thus for
a typical z, y(z) in Sublemma 6 must be the component of W*(z) N (AT x R) containing
z. Let us call it WX, (2).

Let X C AT x R be a measurable set with the following properties: (i) /A\(H2 - X)=0,
and (ii) X is the disjoint union of W -curves. Let Q be the partition of X into WZ -

leaves, and let {;\ZQ} be a canonical family of conditional measures of A. (See Section 3.4.1
for notations.)
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SUBLEMMA 7. The measures ;\ZQ and m2 are equivalent for A-a.e. z.

PROOF: We claim that there is C' > 0 such that for all intervals J C AT, one has
1 -
S« m <o)

for a.e. z. To see this let @, be a sequence of finite partitions of X such that Vz € X,
Qn(z) D WRi(z) for all n, and (), Qn(z) = Wii(2). If some WL, -curve v is contained
in the support of 1M, let p, denote the density of 1 t|y. Proposition 2 tells us that for
all 29,29 € 7,
pal21)
pn(22)
Integrating over WX, -curves in each element of Q,,, we obtain

< (.

1
SIS Ey((T x R)IQa) £ C1J]

for some C independent of J. Our assertion follows from the martingale convergence
theorem. 0

3.4.4. Completing the construction.

First we observe that (AX)2 is equivalent to m2 for A-a.e. z. This is true because
the o-algebra of T-invariant measurable sets is contained in the o-algebra of measurable
sets made up of entire W"-leaves, and that for every ergodic measure v, the conditional
measures of v on local W*"-manifolds are either equivalent to m on a.e. leaf, or they are
singular to m on a.e. leaf.

Let .
d\

X' ={z: — )

{z d/\>0}

and let \' be the saturation of \|xs under T. That is, let r : X' — ZT be the first return
time to X' under T' and let

N =D T X 0 {r > nl)).

We noted above that A|X' has absolutely continuous conditional measures on W"-leaves.
Hence the same is true for \'. Moreover, an invariant measure with absolutely continuous
conditional measures on W*"-leaves is the sum of at most a countable number of ergodic
measures with the same property (see e.g. [L]). We may therefore assume for the rest of
this paper that A* is one of these ergodic components, normalized to give A*(A) = 1. This
is our SBR-measure.

4. Properties of SBR measures on A.

Let A* be the T-invariant ergodic probability measure we constructed in Section 3. The
purpose of this section is to prove

(1) the support of A\* is the entire attractor A (Section 4.2);
(2) T does not admit any other SBR measures (Section 4.3);
(3) (T, A*) is Bernoulli (Section 4.4);

30



and to indicate how the existence of \* implies the corollary in the introduction (see Section

4.1.2).

4.1. Some known facts from the general theory of nonuniformly hyperbolic
systems.

The material in this subsection is not particular to the Hénon maps. We consider an
arbitrary C? diffeomorphism F : M O of a finite dimensional Riemannian manifold pre-
serving an ergodic Borel probability measure p with compact support. It will be assumed
throughout that (F, ) has no zero Lyapunov exponents.

4.1.1. Stable and unstable manifolds.

In [P1] Pesin proved the existence of stable and unstable manifolds in this nonuniform
setting and studied their properties. (Pesin assumed that p is equivalent to Lebesgue.
The case of arbitrary invariant measures is considered by Ruelle [Ru2].) We recall here a
couple of their results, giving precise statements only of what we will use and leaving out
much more that is proved.

We write T, M = E"(x) & E°(x) wherever it makes sense, and for 6 > 0, we let By (x)
and Bj(z) denote the balls of radius ¢ about 0 in E*(z) and E®(x) respectively. Let
Bs(x) = Bf(x) x Bi(z). It is sometimes convenient geometrically to introduce a new
inner product (-,-), on T, M : under (-,-),, E"(x) and E*(x) are perpendicular; whereas

agrees with the given Riemannian metric. Let || - ||,

restricted to E*(x) and E*(x), (-,-),
denote the corresponding norm. The following is true:

There exist Borel subsets I'y C T's C ... of M with p(|JI';) = 1 and sequences of
positive numbers 6,,€, and 6,, possibly | 0 as n T oo, such that (1) and (2) below hold
for every « € I',,. (Think of the I',,’s as uniformly hyperbolic sets that are not necessarily
invariant, with the strength of hyperbolicity deteriorating as n — oc.)

(1) Let T'p(z) = {y € T, : d(z,y) < e,}. Fory € I'y(x), let W¥(y) denote the

connected component of (exp, 1 W*"(y))N Bs, (z) that contains exp, 'y. Then for all
y € ['yp(x), Wiy) is the graph of a function ¢ : By () — Bj (z) with [|[Del[}, <
L= Moreover, as a C'! embedded disk, W2(y) varies continuously with y. An

100 -
analogous statement holds for W7 (y).

(2) Fori = 1,2, let ¥; be either W} (y) for some y € I',,(2) or a plane in Bs,_ (x) parallel
to E*(x). Let ¥{ = %1 N UyEFn(x) W2(y), and let = be the map that takes z € X
to ¥y by sliding along W?(-). Then for every Borel A C 37,

Leb(wA) > 6, Leb(A).

Property (2) is the precise statement of what is called the “absolute continuity of the
We-foliation”. It is proved for “dissipative” systems in [PS].

4.1.2 Generic points for SBR measures.

Let F': (M, i) O be as above. A point « € M is said to be future-generic with respect to p
or simply p-generic if for every continuous function ¢ : M — R, n_lZ?:_Olc,ooFi(x) — [du
as n — oo. In particular, if p is ergodic, then p-a.e. x is p-generic, and if = is p-generic,
then every y € W#(x) is p-generic as well.

The corollary stated in the introduction is an immediate consequence of the following
general fact.
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PROPOSITION 3. Let F : (M,u) O be as above. If i is an ergodic SBR measure with no
zero Lyapunov exponents, then there is a Borel subset Y C M with positive Riemannian
measure such that every y € Y is py-generic.

PROOF: Since p is an SBR measure, there is a piece of unstable manifold v and a set
A C v with mA > 0 such that every « € A is u-generic. (As usual, m denotes the induced
Riemannian measure on v.) Using the absolute continuity of the W*-foliation discussed in
the last subsection, we see that

Y = U We(x)

TEA

has the desired properties. L]

4.1.3. Ergodic properties of SBR measures.

The following is proved by Pesin [P2] when p is equivalent to Riemannian volume
and generalized by Ledrappier [L] to the situation where p has absolutely continuous
conditional measures on W*:

Let u be as above and (F, ) be ergodic. Then there are pairwise disjoint Borel sets
Ai,... A, € M, such that

(1) F(A;) = Ajyq for i < n, F(A,) = Ay;
and

(2) (F™|A;, 1| A;) is Bernoulli for all ¢.

4.2. The support of \*.

Recall the sequence of choices leading to the selection of “good” parameters in [BC2]:
First 6 > 0 is fixed. Then a¢y < a; < 2 are chosen with a¢ very near 2. Next, b is chosen
sufficiently small depending on @y and a;; and finally, for fixed b, “good” maps T, are
selected by varying a € (ag, a1 ).

Consider first the 1-d situation. Assume that ¢ > 0 is fixed, so that A%, the outermost
intervals on the partition of (—6,6) are determined. (See Subsection 3.1 for definitions.)
Let #, be the unique fixed point of f, : [-1,1] O. For a = 2 since f, is topologically
conjugate to its piecewise linear model, |J, s, f; "#2 is dense in [—1,1]. So 3N, € Z7,
intervals A* ¢ A% and a neighborhood V' of #,, such that szOAi D V. Moreover, one
can choose Ny , A* and V such that for all 2 € AT, 2N°:1; is “free”. Chose ag such that
for all a € (ag,2), this picture persists with the same Ny, A* and V.

Returning now to our Hénon maps T, ;, we assume b is sufficiently small that the fixed
point Z, 3 lies in V' X R, and that if v is a curve with small Hausdorff distance from either
AT x {0} or A™ x {0}, then T(f\’flf’y contains a curve with small Hausdorff distance from
V x{0}. Moreover, it is clear from our derivative estimates is Section 2 that if, in addition,
v C W and is a free segment, then TV is a C?(b) curve, which must then intersect W _(2)
with an angle > 7/4 in at least one point.

JFrom our construction of A* in Section 3, it follows that the support of A\* contains
a curve 4 near AT x {0} or A™ x {0} that is the C''-limit of free segments in W. This
guarantees that v intersects W?*(2) transversally, which in turn implies that W% (2) C
supp A\*. Since A = W, it follows that A C supp A\*. The reverse inclusion is obvious.
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4.3 Uniqueness of SBR measures.

Suppose that A\* is not unique, so that there is another SBR measure p on A. Without
loss of generality we may assume that u is ergodic. Fix Ny € Z1 with uT'n, > 0. (See
4.1.1 for definition.) We claim that 3z; € I'x, such that in a neighborhood of z; we have
the following picture: (For notational simplicity let us confuse A C Bsy (21) with exp, A
in the next few paragraphs.)

In B(le(Zl), there is a “rectangle” two of whose sides, 71 and 72, are W} -manifolds.
Let us assume that y; = W (21). The other two “sides” of this “rectangle” are sets of

the form W7 (4;), ¢ = 1,2, where A; is a subset of 41 and W7 (4;) := J.c4, W2 (2). The

sets A1 and A, are to have the following properties:
(1) m(Ay1),m(Az) >0 (m = Leb on 71);
(2) every z € Ay U Ay is generic with respect to p.
Moreover, there is at least one point w € A in the “interior” of our “rectangle”. (See

Figure 1.)

Let us assume this picture for now and complete the proof. We claim that there is a
W*-leaf v with the following properties:

(3) m-a.e. z € v is generic with respect to \*;
(4) ~ connects the “outside” of our “rectangle” to the “inside”.

To see that this claim is valid, recall the geometric properties of A in Section 3 and the
argument in Section 4.2 showing that W}" (%) is the C'! limit of curves with property (3).
Iterating forward, we see that every compact segment of W is the C'! limit of curves with
property (3). Now w € A = W is “inside” our “rectangle”, whereas we may assume that
Z is “outside”. (3) and (4) should now be obvious.

Since 7 clearly cannot intersect 41 or vz, it must intersect W2 (Ay) U W7 (Az). If we
show that this intersection has positive m-measures in 7, then we will have proved that a
positive m-measure set in 7 is generic with respect to both \* and p, forcing p = A*.
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Two points need to be justified. First, the “rectangle” in our picture. Let D = {z €
R? : 2 is generic with respect to u}. Chose z; € 'y, such that

(i) p{z €N, 1 d(z,21) < €} >0 for all € > 0,

(ii) m{z € Wt.(z1) : = € 'y, N D and d*(z,z1) < €} > 0 for all e > 0. (Here

d* := dist along W"(z1).)

Let n = W2 (z1). Then A; and A, can be chosen as subsets of 1 NI'x; N D. To complete
our “rectangle” and to guarantee that some point of A lies inside, it suffices to argue that
arbitrarily near i, there are infinitely many W} -curves. If this was not the case, then by
(i) above we must have py; > 0. A standard argument in nonuniform hyperbolic theory
then tells us that for some for some n > 0, T"v D v and T"|p-»., is, in suitable coordinates,
expanding. (See e.g. [K] for more details.) This implies that @{z1} > 0, contradicting our
assumption that p is SBR.

The other point which perhaps needs some justification is our assertion that

m (3 01 (72, (41) U, (42)) > 0.

We may assume that A is a Cantor set, and is = [\, E, where each E, is the disjoint
union of a finite number of curve segments {E,;,1 < ¢ < i,} in 7;. For each (n,?) let
y,lm and y,’;i be the left and right endpoint of E, ;, and let S, ; be the strip in B(le(zl)
bounded by W7 (yn )W (yn ;) and OBsy, (21). Then clearly (), ; Sn,i = W2 (A1). Let
us assume that v connects the two sides of Si,1 and let 71 be a subsegment of v joining
W2 (yl 1) to W2 (yf,). For each (n,7) with n > 1, choose inductively 7, ; C some 7,1 ;

such that 7, ; joins W7 (yn i) to W2 (y;, ;). Then for every (n,1), we have

m(7y,;) > min dist between WS (yn ;) and WS (yn i)
> ¢ dist (LOAWS (yh ), LOWS (yh )

where L is any line in Bsy (21) parallel to E*(21) and ¢ > 0 is a constant depending only
on the angle between E"(z1) and E°(z1). Using the absolute continuity of the W*-foliation
(see Section 4.1.1) we may then conclude that

m(Tn,:) > ¢-On, - m(A1 N Ey ;)

and hence

m (’y N W;l(A1)> >m (ﬂ UT"”) >c- Oy, - mA.
4.4 Bernoulliness of (T, \*).

In light of Section 4.1.3 it suffices to show that (77, A\*) is ergodic for all n > 1. Let
us fix ng € Z™T and let pg be one of the ergodic components of (7™, \*) with absolutely
continuous conditional measures on W*-manifolds. From our construction of A* it follows
that for some k € Z, po(T*X) > 0, where X is the set in Section 3.4.3. Using again the
fact that points in the same W*-leaf belong in the same ergodic component of T7°, we see
that W (2) C supp o, from which it follows that supp 1o = A. Let Ji; be po normalized.

34



Repeating the argument in Section 4.3 with (T"°, fi,) in place of (T, \*), we see that i,
is the unique SBR measure for 77°. Thus (77°, \*) has only one ergodic component and
our proof is complete.

4.5 Further properties of (T, \*) and an open problem. We mention a couple of facts
about (T, \*) that follow from general nonuniform hyperbolic theory. Let y; > 0 > y2 be
the Lyaponov exponents of (T, A*). We have the entropy formula

h)\* (T) = X1,

where the quantity on the left is metric entropy. (See [P2],[LS].) Using [Y1] and the
entropy formula above, we obtain the following formula for the dimension of A*:

1 1 X1 X1
HD\N )Y =h(T) | —— — | =1—-22=14 ———.
( ) )\( ) (Xl X2> X2 X1—1Ogb

We finish by mentioning a problem the resolution of which would give a more complete
geometric picture of these “good” Hénon maps. Let

B={2cR?:d(T",A) —0asn — cc}.

The set B is called the basin of attraction of A and is known to contain an open neighbor-
hood of A. Proposition 3 in Section 4.1 tells us that a positive Lebesgue measure subset
of B consists of points that are A*-generic. That is to say, the statistics of these orbits
are completely governed by the invariant measure A*. It would be nice to know if this
property holds not just on a large set but almost everywhere in B.
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