
Sinai-Bowen-Ruelle measures for certain H�enon mapsMichael Benedicks and Lai-Sang Young*0. Introduction.We study maps Ta;b : R2 ! R2 de�ned byTa;b(x; y) = (1� ax2 + y; bx); 0 < a < 2; b > 0:In [BC2] it was proved that for a positive measure set of parameters (a; b), Ta;b has atopologically transitive attractor � = �a;b on which there is some hyperbolic behavior.The aim of this paper is to study the statistical properties of these attractors. Using themachinery developed in [BC2] we prove the followingTheorem. There is a set � � R2 with Leb(�) > 0 such that for all (a; b) 2 �, T = Ta;badmits a unique SBR measure ��. Moreover, supp (��) = � and (T; ��) is Bernoulli.A T -invariant Borel probability measure � is called a Sinai-Bowen-Ruelle (SBR) measureif there is a positive Lyaponov exponent �-a.e. and the conditional measures of � onunstable manifolds are absolutely continuous with respect to the Riemannian measureinduced on these manifolds. (A more precise de�nition is given in Section 3.4.1.) Thisnotion is due to Sinai [S1], [S2]. See also [LS]. The signi�cance of these measures isevident in the following corollary.Corollary. For (a; b) 2 �, T = Ta;b has the following property: Let U be a neighborhoodof �. Then there is a set ~U � U with positive Lebesgue measure such that for all continuousfunctions ' : U ! R, 1n n�1Xi=0 ' � T i(x) ! Z 'd��for every x 2 ~U .This corollary follows from our theorem and general nonuniform hyperbolic theory (see[PS,Thm.1] or Section 4.1.2). The property expressed in this corollary is often assumedto be true in physics; it is also taken for granted in numerical experiments. In the case ofAxiom A attractors, mathematical justi�cation of this property is provided by the theoryof Sinai, Bowen and Ruelle (see e.g. [B], [Ru1] and [S2]). It has been conjectured thatmany other attractors admit SBR measures, but as far as we know, the H�enon family andsimilar examples (see next paragraph) are the only nonuniformly hyperbolic attractors forwhich SBR measures have been constructed.Mora and Viana [MV] proved recently that in homoclinic bifurcations of surface dif-feomorphisms, very small attractors with high periods appear for a positive measure set*Benedicks is partially supported by the Swedish Natural Science Research Council (NFR) and the SwedishBoard of Technical Development (STU). Young is partially supported by NSF.



of parameters. These attractors have the same qualitative estimates as those in [BC2].Since our proofs rely only on these qualitative estimates, our results apply there also.This paper is organized as follows. We assume throughout that T = Ta;b, where (a; b)is a pair of \good" parameters, meaning the ones selected in [BC2]. We do not concernourselves with how these parameters are selected. In Section 1 we give a summary of theresults from [BC2] that are relevant to this work. The primary focus of [BC2] is on acertain set of points called \critical points". These points live on a curve W that is theunstable manifold of a �xed point. In Section 2 we shift our attention from the criticalpoints to the action of T on all of W . Our Main Proposition establishes a near completecorrespondence between the dynamics of T jW and that of certain interval maps. An SBRmeasure is constructed in Section 3, where Lebesgue measure on a small piece of W ispushed forward. The ergodic properties of this invariant measure are studied in Section 4.1. Dynamics of certain H�enon maps: results from [BC2].In this section we try to give a self-contained summary of what is known about the\good" H�enon maps. For conceptual simplicity, we will isolate for separate discussionseveral aspects of their dynamics. The reader should be aware that many of these propertiesare related, in the sense that their proofs are very delicately intertwined. Some of the ideasin [BC2] will be expressed here in slightly di�erent language. For instance, we will speak oforbits and vectors as being \controlled" (see sections 1.4 and 1.5). We will also introducethe notion of \generalized tangential position" (Section 1.6).1.1 The one-dimensional model (Section 2 of [BC2]).The b-values considered in [BC2] are extremely small and the entire analysis there ismodeled on that of a certain class of 1-d maps. These are maps of the form f = fa :[�1; 1] 	, where fax = 1� ax2 and a is very near 2. In addition the following conditionsare imposed on f :(1) There is c > 0 (c � log 2) such that jDfn(f0)j � ecn for all n � 0.(2) There is a small real number � > 0 (e.g. � = 10�6) such that jfn0j � e��n for alln � 1.It is proved in [BC2] that the set of parameter values A = fajfa satis�es (1) and (2)ghas positive Lebesgue measure.To study the growth of (fn)0x for x 2 [�1; 1], we have three types of derivative estimatesgiven in sections 1.1.1 { 1.1.3. First some notation: Let � > 0 be a small real number thatis nevertheless � 2 � a. We assume that � = e��0 for some �0 2 ZZ+. For bookkeepingpurposes write (��; �) = �[j�j��0 I�;where I� = (e�(�+1); e��) for � > 0 and I� = �I�� for � < 0. Each I� is furthersubdivided into �2 intervals fI�;jg of equal length.For a 2 A; f = fa has the following properties:2



1.1.1. Derivative estimates away from the critical point.There is c0 > 0 and M0 2 ZZ+ such that(i) if x; : : : ; f j�1x j2 (��; �) and j �M0, then jDf j (x)j � ec0j ;(ii) if x; fx; : : : ; fk�1x j2 (��; �) and fkx 2 (��; �), any k 2 ZZ+, then jDfk(x)j � ec0k.(iii) if x; fx; : : : ; fk�1x j2 (��; �), then jDfk(x)j � �ec0k.1.1.2. Derivative estimates when bound to the critical orbit.Let � = 14�. For x 2 (��; �) de�ne p(x) to be the largest integer p such thatjf jx� f j0j < e��j 8j < p:Then(i) 12 j�j � p(x) � 5j�j 8x 2 I�;(ii) jDfp(x)j � ec0p for some c0 > 0.The orbit of x is said to be bound to the critical orbit during the period j < p. We mayassume that p is constant on each I�;j .1.1.3. Distortion of Dfn.Let P be the partition of [�1; 1] into [�1;��] [ [�; 1] [ S�;j I�;j . For J 2 P, let J+denote the interval consisting of J and its two adjacent intervals in P. Then the followingholds: Assume that ! � [�1; 1] is such that for all k < N , fk! � J+ for some J 2 P.Then there is a constant C, independent of N such thatjDfN (x)jjDfN (y)j � C 8x; y 2 !:1.2. Some geometric properties of H�enon maps.The material in this subsection is quite elementary and is valid for T = Ta;b where (a; b)belongs to a set �0 of the form f(a; b) : a1 < a < a2 < 2; 0 < b < b0g.1.2.1. The unstable manifold W .T has a unique �xed point ẑ in the �rst quadrant. This �xed point is hyperbolic. Itsexpanding direction has slope of order �b=2 and eigenvalue � �2. Its contractive directionhas slope � 2 and eigenvalue � b=2. The global unstable manifold at ẑ is called W . It willplay the rôle of the interval [�1; 1] in our 1-d model.1.2.2. Attracting sets.To guarantee that T has a compact attracting set, we �rst choose a0 < a1 < 2 with a0su�ciently near 2. Then there exists b0 > 0 su�ciently small compared to 2�a1 such thatfor all (a; b) 2 �0 := [a0; a1]� (0; b0], W stays in a bounded region. Moreover, if � = �a;bis the closure of W , then there is an open neighborhood U = Ua;b of � such that for allz 2 U; dist (Tnz;�)! 0 as n!1 ([BC2], Thm 4; see also [BM]).3



1.2.3. Hyperbolicity and resemblance to 1-d behavior outside of (��; �) � R.Let � > 0 be at least as small as needed in our one-dimensional analysis and assumethat b0 � 2�a0 � �. Let s(v) denote the absolute value of slope of the vector v. A simplecalculation shows that if z = (x; y) =2 (��; �) � R and s(v) � �, thens(DTzv) � bjxj � b� ;which we assume to be � �. ([BC2], Lemma 4.5.) This de�nes invariant cones outside of(��; �) � R.For z = (x; y) =2 (��; �) � R and unit vector v with s(v) � �, we have essentially thesame estimates as in 1-dimension. That is, there is c0 > 0 and M0 2 ZZ+ such that(i) if z; : : : ; T j�1z =2 (��; �) � R and j �M0, then jDT jz vj � ec0j ;(ii) if z; Tz; : : : ; T k�1z =2 (��; �)�R and T kz 2 (��; �)�R, any k 2 ZZ+, then jDT kz vj �ec0k;(iii) if z; Tz; : : : ; T k�1z =2 (��; �) � R then jDT kvj � �ec0k.1.2.4. Curvature estimates.Tangencies between stable and unstable manifolds of T are inevitable. In order to showthat some of these tangencies are quadratic, we will need to control the curvature of W .In [BC2], a curve 
 in R2 is called a C2(b) curve if s(
0) � 10b and its curvature � � 10b.The following lemma is used to verify the C2(b) property.Lemma (proved in Section 7.6 of [BC2]). Let t 7! 
(t) be a smooth curve. Write 
n = Tn
and let �n denote the curvature of 
n. Assume there is a c > 0 such that for all t(i) �0(t) � 1;(ii) j
0n(t)j = j
0n�j (t)j � ecj 8j � n;(iii) 
n�j(t) j2 (��; �) � R and s(
0n�j(t)) < � for j = 1; : : : ; 4.Then �n(t) � 10b for all t.The discussion from here on applies only to T = Ta;b, where (a; b) belongs in an induc-tively constructed set � � �0. The set � has the property that for each su�ciently smallb > 0, �b := fa : (a; b) 2 �g is a Cantor set and has positive Lebesgue measure.1.3. The critical set (mostly Sections 5 and 6 of [BC2]).We use the following notation. For A 2 GL(2;R), if v 7! jAvj=jvj is not constant, lete(A) denote the unit vector that is contracted the most by A. Write en(z) = e(DTnz ) if itmakes sense. For z 2W , let � 2 TzR2 denote a unit vector, tangent to W .A certain subset C of W called the critical set is singled out in [BC2] to play the rôleof 0 in 1-d. This set is constructed according to the rule in 1.3.1. Each z0 2 C has theproperty that � (z0) is the most contracted direction, i.e. limn!1 en(z0) = � (z0). This canbe thought of as the moral equivalent to f 0(0) = 0.1.3.1. Location and rule of construction of C.C is located in W \ ((�10b; 10b)�R). It seems likely that it does not lie on any smoothcurve. To give a more precise description of where points of C are located, we divide4



W into segments of di�erent \generations": First, there is a unique point z0 2 C on theroughly horizontal segment of W containing the �xed point ẑ0. In [BC2], the segment ofW between T 2z0 and Tz0 is called G1, the leaf of generation 1. Leaves of generation g � 2are de�ned by Gg := T g�1G1 �Gg�1:We assume (a; b) is su�ciently near (2; 0) so that Sg�27 Gg consists of 226 roughly horizon-tal segments linked by sharp turns near x = �1; y = 0, and that (Sg�27 Gg)\((��; �)�R)consists of 226 C2(b) curves (see Section 1.2.4). If Cg := C \ Si�g Gi, then C27 contains226 points, one on each of these C2(b) curves.For g > 27, the following rule is used. Let � be a number with b � � � e�72, andassume Cg�1 is already de�ned. Consider a maximal piece of C2(b) curve 
 � Gg. If 
contains a segment of length 2�g centered at z00 = (x00; y00), and there is a critical pointz0 = (x0; y0) 2 Cg�1 with x00 = x0, and jy00 � y0j � bg� , � = 1540 , then there is a uniquepoint ẑ0 2 Cg \ 
. Moreover, jẑ0 � z00j � jy00 � y0j 12 . These are the only points of Cg.1.3.2. Remarks on the construction of C.Roughly speaking, certain points z on W with en(z) = � are picked out as approximatecritical points. Once a point is designated an approximate critical point, parameters areexcluded to ensure that a point in C is eventually constructed nearby. The constructionof C itself involves an inductive procedure that is guaranteed to work only for the \good"parameters.As to when to initiate the construction of a critical point, the rules in Section 1.3.1are obviously quite arbitrary. There are two guiding principles. The �rst is that each\distinguishable" critical orbit of length n causes a certain measure set of parameters tobe discarded, so we cannot a�ord to have too many critical points. On the other hand, asin 1-d, when a critical orbit returns to (��; �)�R, we want it to be \bound" to a suitablecritical point of earlier generation. So we must be sure there are enough of these \suitable"critical points. These issues are discussed in Sections 3 and 6 of [BC2].1.3.3. Dynamical properties of C.The parameter selection procedure is also designed to guarantee that every z0 2 C hasthe following properties:(1) For all n � 0, jDTnz0�01�j � ecn for some c � log 2;jDTnz0� j � (Cb)n for some C independent of b;(2) there is a small real number �, say � = 10�6, such that Tnz0 stays a distance of� e��n from certain points of C.The uniform hyperbolicity expressed in (1) is analogous to condition (1) in Section 1.1.We will elaborate on (2) and other dynamical properties of C later on.5



1.3.4. Contracting �elds in neighborhoods of a critical point.Let z0 2 C. When an orbit comes near z0, the course of its interaction with z0 in thenext n iterates is determined to a great extent by the contracting �eld en and expanding�eld e?n near z0. The following facts are proved in Section 5 of [BC2]*:(i) e1 is de�ned everywhere and has slope = 2ax +O(b).(ii) There is � with b� � < 1 such that for all z0 2 C, en is de�ned on Bn(z0) := thedisk of radius (�=5)n about z0. Moreover,jDTnz enj � (Cb)n; 8z 2 Bn:(iii) There is a constant C > 0 such that for all z1; z2 2 Bnjen(z1)� en(z2)j � Cjz1 � z2j:(iv) For (x1; y1); (x2; y2) 2 Bn with jy1 � y2j � jx1 � x2jjen(x1; y1)� en(x2; y2)j = (2a +O(b))jx1 � x2j:(v) For m < n; jen � emj � O(bm) on Bn(z0).Suppose z0 lies on a C2(b) curve 
. Then it follows from (i){(v) that there is a uniquezn0 in 
 \Bn(z0) at which en = � , and that jzn0 � z0j = O(bn).1.4 Controlled orbits.1.4.1 De�nitions.(i) Let z0 = (x0; y0) be a critical point lying on a piece of C2(b) curve 
 �W , and let�0 = (�0; �0) be an arbitrary point in (��; �) � R. We say that �0 is in tangentialposition with respect to z0 if there is ẑ0 = (x̂0; ŷ0) 2 
 with x̂0 = �0 and jŷ0 � �0j <jx̂0 � x0j4.(ii) Let �0 2 W , and let �n = Tn�0. We say that the orbit of �0 is controlled on thetime interval [0;N);N � 1, if the following holds. If �0 j2 C, let n1 < n2 < � � � bethe times when �n is in (��; �) � R. If �0 2 C, take n1 > 0 to be the �rst time �nreturns to (��; �)�R. Then for every ni 2 [0;N); �ni is attached to a critical pointwith respect to which it is in tangential position. This critical point is denoted byz(�ni ) and is called the binding point of �ni . See 1.4.3 for a further requirement onthe assignment �ni 7! z(�ni).1.4.2 Control of critical orbits.A key idea in [BC2] is that through parameter exclusion, it is arranged so that for everyz0 2 C(i) the orbit of z0 is controlled on the time interval [0;1);(ii) jzni � z(zni )j � e��ni 8i � 1;(iii) gen(z(zni )) < � � ni for some small � > 0.*The slight di�erence between the de�nition of en here and that in [BC2] is unimportant.6



(ii) is the precise statement of (2) in 1.3.3. To explain the availability of binding points,consider �rst the following ideal situation: Suppose that zn is a free return, and thatSg<�nGg contains 2[�n]�1 C2(b) curves stretched across (��; �) � R, each containing acritical point. In this case one needs only to consider the curve nearest to zn. Mostlocations of zn are in tangential position relative to the critical point on this curve; badlocations of zn correspond to deleted parameters. In general, some of the 2[�n]�1 piecesof W are missing or partially missing. What is true is that at free returns, zn is alwayssurrounded by a \fairly regular" collection of C2(b) segments f
jg of W . \Fairly regular"here means that gen(
j ) � 3j , length(
j) � �3j and dist(zn; 
j) � b3j (3j < �n). Itis then shown that such a family contains enough critical points for our purposes. (Seesections 6 and 7 of [BC2].)1.4.3 Bound periods.Let z0 2 C, and let �0 be in tangential position with respect to z0. As a �rst approxi-mation we de�ne the bound period ~p(�0; z0) to be the largest k such thatjT j�0 � T jz0j < e��j 8j < k:(Recall that � = 14�.)Now consider �0 whose orbit is controlled on [0;1); and let ~pi = ~p(�ni ; z(�ni )). Notethat it is entirely possible for �n with ni < n < ni + ~pi to return to (��; �) � R, so thatbound periods can be initiated in the middle of bound periods. It is shown in Section6.2 of [BC2] that by modifying slightly the de�nition of ~p, bound periods can be made\nested". More precisely, one can choose fpig1i=1 in such a way that for all i,(i) pi � ~pi and jT pi�ni � T piz(�ni)j � e���pi for some �� � �,(ii) if nj is such that ni < nj < ni + pi, then nj + pj � ni + pi.The bound period between �ni and z(�ni) is then de�ned to be pi. It is further requiredthat if the bound relation between zni and z(zni ) is still in e�ect at time nj > ni, then wemust have z(znj ) = z(Tnj�niz(zni)).1.4.4 Bound and free states.Conceptually, it is convenient to divide a controlled orbit into \free" and \bound" states.Let �0 be as above.� For n � n1, �n is free.� For n1 < n < n1 + p1, �n is said to be in bound state. (During this period �n maymake multiple returns to (��; �)�R, at which times new bindings are formed. Butby our de�nition of pi, these \secondary bound periods" expire at or before n1+p1.)� Let ni be the �rst return to (��; �)�R after n1 + p1. Then �n is free for n1 + p1 �n � ni, and �ni is called a free return.� �n is in bound state again during the period ni < n < ni + pi, and so on.1.5 Keeping track of derivatives.Throughout this subsection we assume that the orbit �0 is controlled on [0;1), withreturn times n1 < n2 < : : : and binding points �ni $ z(�ni) as de�ned in 1.4.1.7



1.5.1 The fold period.For each ni, the fold period of �ni with respect to z(�ni) is de�ned to be a number liwith 2m � li � 3m, where (5b)m � jz(�ni)� �ni j � (5b)m�1:For convenience we will choose li such that ni + li 6= nj ; nj + 1 for any j. (The precisede�nition is given in [BC2], Section 6.3 and does not particularly concern us.) We mentionthree facts about fold periods:(i) The fold period initiated at a return to (��; �) � R is very short compared to thebound period initiated at that time. In fact, l=p � const = log(1=b), which tends to0 as b! 0.(ii) It follows from (i) above and Section 1.4.2 that every z0 2 C has the followingproperty: for every m 2 Z+, there are integers m1 and m2, with m1 � m � m2 andm2 �m1 � const. m= log(1=b), such that zm1 and zm2 are outside all fold periods.(See Lemma 6.5 in [BC2].)(iii) If ni < nj � ni+ li then nj + lj � ni+ li, i.e. a fold period initiated within anotherfold period does not extend beyond that fold period.The role of the fold period will become clear in 1.5.4.1.5.2 The splitting algorithm (section 7.1 of [BC2]).Let v 2 T�0R2 be a tangent vector. The following algorithm is devised in [BC2] to keeptrack of wn(�0; v) := DTn�0v. For each n, we decompose wn(�0; v) intown(�0; v) = w�n(�0; v) +En(�0; v);where w�n and En are de�ned according to the following rules. (We will omit all referencesto (�0; v) from now on.)� For n < n1, let w�n = wn.� At time n1, let e = el1 be the contractive vector �eld around z(�n1). Writewn1 = An1e +Bn1�01�and let w�n1 = Bn1�01�; En1 = An1e:� For n > n1, if n 6= any ni, de�neEn = Xnk<ns.t. nk+lk>nDTn�nk�nk (Ankelk):This of course de�nes w�n as well.� If n = ni for some i > 1, we let e = eli , writeDT�n�1w�n�1 = Ane +Bn�01�and let w�n = Bn�01�:8



This algorithm has no geometric meaning for arbitrary (�0; v). See 1.5.4 for a discussionof the situation for which it is designed.1.5.3. Controlled derivatives along controlled orbits.De�nition. Let �0 =W and let v 2 T�0R2. We say that the pair (�0; v) is controlled on thetime interval [0;N) if the orbit of �0 is controlled on [0;N) and whenever �n 2 (��; �)�R,the splitting algorithm in Section 1.5 gives(�) 3j�n � z(�n)j � jBnj � 5j�n � z(�n)j; M � n � N;where Bn = BnjDT�n�1w�n�1j :If (�) holds, we say that the vector vn = DTn�0v splits correctly.One of the most important properties of T proved in [BC2] is thatfor every z0 2 C; (z0; �01�) is controlled during the time interval [0;1):It is also proved that if �0 is bound to z0 2 C then (�0; �01�) is also controlled during thebound period [0; p).1.5.4 1-dimensional behavior in 2-dimensions.We now give some idea of how the splitting algorithm is used to study Dn�0v where(�0; v) is controlled on [0;1). For de�niteness consider �0 2 C and v = �01�. We claimthat fw�ng1n=0 is essentially 1-d in character, and has properties similar to (fn)0(f0) forf(x) = 1� ax2.As before, let n1 < n2 < : : : be the return times of �0 to (��; �) � R. First w�1 = �10�.For 0 < n < n1, fjw�njg behaves qualitatively like fj(fn)0(f0)jg; see 1.2.3. Let us considern = n1, and let wn = Ane+Bn�01� be the decomposition given by the splitting algorithm.Ignoring the A-term for now, and using the fact that (�0; �01�) is controlled, we see thatjw�n+1j = jw�nj = jBnj � jDT�n�1w�n�1j� 2a j�n � z(�n)j � jDTn�1�1 w�1j;which has an obvious resemblance to j(fn)0(f0)j. Moreover, since w�n+1 = Bn�10� , theaction of DT j on w�n+1 for j < n2 � n1 is again essentially 1-d. The vector DTn2�n1w�n1is split at time n2, and the new B-term is treated similarly.The general philosophy is that the A-terms can, in some sense, be neglected. Let usconsider a simple situation, where the fold period l at time n = n1 expires before the nextreturn to (��; �)�R. We claim that DT l�nAne is extremely short compared to DT l�nBn�01�,so that the e�ect of adding this term at time n+ l is negligible. This is becausejDT l�nAnej � jDT�n�1w�n�1j � (5b)l;9



whereas jDT l�nBn�01�j � jDT�n�1w�n�1j � j�n � z(�n)j � jDT l�n�01�j;and we know that j�n� z(�n)j � (5b)l=2 by the de�nition of l, and also that jDT l�1�n+1�10�j ��ec(l�1) by 1.2.3(iii).In general, the computation is more complicated, but if (�0; v) is controlled one hasjBj j � j�j � z(�j)j at all returns, and the rejoining of the A-terms to w�n at the end of foldperiods has negligible e�ects. (See Section 7.3 of [BC2].)We have made a point of comparing w�n(z0; �01�), z0 2 C, to (fn)0(f0). This parallel isnot complete unless we could guarantee, through parameter exclusion, that for all z0 2 C,jw�n(z0; �01�)j � ecn for some c > 0. This is not exactly what we stated in 1.3.3, but it is infact true.1.6. Dynamics near the \turns".1.6.1. Bound state estimates.Assume that �0 is in tangential position with respect to z0 2 C, and let p and l beits bound and fold periods. We now record some estimates from [BC2] pertaining tothe bound states f�jgpj=0. These estimates rely on the fact that critical orbits have theproperties in sections 1.3.1 and 1.5.3.(i) jT j�0 � T jz0j � j�0 � z0j2jDT jz0�01�j for l � j � p.(For a precise statement, see Section 7.5, in particular Lemma 7.4, of [BC2].)(ii) If j�0 � z0j � e��, � > 0, then 12� � p � 5�.(This follows essentially from (i) and Section 1.3.1.)(iii) ���DT p�0�01���� � j�0 � z0j � ec0p for some c0 > 0.(See Lemma 7.5 of [BC2].)Two points are to be noted here. The �rst is the striking resemblance between theseestimates and those in 1-d. Assertion (i), for instance, says that �0 experiences a quadraticcontraction from its interaction with z0. The second observation we wish to make is thatunlike the situation in 1-d, not all the points near z0 have this \quadratic" behavior. Forinstance, �0 may lie on a piece of stable manifold through z0, and be attracted to z0 forever.Or, if �0 is directly above z0, then we will have jT j�0�T jz0j � j�0� z0j � jDT jz0�01�j insteadof (i) for the �rst few iterates.1.6.2 Generalized tangential positions.We wish to say more precisely for which region the estimates in 1.6.1 hold. For z 2W ,we say that (x0; y0) is the natural coordinate system at z if (0; 0) is at z, the x0-axis lines upwith � (z), and the y0-axis with � (z)?. The following de�nition is not contained in [BC2]but will be useful for us in the next section.De�nition. Let c > 0 be a small number� 2a, say c = 1100 , and let z0 2 C. A point �0near z0 is said to be in generalized tangential position with respect to z0 if in the naturalcoordinate system at z0; �0 = (�0; �0) with j�0j � c�02.Clearly, if �0 is in tangential position wrt z0, then it is in generalized tangential position,because the segment of W containing z0 is a C2(b) curve tangent to the x0-axis at (0; 0).10



While it is not explicitly stated this way, the proofs in [BC2] show in fact that the boundestimates in 1.6.1 hold for all �0 in generalized tangential position wrt z0 2 C. Let us recallbrie
y why this is so:Let p be the bound period between �0 and z0. From 1.3.4 we know that there is acontractive direction �eld de�ned on a small ball about z0. The integral curves of ep areroughly parabolas of the form y0 = const + a(x0 � x0p)2, and have a unique tangency withthe x0-axis at z(p)0 := (x0p; 0). Since jz(p)0 � z0j = O(bp) � jz0 � �0j, for our purposes wemay as well confuse z(p)0 with z0. With this simpli�cation we can think of z0 and �0 aslying on the graph of a function ' : x0-axis ! y0-axis with j'0(x0)j � 2cjx0j. The estimatesin sections 7.4 and 7.5 of [BC2] apply to points on such a curve. What really matters isthat all the tangent vectors to graph(') split correctly wrt ep, which a priori is de�nedonly in a small ball about z0 but is shown in a local induction in [BC2] to be de�ned onthe entire segment of graph(') between z0 and �0. These estimates imply those in 1.6.1.1.7 Distortion estimates during bound periods.In the course of proving some of the estimates in the last few subsections, the followingestimates are used.(i) For all z0 2 C, if �0 is bound to z0 with bound period p then12 � jw�j (�0; �01�)jjw�j (z0; �01�)j � 2 8j < p:This is Assertion 4(a) in [BC2]. It is proved in Lemmas 7.8, 7.9 and on p. 151.(ii) There is a constant C0 > 0 such that 8z0 2 C, if �0 and � 00 are bound to z0 during[0; �], thena. jw��(�0; �01�)jjw��(� 00; �01�)j � exp (C0 ��1Xj=0 �j(�0; � 00)dC(zj ) );where �j(�0; � 00) = max0�i�jj�i � � 0ij anddC(zj) := � jxj j if zj = (xj ; yj ) and jxj j � �jzj � z(zj )j if jxj j � � and z(zj ) is the binding point.b. ^ �w�� ��0; �01�� ; w�� �� 00; �01��� < 2b 12��:These estimates are proved the same time (i) is proved.(iii) There is a constant C 00 > 0 such that if z0, �0 and � 00 are as in (ii) and in addition�0 and � 00 lie on a curve all the tangent vectors of which split correctly with respectto z0 (compare 1.5.3) thenpXj=0 �j(�0; � 00)dC(zj ) � C 00 j�0 � � 00jj�0 � z0j :This is proved on p.p. 151 and 163 of [BC2].11



The constants C0 and C 00 above remain uniformly bounded as � ! 0.2. Dynamics on the unstable manifold W .2.1. Statements of results.Let T = Ta;b be as in Section 1. The purpose of this section is to use the dynamics ofpoints in C to help us understand the dynamics of all points on W . We will prove that thederivative estimates for DTn� � , � 2 W , are completely parallel to those for (fn)0x wheref : [�1; 1] 	 satis�es the conditions in Section 1.1.As usual, f�ng1n=�1 denotes the orbit of �0. Before we begin we need to modify orextend slightly a couple of our de�nitions from Section 1. First we relax our de�nitionof \control" for the orbit of �0 to requiring only that whenever �n 2 (��; �) � R, thereis a critical point z(�n) wrt which �n is in generalized tangential position. (See 1.6.2.)Second, we say that the pair (�0; v) is controlled on the time interval [j;N);�1 < j < N ,if (�j ;DT j�0v) is controlled on [0;N � j), and that (�0; v) is controlled on (�1;N) if itis controlled on [j;N) for all j < N . Note that for all �0 2 W; �j tends to the uniquehyperbolic �xed point ẑ as j ! �1.2.1.1 Main Proposition and Main Corollary.Proposition 1. (Main Proposition). For all �0 2 W , if �i =2 C for all i < N , then thepair (�0; � (�0)) is controlled on the time interval (�1;N).Proposition 1 enables us to describe each �i; i � N , as being in a \free state" or \boundstate" as discussed in 1.4.4. (Technically one needs to specify a starting point for this tomake sense, but since �i ! ẑ as i ! �1, we can think of our trajectory as starting from�j for some negatively very large j.Corollary 1. (Main Corollary). Let �0 2 W , and assume that �i j2 C for all i. Then �iis in a \free state" in�nitely often, and the following holds for �i := DT i�0� :I. Expansion outside of (��; �) � R.There is c0 > 0 and M0 2 ZZ+ such that(i) if �i is free and �i; : : : ; �i+M0 j2 (��; �) � R, thenj�i+M0jj�ij � ecM0 ;(ii) if �i =2 (��; �) � R is free, and k > i is the �rst time �k 2 (��; �) � R thenj�kjj�ij � ec0(k�i):II. Bound period estimates.There is c1 � log 2 such that the following holds: if �i 2 (��; �)�R is free and becomesbound at this time to z(�i) 2 C with bound period p, then(i) if e���1 � j�i � z(�i)j � e��, then 12� � p � 5�;(ii) j�i+j j=j�ij � 3 j�i � z(�i)j � ���DT jz(�i)�01���� � j�i � z(�i)j ec1j ; 0 < j < p;(iii) j�i+pj=j�ij � e 13 c1p. 12



2.1.2. Global distortion estimates.We will need the following distortion estimate for DTn� . Let P = fI�jg be the partitionof (��; �) as described in Section 1.1, i.e.(��; �) = �[j�j��0 I�;where I� = (e�(�+1); e��) for � > 0; I� = �I�� for � < 0, and each I� is furthersubdivided into �2 intervals fI�jg of equal length.For x0 with jx0j � �, we let P[x0] denote a copy of P with 0 \moved" to x0. Moreprecisely, let h : (��; �) ! (��; �) be the piecewise linear homeomorphism taking thepoints ��;�e�(�0+1); x0; e�(�0+1); � to ��;�e�(�0+1); 0; e�(�0+1); � respectively and letP[x0] = h�1P.Furthermore, if 
 is a roughly horizontal curve and z0 = (x0; y0) is such that jx0j � �,then P[z0] = P[x0] is the obvious partition on 
\ ((��; �)�R). Once 
 and z0 are speci�ed,we will speak about I�j as though it was a subsegment of 
. Also, for J = I�j , let J+denote the union of J with its adjacent intervals in P[�].We will use the following notation: if 
0 is a curve segment then 
j = T j
0; �j denotesT j�0 and �j(�0) = DT j�0� etc.Proposition 2. Let 
0 � W \ ((��; �) � R) be a curve segment, and let 0 = t0 < t1 <� � � < tq = N be its free return times. More precisely, for all k < q,(1) all points in 
tk have a common binding point, which we denote by z(k), and 
tk �J+ for some J 2 Pz(k) ;(2) if pk is the bound period between 
tk and z(k), then tk+1 is the smallest j � tk+ pksuch that 
j \ ((��; �) � R) 6= ;.Then for all �0; � 00 2 
0, j�N(�0)jj�N(� 00)j � C1for some C1 independent of 
0 or N .2.1.3 Remarks on the critical set.Recall that in [BC2], the critical set C is constructed according to some seeminglyarbitrary rules. We wish to point out here that C in fact admits certain intrinsic charac-terizations. For instance, Corollary 1 gives the following dynamical characterization of C:Let z0 2W . Thenz0 lies on a critical orbit () limsupn!1 jDTnz0� j <1 () limn!1 jDTnz0� j = 0:In fact, z0 2 C i� jDT jz0� j � (5b)j 8j > 0 and jDTz�1� j > 1:13



We mention also that C admits geometric characterizations. For instance, it is straight-forward to verify using the curvature computations in Section 7.6 of [BC2] that z0 2 Ci� �(z0)� 1 and �(zn) > b�n 8n > 1:2.2 Some lemmas.The lemmas in Section 2.2 are not explicitly stated or proved in [BC2], but their proofsresemble those in [BC2]. We will repeat the shorter arguments and refer the reader to[BC2] for the longer ones.We will write wj(z) := wj(z; �01�) and �j(z) := wj(z; � ), and let w�j (z) and ��j (z) havethe obvious meanings. When we say that a segment 
 � W is \free", it will be assumedimplicitly that 8z 2 
, (z; � ) is controlled during the time interval (�1; 0). The absolutevalue of the slope of a vector is denoted s(v).2.2.1 Slope, curvature and derivative estimates.The purpose of this subsection is to prove the following three lemmas:Lemma 1. Let 
 be a free segment of W . Then(i) 8z 2 
, s(� (z)) < 2b=�;(ii) 8z 2 
 \ ((��; �) � R), s(� (z)) < 10b.Lemma 2. Let 
 be a free segment of W in (��; �) � R. Then �(
) < 10b.It follows immediately from these two lemmas that free segments of W in (��; �) � Rare C2(b) curves. The next lemma is needed in Section 3.Lemma 3. There exists c1 > 0 such that if z 2W \ ((��; �) � R) is in a free state, thenjDT�jz � j � e�c1j 8j � 0:We begin with the following sublemma:Sublemma 1. Let z0 be a point in G1 near the �xed point ẑ, and assume that (z0; � ) iscontrolled on [0; j). If zj =2 (��; �) � R then, s(��j (z0)) < 2b=�.Proof: Proceed by induction exactly as is done in the proof of LI(�0)(a) in Section 7.3of [BC2]. �Proof of Lemma 1: (i) follows immediately from Sublemma 1. To see (ii), note thatT�1z is outside of all fold periods. Apply Sublemma 1 and Section 1.2.3. �Sublemma 2. Let �0 be in generalized tangential position with respect to z0 2 C. Let p bethe bound period between �0 and z0, and let n be the �rst free return of �0 to (��; �)�R.Then there is c > 0 such that(i) jwj(�0)j � ecj 8j < p;(ii) jwn(�0)jjwj(�0)j � ec(n�j) 8j < n: 14



Proof: (i) If zj is outside of all fold periods, thenjwj(�0)j = jw�j (�0)j & jw�j (z0)j � ec�j :(See 1.7.1. for \&" and 1.5.4 for the inequality.) If not, choose k > j such that zk isoutside of all fold periods and k � j < (C= log(1=b)) j. (See 1.5.1.) We then havejwj(�0)j � 5�(C= log(1=b))jec�k � ecj :(ii) If j � p the estimate follows from 1.2.3(ii) so we only need to consider j < pCase 1. zj is outside of all fold periods. We havejwn(�0)jjwj(�0)j & jwn(�0)jjwp(�0)j � jw�p(z0)jjw�j (z0)j :To see that the second factor � ec(p�j), let n1 < n2 < � � � < nk be the times betweenj and p when zj returns freely to (��; �) � R. Write wi(z0) = DTzi�1w�i�1(z0). We knowfrom 1.2.3, 1.5.4 and 1.6.1 (iii) that every factor injw�p(z0)jjwnk(z0)j � jwnk(z0)jjwnk�1(z0)j � : : : � jwn1(z0)jjw�j (z0)jis exponential.Case 2. zj is in a fold period. Let k be the last time it was outside all fold periods.Because of the rule for construction of the fold periods (see 1.5.1(iii)) �j must still be infold relation to z(�k). Let p0 and l0 be the length of the bound period and fold period resp.,initiated at time k. Then p0 < n� k since zn is free andj � k � l0 � Cp0log(1=b) � C(n� k)log(1=b)� C(n� j)log(1=b) + C(j � k)log(1=b) :We move the second term to the left and conclude thatj � k � C 0(n � j)log(1=b) :The same argument as before �nishes the proof. �Proof of Lemma 3: Let z 2 
. If T�iz =2 (��; �) � R 8i > 0 our exponential estimatefollows directly from (1.2.3)(ii). Otherwise suppose �0 = T�nz is the previous free return.It is enough to verify j�n(�0)jj�j(�0)j � ec1(n�j) 0 � j � n:15



(If there is more than one free return between T�jz and z, repeat the argument and usethe chain rule.)From Sublemma 2 (i) we know that en(�0) is well-de�ned. We write� (�0) = Aen(�0) +B�01�and let l be the fold period between �0 and z0 = z(�0).Case 1. j � l. Since � splits correctly at �0, we havejDT k�0B�01�j � jBj eck � jDT k�0Aenj8k � l, and so j�n(�0)jj�j(�0)j & jBj jwn(�0)jjBj jwj(�0)j � ec(n�j)by Sublemma 2 (ii).Case 2. j < l. At most we have j�j(�0)j � 5l. Since l � (C= log(1=b)) n, we are stillguaranteed that j�n(�0)jj�j(�0)j � ecn5(C= log(1=b))n � ec1(n�j):This completes the proof. �Proof of Lemma 2: Choose n so that �0 = T�nz is on the �rst generation G1 of Wclose to the �xed point. Then �(�0) � 1 and the curvature estimate follows immediatelyfrom Lemma 3 and 1.2.4. �2.2.2 Abundance of C2(b) segments of W near free returns.Lemma 4. Let �0 2W \ ((��; �)�R) be free. Then for every m 2 Z+ with 3m < gen(�0),9m0 with m < m0 � 3m and two C2(b) curves 
 and 
0 inW with the following properties:(i) �0 is sandwiched between 
 and 
0 extending � 3�m0 to each side of �0;(ii) dist(�0; 
), dist(�0; 
0) � (Cb)m0 , C = 5e72;(iii) if � and �0 are the two points in 
 and 
0 resp. with the same x-coordinate as �0,then j� (�)� � (�0)j, j� (�0)� � (�0)j � (Cb)m0=6;(iv) gen(
) = m0 + 1, gen(
0) �m0.The proof of Lemma 4 is virtually identical to that of the corresponding result in [BC2]for zn (instead of �0), where z0 2 C and zn is a free return to (��; �) � R. (See Section1.4.2.) We sketch here the main steps of the proof, referring to [BC2] for more details:Outline of Proof of Lemma 4:Step 1. Show that 9m0 2 [m; 3m] such that ��m0 is in a \favorable" position relative to�0. This means that ��m0 is outside of all folding periods, and that 8k < m0, j��m0+k �z(��m0+k)j � e�36k whenever ��m0+k 2 (��; �)�R. (See Lemma 6.6 in [BC2] for a proof.)Step 2. Show that jDT k��m0 � j � e�36k 8k < m0. Idea of proof: Let t1 < � � � < tj bethe free return times of ��m0 . First note that s(� (��m0 )) < 2b=� (Sublemma 1), so that16



jDT t1��m0 � j � ect1 . Between ti and ti+1, use the fact that � splits correctly, and applySublemma 2(i) and 1.6.1(iii). (This is also proved in Lemma 7.2 of [BC2].)Step 3. Show that there is a contractive vector �eld e = em0 de�ned on a strip containing��m0 such that(i) jDT jej � (Cb)j 8j < m; C = 5e72;(ii) there is an integral curve joining ��m0 to two points �10 and �20 on G1 and G2respectively;(iii) About �r0, r = 1; 2, there is a segment 
r � W extending � 3�m0 to each side of�r0 such that each point on 
1 (resp 
2) is joined to a point on G2 (resp G1) by anintegral curve of e.This is proved in Section 5.3 of [BC2].Step 4. Show Tm0
1 and Tm0
2 contain C2(b) curves with the properties as claimed.Idea of proof: Again consider the free return times t1 < � � � < tj of ��m0 . Assuming that
r is not so near the \tips", we verify using the criteria in 1.2.4 that T t1
r (r = 1; 2) isa C2(b) curve. Assume now that T ti
r contains a C2(b) curve 
r;i, trimmed so that itextends by 3�m0 to each side of �rti . We need to know that � splits correctly at every pointon 
r;i. Assuming that, we may view 
r;i as being tied to ��m0+ti for the next ti+1 � tiiterates, and the same argument as in Lemma 2 will tell us that 
r;i+1 is again C2(b). Tosee that � splits correctly on 
r;i, use the following facts: (i) � splits correctly at ��m0+ti ;(ii) j� (�rti) � � (��m0+ti)j < (Cb)ti=6 (see Lemma 7.3 in [BC2]), and (Cb)ti=6 � e�36ti <j��m0+ti � z(��m0+ti)j; (iii) 
r;i is C2(b) and has length � j��m0+ti � z(��m0+ti)j. �Let �0 be as in Lemma 4. Then for every j with 3j+1 < gen(�0), there is mj with3j < mj � 3j+1 and C2(b) curves 
j and 
0j with the properties in Lemma 4. In the futurewe will refer to f
jg and f
0jg as \stacks captured by �0".2.3 Geometry of the critical set.The purpose of this subsection is to establish some regularity in the structure of thefractal set C.2.3.1 A basic lemma.Lemma 5. Let z0 2 C be located in a C2(b) curve 
 �W . Assume that 
 extends to � 2dto each side of z0 and let �0 2 
 be such that j�0 � z0j = d. Then there are no criticalpoints in the disk Bd2(�0) := fz : jz � �0j � d2g.Proof: We will assume that there is a critical point ~z0 2 Bd2(�0) and try to obtain acontradiction.Let us �rst assume that ~z0 lies on a C2(b) curve ~
 �W that extends � d to each side of~z0. Using the notation in Section 1.3, we choose m with bm � d2 and 2d < (�=5)m, andestimate j� (�0) � em(�0)j in 2 di�erent ways:First note that em is de�ned on all of B2d(z0), and that for purpose of comparing em(z0)with em(�0), we may assume em(z0) = � (z0) (see 1.3.4). We therefore havej� (�0) � em(�0)j = (2a+O(b))d:17



Next, we let ~�0 be the point in ~
 with the same x-coordinate as �0 and writejem(�0) � � (�0)j � jem(�0)� em(~z0)j+ jem(~z0)� � (~�0)j+ j� (~�0)� � (�0)j:The �rst two terms are � 5d2 (again see 1.3.4). As for the third term, since 
 and ~
 arenonintersecting C2(b) curves of length � d and j�0 � ~�0j � d2, an easy computation givesj� (�0) � � (~�0)j � 2d. These three terms add up to 2d + 10d2, which is < (2a +O(b)) � d,and we obtain a contradiction.Now the C2(b) curve containing ~z0 may not be long enough. In that case we use therules of construction of C (see 1.3.1) to successively obtain critical points ~z(1)0 , ~z(2)0 , : : : ,~z(k)0 of lower and lower generation. Let G be such that �2G � d � �G, and let i be thesmallest integer with gen(~z(i)0 ) < G. Thenj~z(i)0 � ~z0j � 1Xj=gen(~z(i�1)0 )(b�j ) 12 � 2b�G=2;which we may assume is < d2 and ~z(i)0 lies on a C2(b) curve extending � 3�G > d to eachside on ~z(i)0 . The previous argument can now be repeated with ~z(i)0 in place of ~z0. �2.3.2 View of C from a point in the free state.Lemma 6. Let � 2 Gn \ (��; �) � R be free, and let z0 and z00 be two critical pointswrt which � is in tangential position. Assume that j� � z0j; j� � z00j � b n100 . Then thex-coordinate of � cannot lie between those of z0 and z00.Proof: We assume this scenario occurs. Let d = j� � z0j; d0 = j� � z00j, and supposethat d � d0. Let � be the point on Wuloc(z00) with the same x-coordinate as z0, and letD = j�� z0j. We will show that D� d2+ d02 < (d+ d0)2, which will contradict Lemma 5.The di�culty in comparing Wuloc(z0) and Wuloc(z00) directly is that the two C2(b) curvesmay be too far apart and one of them may not be long enough. (We had a similar problemin the proof of Lemma 5.) So again we rely on curves captured by �.First we use � to capture a segment W0 of W of length > d and with dist(�;W0) < d4.(This is clearly possible, even with d � b n100 .) We further require that W0 be on theopposite side of � as Wuloc(z0). (See Lemma 4.) Let �z0 and �W0 be the points on Wuloc(z0)and W0 respectively with the same x-coordinate as �. Then j�z0 � �W0 j < 2d4; andj� (�z0) � � (�W0)j < 2d2 because Wuloc(z0) and W0 are nonintersecting C2(b) curves thatextend > d to each side of �. Putting this together we haveD0 := dist(z0;W0) < 2d4 + 2d2 � d+ 20b � d2 � d2:Similarly we let W 00 be a segment captured by � on the opposite side of Wuloc(z00). Werequire that W 00 has length > d0 and dist(�;W 00) < d04, so thatD00 := dist(�;W 00) < 2d04 + 2d02 � d+ 20b � d2 � d02:18



Now D is easily estimated as follows: If Wuloc(z0) and Wuloc(z00) are on the same side of�, then D � max(D0;D00). If Wuloc(z0) and Wuloc(z00) are on opposite sides of �, thenD � D0 +D00. �Consider a point � 2 (��; �) � R in the free state. Let f
jgkj=1 be a stack captured by� as discussed in 2.2.2. We may assume that there is a critical point on 
1. Let j(�) besuch that 
j(�) is the 
j of highest generation that contains a critical point, and call thiscritical point ẑ(�). We now �x some terminology to describe the location of C relative to�: We say that C is \in the middle" if there exists a stack f
jgkj=1 captured by � with theproperty that j(�) = k and j� � ẑ(�)j < b 1100 gen(�). If this is not the case, then we say thatC is \on the left" (or \on the right") if for every stack captured by �; ẑ(�) lies on the lefthalf (resp. right half) of 
j(�).We remark that if C is not \in the middle", then it has to be either \on the left" or \onthe right" of �, because � is always in tangential position wrt ẑ(�), and Lemma 6 applies.2.4 Proof of Main Proposition.2.4.1 General strategy.Let Gn be the leaf of generation n (see 1.3.1 for de�nition). We assume it has beenproved that for all �0 2 Gn the pair (�0; � ) is controlled on the time interval (�1; 0),and will show that (�0; � ) is controlled on (�1; 0]. Clearly, we need only to consider�0 2 (��; �) � R and may assume that �0 j2 T iC for any i � 0.If �0 is in a bound state, let ��i be the last time it was free and let ~z0 = z(��i). Then�0 is in tangential position wrt z(~zi). Moreover, since (��i;� 01�) is controlled on the timeinterval [0; i] (see Section 1.5.3) and � (��i) splits correctly into A�ie + B�i � 01� by ourinduction hypothesis, the rejoining of the A�i-term (if it has already taken place) hasnegligible e�ect. This proves that � (�0) again splits correctly and we are done.The case where �0 is free is handled in the following lemma:Lemma 7. Let 
 be a maximal free segment of Gn. If 
 \ ((��; �) � R) 6= ;, then thereis a critical point z0 with respect to which every � 2 
 \ ((��; �) � R) is in generalizedtangential position. Moreover, if � (�) = A(�)e + B(�)�01� is the splitting in 1.5.2 withrespect to our binding point z0 := z(
), then3j� � z0j � jB(�)j � 5j� � z0j:Let 
� and 
+ denote the left and right endpoints of 
 respectively. (This makes sensesince free segments are roughly horizontal.) If 
+ 2 (��; �)�R, then it is attached to some~z+ 2 C because it is also in a bound state. Similarly, let ~z� = z(
�) if 
� 2 (��; �) � R.The following are all the possible geometric con�gurations:Case 1. 
 is stretched across (��; �) � R, i.e. neither 
+ nor 
� is in (��; �) � R. Wewill show that z0 lies on 
.Case 2. 
+ is in (��; �) � R and ~z+ lies to the left of 
+; 
� j2 (��; �) � R. As in Case1, we will show that z0 2 
.Case 3. Both 
� and 
+ are in (��; �)�R; ~z� lies to the right of 
� and ~z+ to the leftof 
+. We will also show that z0 2 
. 19



Case 4. 
+ 2 (��; �)�R and ~z+ is to the right of 
+. In this case we will show that ~z+is a viable candidate for z0.2.4.2 Proof of Lemma 7.We continue to use the terminology introduced in Section 2.3.2. For n 2 Z+, let �n > 0be su�ciently small that the following holds: Let 
 be a free segment in Gn \ (��; �)�R,and let � = (�; �) and � 0 = (�0; �0) be two points on 
 with � ��n � �0 � �. If C is \onthe left" of �, then it is either \on the left" or \in the middle" for � 0. We assume alsothe analogous statement if C is \on the right" of � 0. The existence of �n follows from theproof of Lemma 6.We now deal with the four cases discussed in Section 2.4.1.Case 1. Since 
 \ (��; �) � R is a C2(b) curve (Corollary to Lemmas 1 and 2), oncewe produce a critical point z0 2 
, the rest of the assertion will follow. To produce z0 westart with �(0) on 
 with x-coordinate = 12�. Then ẑ(�(0)) must be on the left. We moveleft along 
 by steps of �n to obtain successively �(1); �(2); � � � . If for some k; C is \in themiddle", then we are done, because some point on 
 \sees" ẑ(�(k)) (see Sublemma 3 below)and the rules of construction of C says that a critical point must have been constructed on
. Clearly we cannot move left inde�nitely and continue to have C \on our left."Sublemma 3. Let � = �(k), where �(k) and 
 are as above. Then vert dist(ẑ(�); 
) < b 1540n.Proof: Let � be the point on 
 with the same x-coordinate as ẑ(�), and let �̂ be the pointon 
j(�) with the same x-coordinate as �. Thenjẑ(�) � �j � j� � �̂j+ 20b jẑ(�) � �̂j< (Cb)n9 + 20b � b n100 � b n540 : �Case 2. Let d+ = j
+ � ~z+j. We need the following simple estimate:Sublemma 4. Let 
 be as in Case 2, and let � be a point on 
 with j� � 
+j < d+. Thendist(�;Wuloc(~z+))� d2+:Proof: Use 
+ to capture an unstable leaf 
j on the opposite side of Wuloc(~z+) withlength(
j) � d+. Let �j and �̂ be the points on 
j and Wuloc(~z+) resp with the samex-coordinate as 
+. Then j�̂ � 
+j < d4+ because 
+ is in tangential position wrt ~z+,and j�j � 
+j < (Cb)mj � d4+. Also, 
j and Wuloc(~z+) are long enough to guarantee thatj� (�j) � � (�̂)j < d2+. Sodist(�;Wuloc(~z+)) < 2d4+ + 2d2+ � d+ + (20b)d2+ � d2+: �Let R+ = fz 2 
 : jz � 
+j < 12d+g. We note that if � 2 R+ then C cannot be \in themiddle". This is because d+ > e��n, which is � b n100 , and if jẑ(�) � �j < b n100 for anystack, then we will have horiz dist(ẑ(�); ~z+) > 13d+;20



and dist(ẑ(�);Wuloc(~z+))� d2+;which contradicts the geometry of the critical set.We start with �(0) = 
+. First we claim that C is on the left: \middle" has been ruledout in the last paragraph, and \right" is not compatible with the position of ~z+ (Lemma6). We move left by steps of �n as before until we reach �(k) with C in the middle. Now�(k) =2 R+, which guarantees that 
 extends > 12e��n � 2�n to each side of �(k), and so acritical point z0 on 
 is assured. The correct splitting of � wrt z0 is automatic as before.Case 3. We begin as in Case 2, taking �(0) = 
+ and moving left in small steps. We mustreach some �(k) with ẑ(�(k)) in the middle before arriving at 
�, otherwise ẑ(
�) wouldbe on the left, contradicting the fact that ~z� is to the right of 
�. Now �(k) =2 R+ [ R�,where R� has the obvious de�nition. So again a critical point on 
 is guaranteed.Case 4. Let d = j
+ � ~z+j, and let � be the point on Wuloc(~z+) with the same x-coordinate as 
+. Then j�� 
+j < 2d4 and j� (�)� � (
+)j < d2 (an exercise: c.f. the proofof Sublemma 4). We need to show that every point in 
 is in a generalized tangentialposition with respect to ~z+. Let (x0; y0) be the natural coordinate system at ~z+ (see 1.6.2)and let ' be the function whose graph is the curve 
. Thenj'(�d)j < 2d4 + (10b)d2 � 1100d2;j'0(�d)j < d2 + (10b)d� 2100d;and j'00j � 10b. This proves that j'(x0)j < 1100x02 for all the relevant x0.We also need to know that � splits \correctly" at every point on 
. This is true because� (
+) splits correctly (it is in a bound state) and 
 is a C2(b) curve.This completes the proof of Lemma 7. �We remark that an alternate proof of Lemma 7 is to try to carry out the \capture"argument in Lemma 4 simultaneously for all points on 
.2.4 Proof of Corollary 1.Part I of Corollary 1 follows from Lemma 1 and Section 1.2. Part II follows from thecorrect splitting guaranteed in Proposition 1, the properties of C as discussed in 1.3.3, thedistortion estimates in 1.7.1, and the bound period estimates in 1.6.2.5 Proof of Proposition 2.A proof of Proposition 2 is given in sections 2 and 8 of [BC2]; see Lemma 8.9 inparticular. Because the arguments there are a bit sketchy, and this estimate is of centralimportance in the construction of SBR measures, we are going to �ll in some details. Wewill assume the distortion estimate for DT j(�)�01� during bound periods (see 1.7.1), and tryto explain how these estimates can be used to control the distortion of �j over arbitrarilylong periods of time. The fact that (�; � ) is controlled for all � in question is used implicitlythroughout.We write log j�N(�0)jj�N(� 00)j =Xk<q S0k +Xk<q S00k ;21



where S0k = log j�pk(�tk)j����pk(�t0k)��� and S00k = log ���tk+1�pk(�tk+pk)�����tk+1�pk(� 0tk+pk)�� :First we show thatPS00k < some C 001 . Consider j with tk+pk � j < tk+1. Since 
j is freeand free segments have uniformly bounded slopes and curvatures, it follows that���DT�j � �DT�0j � ��� � const j
jj:So S00k . tk+1�1Xj=tk+pk ���DT�j � �DT�0j � ������DT�0j � ��� � 1� � constXj j
j j;which is < const j
tk+1j because Corollary 1 (part I) tells us that��
tk+1�� � ec0(tk+1�j) j
j j :Using Corollary 1 again (both parts I and II) we conclude that��
tk+1�� � j
tk+pkj � 2 j
tk j :Hence XS00k < const j
N j < some C 001 :To estimate S0k we �rst prove the followingSublemma 5. Let �0; �00 2 W lie in the same I�j with respect to some ~z0 2 C, and let pbe their common bound period. Then there is C > 0 not depending on �0, �00 or z0 suchthat log j�p(�0)jj�p(�00)j � C j�0 � �00je�� :Throughout the proof we will use c to denote a generic constant that is positive andvery small.Proof of sublemma 5: Split � (�0) = Ae +B�01�� (�00) = A0e0 +B0�01�;where e and e0 are the contractive (unit) vectors for the period [0; p]. We will use thenotation ej := DT j�0e;wj := DT j�0�01�; e0j := DT j�00e0;w0j := DT j�00�01�:22



Let R� be rotation by �, and let � be chosen such that R� carries wp to a positive multipleof w0p. We will write j�p(�0)jj�p(�00)j � (I) + (II) + (III) + (IV) + (V);where (I){(V) are de�ned and estimated as follows:(I) = ���R�Bwp + jBwpjjB0w0pjA0e0p�����B0w0p +A0e0p�� = jBwpjjB0w0pj ;where jBjjB0j � 1 + 5 j�0 � �00je��because of the way � and e change with z, andjwpjjw0pj � 1 + 2C0C 00 j�0 � �00je��by 1.7.1(ii), (iii). (Note that the constants C0 and C 00 are purely numerical soC0C 00 j�0 � �00je��is small if �0 is chosen su�ciently large.)(II) = 1j� (�00)j � ���� jBwpjjB0w0pjA0ep � jBwpjjB0w0pjA0e0p���� � jep � e0pj;which is < cj�0 � �00j by Lemma 5.5 of [BC2].(III) = 1j�p(�00)j � ����A0ep � jBwpjjB0w0pjA0ep���� � ����1� jBwpjB0w0pj���� ;which is < const j�0 � �00je� (same as (I)).(IV) = 1j� (�00)j � jR�A0ep �A0epj � j�j;which is < c�p � cC 00j�0 � �00je� by 1.7.1 (ii) and (iii).(V) = 1j�p(�00)j � jR�Aep �R�A0epj � cjA0 �Aj � cj�0 � �00j:Together these estimates prove the sublemma. �23



Applying this sublemma to each S0k, we obtainq�1Xk=0S0k � C q�1Xk=0 j
tk je��k ;where 
tk � I�kjk . To estimate this sum, we let m(�) = maxftk : �k = �g for each �, anduse the fact that j
tk+1 j � 2j
tk j to conclude thatXk<q � j
tk je��k � const X� j
m(�)je�� � const X� 1�2 :This completes the proof of Proposition 2. �3. Construction of SBR-measures.We continue to assume that T = Ta;b, where (a; b) is one of the \good" parameters. Ourstrategy is as follows. Put Lebesgue measure m on a piece of W . Transport m forwardby T , and take the ergodic averages of these measures. We will show that any limit pointof these ergodic averages contains at least one component that has absolutely continuousconditional measures on unstable manifolds. This construction is standard for Axiom Aattractors. The piecewise uniformly hyperbolic case is dealt with in e.g. [Y2], whichcontains a simple version of what is done here.3.1. Bookkeeping on the unstable manifold.We showed in Lemma 7, Section 2, that every maximal free segment 
 inW\((��; �)�R)is assigned to a critical point with respect to which it is in generalized tangential position.This critical point will be denoted by z(
). On 
, it is natural to consider the partitionP[z(
)], where P[�] is the partition de�ned in Section 2.1.4. In the construction below wewill often speak of I�j on 
 without explicit mention of P[z(
)].We select a piece of W on which to begin our construction. Let, for instance, z0 bethe critical point on G1, and let � � G1 \ ((��; �) � R) correspond to (e�(�0+1); e��0 ).Let P0 = P[z0]j�. We will describe in the next few paragraphs a sequence of partitionsP0 � P1 � P2 : : : , such that each Pn divides � into a countable number of intervals| or curve segments rather. Points in Pn(z) can be regarded as having trajectories\indistinguishable" from that of z up to time n.We consider one element ! of P0 at a time. Regarding ! as bound to z(!) = z0, we letj1 > 0 be the �rst time when T j! is free and intersects (��; �). (We may assume that allpoints in T j! become free simultaneously.) If T j1! contains some I�j then we let k1 = j1and go to the next paragraph. If not, then we consider T j1! as bound to z(T j1!) andwait for it to return again in a free state, say at time j2. From Corollary 1 in Section 2it is clear that ��T j2!�� � 2 ��T j1!��, so repeating this process for at most a �nite number oftimes, there will be a free return at time jl, when T jl! � some I�j . Set k1 = jl.We now de�ne Pnj! for n � k1. Let Pn = P0 for n < k1. For n = k1, we �rst letP 0k1 j! = T�k1(P[z(Tk1!)] [ f(�1;��); (�; 1)g), and obtain Pk1 from P 0k1 by adjoining eachof the two end intervals on P 0k1 j! to its neighbor unless the T k1 -image of this end intervallies outside of (��; �) and has length � jI�0j j.24



We then repeat the argument in the last two paragraphs for each element !0 of Pk1 .That is, if k2 is the �rst time after k1 when part of T k2!0 returns freely to (��; �) andT k2!0 � some I�j then we cut up !0 again at this time according to the locations of T k2z.Next we introduce a sequence of stopping times t0 < t1 < : : : on �. Let �+ and �� bethe rightmost and leftmost intervals in the partition P of (��; �). (We may assume that�+ and �� are �xed intervals not depending on the location of critical points.) Let t0 � 0.For z 2 �, we de�ne t1(z) to be the smallest k > 0 such that T k (Pk�1(z)) contains either�+ or ��, t2(z) to be the smallest k > t1(z) when T k (Pk�1(z)) contains either �+ or��, and so on. Note that tn(z) could take on the value 1, since it is possible for a pointto keep returning to the shorter intervals which get cut before they get a chance to growlong. We will prove in Section 3.3, however, that this is an extremely improbable event.Our construction on Pn is virtually identical to that of a similar partition in Section1 of [BC2] | except of course that our construction takes place on W whereas the onein [BC2] is carried out in parameter space. Our tn's correspond essentially (though notexactly) to the \escape times" in [BC2].3.2. Derivative estimates.Let m denote Lebesgue measure on W , i.e. if 
 � W is a curve segment, then m(
)is equal to the arc length of 
. Let T j� (mj�) denote the measure with T j� (mj�) (E) =m(T�jE \�). Clearly the density of T j� (mj�) on T j� is given bydT j� (mj�)dm (z) = ��DT�jz � �� :Our �rst task is to study how T j� (m j �) is distributed along W for j = 1; 2; : : : . For thiswe use the derivative estimates in Corollary 1. The distortion estimate in Proposition 2is crucial for controlling local 
uctuations in densities along certain segments of W . Thiswill be important in our construction. Lemma 3 will also be used.3.3. Frequency of returns.The aim of this section is to show that a positive measure set of points in � return withpositive frequency to �+ [��.3.3.1. First escape time estimates.Consider �rst the 1-d map f : [�1; 1] 	 satisfying the conditions in Section 1.1. Let 
be an interval in [�1; 1]. We assume that 
 is either � Irj for some r; j, or 
 \ (��; �) = ;.(The notation 
 � Irj means that Irj � 
 � I+rj , where I+rj is de�ned to be the union ofIrj and its two adjacent intervals.) We de�ne the �rst escape time function tj
 exactly ast1 is de�ned in Section 3.1 | except that we start from 
. This de�nition is related toour earlier de�nition of stopping times t1 < t2 < : : : on � (had we de�ned them for ourinterval map) by ti+1(x) � ti(x) = �tjfti(Pti (x))� (x):Note that if 
 = f ti (Pti(x)) for some x and does not intersect (��; �), then it has � or�� as one of its end points and has length � j�+j. We claim that for such an interval 
,25



tj
 is constant on 
 and is � M for some M independent of 
. To see this let k1 be the�rst time fk1
 � some I�j . Using bound estimates similar to those for �� it is easy toverify that k1 � M = C log(1=�) and that f j
 � C= log(1=�) � 2�. Therefore fk1
 mustcontain either �+ or �� and tj
 = k1.When 
 � Irj , the following large deviation estimate for tj
 is proved in Section 2.2 of[BC2].Lemma 8. ([BC2]). For 
 � Irj and n � 6rmfx 2 
 : tj
(x) � ng � e�n=20m(
):Because of the close correspondence between the derivative estimates in 1 and 2 di-mensions (see Corollary 1), these �rst escape time estimates apply without change to freesegments 
 � T k�. We now derive from these estimates the main lemma of Section 3.3.3.3.2. A lemma.Lemma 9. There is a constant C� such that for all i � 0,Z� (ti+1 � ti) dm � C�:Proof: For i � 1, let bPi be the partition of � into \distinguishable orbits" up to timeti � 1, i.e. bPi re�nes the partition of � by values of ti andbPijfti=kg = Pk�1jfti=kg:This means in particular that for each ! 2 bPi, T ti! � �+ or ��. Also, sincemfti = 1g = 0, bPi is a genuine partition of � up to a set of measure 0. It su�cesto give a uniform upper bound for1m(!) Z! (ti+1 � ti) dm; ! 2 bPi:We �x ! 2 bPi and let 
 = T ti! ThenZ
(ti+1 � ti) � T�ti dm �Xr;j ZIr;j tjIrj + Z
� tj
� + Z
+ tj
+ ;where 
� and 
+ are those parts of 
 in (�1;��) � R and (�; 1) � R resp. From Lemma8, we see thatXr;j ZIr;j tjIr;jdm �Xr;j 1Xn=0m�z 2 Ir;j : tjIr;j (z) � n	� 1Xn=08<:m0@ [jrj�n6 Ir;j1A+ e� n20m0@ [jrj�n6 Ir;j1A9=; ;26



so that 1m(
) Z
(ti+1 � ti) � T�tidm � 1j�+j ( 1Xn=0 �2e� n6 + e� n20 (2�)�+ 2M)� some C:Our desired estimate then is given by1m(!) Z!(ti+1 � ti) dm = 1m(!) Z
(ti+1 � ti) � T�ti d �T ti(mj!)�� C1C;where C1 is the distortion constant in Proposition 2. The case i = 0 is simple. �3.3.3. A lower bound on the frequency of returns to ��.Let Pn;�� = Sf! 2 Pn : Tn! = �+ or ��gLemma 10. There exists a constant �� > 0 such thatlimN!1 1N NXn=0 mPn;�� � �� > 0:Proof: From Lemma 9 we know thatZ� tn dm � C�nand so mfz 2 � : tn(z) � 2nC�g � 12 m(�):This means that 2nC�Xk=1 mfz 2 � : k = ti(z) some ig � n � 12 m(�):Now for each ! 2 Pk�1 with k = ti(!), there is !0 2 Pk; !0 � !, such that T k! ��+ or ��. Moreover m(!0) �m(!) � j�+j2 � 1C1 :These estimates together give the desired result. �27



3.4. SBR measures as limits of Lebesgue measure on W .3.4.1 De�nition of SBR measures. In this subsection we de�ne precisely what wemean by SBR-measures. Let F : M 	 be an arbitrary C2 di�eomorphism of a �nitedimensional manifold and let � be an F -invariant Borel probability measure on M withcompact support. We will assume throughout that at �-a.e. point, there is a strictlypositive Lyaponov exponent. Under these conditions, the unstable manifold theorem ofPesin [P1] or Ruelle [Ru2] tells us that passing through �-a.e. x there is an unstablemanifold which we denote by Wu(x).A measurable partition Q of M is said to be subordinate to W (with respect to themeasure �) if at �-a.e. x, Q(x) is contained in Wu(x) and contains an open neighborhoodof x inWu(x). On each Q(x), there are two measures that are of interest to us. One is therestriction to Q(x) of the Riemann measure induced on Wu(x); let us call this mQx . Theother is �Qx , where f�Qx g is a canonical family of conditional measures of � with respect tothe partition Q. (For a reference see e.g. Rohlin [Ro].)De�nition. Let F : (M;�) 	 be as above. We say that � has absolutely continuousconditional measures on unstable manifolds if for everly measurable partitionQ subordinateto Wu, �Qx is absolutely continuous with respect to mQx for �-a.e. x.For ease of reference, we will in this paper refer to invariant probability measures withabsolutely continuous conditional measures on unstable manifolds as Sinai-Bowen-Ruellemeasures or simply SBR-measures*.3.4.2. Pushing forward Lebesgue measure on W .Let m0 = mj�and mn = 1n n�1Xk=0 T k� m0:We de�ne m̂+n to be the restriction to �+ � R of1n X!2bPiti(!)<n T ti� (m0j!);and let m̂�n be de�ned similarly. From lemma 10 we know that for either fm̂+n g or fm̂�n g| let us say fm̂+n g | there is a sequence N1 < N2 < � � � such thatm̂+Ni(R2) � ��3 for all i:*SBR measures are sometimes de�ned di�erently. All the de�nitions are equivalent for Axiom A attractors,but not all of them have been shown to be equivalent in the nonuniformly hyperbolic setting.28



Passing to a subsequence if necessary, we may assume thatm̂+Ni weakly�! some �̂and mNi weakly�! some �:The following are immediate:(1) � is a T -invariant Borel measure, whose support is contained in the attractor� =W ;(2) the total mass of �̂ is � ��=3;(3) � is the sum of �̂ and another Borel measure.Our plan is to use the geometric properties of �̂ to show that � has at least one componentwith absolutely continuous conditional measures on unstable manifolds.3.4.3. Geometric properties of �̂.Let c1 be the constant in Lemma 3, and let� = fz 2 � \ (�+ � R) : 9 v j= 0 2 TzR2 with ��DT�jz v�� � e�c1j 8j � 0g:Since ��det DT�1�� = b�1 and the contraction above is uniform, it follows easily that � iscompact, and that for z 2 �, if vz is the direction contracted by DT�j in the de�nition of�, then z 7! vz is continuous. Moreover, by Lemma 3 we know that supp m̂+n � � for alln and that � (z) = vz.Sublemma 6. Let z be an accumulation point of Sn supp (m̂+n ). Then there is a C1-curve
(z) passing through z such that(1) 
(z) = graph(') for some ' : �+ ! R;(2) 
(z) � � and its tangent vector at z0 is vz0 .Proof: Let zi 2 Sn supp (m̂+n ) be such that zi ! z. For each zi, let 'i : �+ ! R bethe function whose graph is the component of W \ (�+�R) containing zi. By the C2(b)-property of free segments the sequence of second derivatives f'00i g is uniformly bounded.Hence a subsequence f'0ikg of f'0ig converges uniformly. It follows immediately that 'ikconverges in the C1 sense to some ' with the properties in Sublemma 6. �>From Oseledec's theorem we know that Lyapunov exponents are well de�ned �̂-a.e.Sublemma 6 tells us that one of the exponents is positive. We also know from generaltheory (see [P1] or [Ru2]) that for a.e. point, its local unstable manifold is the uniquecurve passing through that point that contracts exponentially in backward time. Thus fora typical z, 
(z) in Sublemma 6 must be the component of Wu(z) \ (�+ � R) containingz. Let us call it Wu�+(z).Let X � �+ � R be a measurable set with the following properties: (i) �̂(R2 �X) = 0,and (ii) X is the disjoint union of Wu�+-curves. Let Q be the partition of X into Wu�+-leaves, and let f�̂Qz g be a canonical family of conditional measures of �̂. (See Section 3.4.1for notations.) 29



Sublemma 7. The measures �̂Qz and mQz are equivalent for �̂-a.e. z.Proof: We claim that there is C > 0 such that for all intervals J � �+, one has1C jJ j � �̂Qz (J � R) � C jJ jfor a.e. z. To see this let Qn be a sequence of �nite partitions of X such that 8z 2 X,Qn(z) � Wu�+(z) for all n, and TnQn(z) = Wu�+(z). If some Wu�+-curve 
 is containedin the support of m̂+n , let �n denote the density of m̂+n j
. Proposition 2 tells us that forall z1; z2 2 
, �n(z1)�n(z2) � C1:Integrating over Wu�+-curves in each element of Qn, we obtain1C jJ j � E�̂((J � R)jQn) � C jJ jfor some C independent of J . Our assertion follows from the martingale convergencetheorem. �3.4.4. Completing the construction.First we observe that (�jX)Qz is equivalent to mQz for �̂-a.e. z. This is true becausethe �-algebra of T -invariant measurable sets is contained in the �-algebra of measurablesets made up of entire Wu-leaves, and that for every ergodic measure �, the conditionalmeasures of � on local Wu-manifolds are either equivalent to m on a.e. leaf, or they aresingular to m on a.e. leaf.Let X 0 = fz : d �̂d � > 0g:and let �0 be the saturation of �jX0 under T . That is, let r : X 0 ! ZZ+ be the �rst returntime to X 0 under T and let �0 = 1Xn=0 Tn� (�j(X 0 \ fr > ng)):We noted above that �jX 0 has absolutely continuous conditional measures on Wu-leaves.Hence the same is true for �0. Moreover, an invariant measure with absolutely continuousconditional measures on Wu-leaves is the sum of at most a countable number of ergodicmeasures with the same property (see e.g. [L]). We may therefore assume for the rest ofthis paper that �� is one of these ergodic components, normalized to give ��(�) = 1. Thisis our SBR-measure.4. Properties of SBR measures on �.Let �� be the T -invariant ergodic probability measure we constructed in Section 3. Thepurpose of this section is to prove(1) the support of �� is the entire attractor � (Section 4.2);(2) T does not admit any other SBR measures (Section 4.3);(3) (T; ��) is Bernoulli (Section 4.4); 30



and to indicate how the existence of �� implies the corollary in the introduction (see Section4.1.2).4.1. Some known facts from the general theory of nonuniformly hyperbolicsystems.The material in this subsection is not particular to the H�enon maps. We consider anarbitrary C2 di�eomorphism F : M 	 of a �nite dimensional Riemannian manifold pre-serving an ergodic Borel probability measure � with compact support. It will be assumedthroughout that (F; �) has no zero Lyapunov exponents.4.1.1. Stable and unstable manifolds.In [P1] Pesin proved the existence of stable and unstable manifolds in this nonuniformsetting and studied their properties. (Pesin assumed that � is equivalent to Lebesgue.The case of arbitrary invariant measures is considered by Ruelle [Ru2].) We recall here acouple of their results, giving precise statements only of what we will use and leaving outmuch more that is proved.We write TxM = Eu(x) �Es(x) wherever it makes sense, and for � > 0, we let Bu� (x)and Bs� (x) denote the balls of radius � about 0 in Eu(x) and Es(x) respectively. LetB�(x) = Bu� (x) � Bs�(x). It is sometimes convenient geometrically to introduce a newinner product h�; �i0x on TxM : under h�; �i0x; Eu(x) and Es(x) are perpendicular; whereasrestricted to Eu(x) and Es(x); h�; �i0x agrees with the given Riemannian metric. Let k � k0xdenote the corresponding norm. The following is true:There exist Borel subsets �1 � �2 � : : : of M with �(S�i) = 1 and sequences ofpositive numbers �n; �n and �n, possibly # 0 as n " 1, such that (1) and (2) below holdfor every x 2 �n. (Think of the �n's as uniformly hyperbolic sets that are not necessarilyinvariant, with the strength of hyperbolicity deteriorating as n!1.)(1) Let �n(x) = fy 2 �n : d(x; y) < �ng. For y 2 �n(x), let Wux (y) denote theconnected component of (exp�1x Wu(y))\B�n (x) that contains exp�1x y. Then for ally 2 �n(x); Wux (y) is the graph of a function ' : Bu�n(x) ! Bs�n(x) with kD'k0x �1100 . Moreover, as a C1 embedded disk, Wux (y) varies continuously with y. Ananalogous statement holds for W sx (y).(2) For i = 1; 2, let �i be eitherWux (y) for some y 2 �n(x) or a plane in B�n(x) parallelto Eu(x). Let �01 = �1 \Sy2�n(x)W sx(y), and let � be the map that takes z 2 �01to �2 by sliding along W sz (�). Then for every Borel A � �01,Leb(�A) � �n Leb(A):Property (2) is the precise statement of what is called the \absolute continuity of theW s-foliation". It is proved for \dissipative" systems in [PS].4.1.2 Generic points for SBR measures.Let F : (M;�) 	 be as above. A point x 2M is said to be future-generic with respect to �or simply �-generic if for every continuous function ' :M ! R; n�1�n�1i=0 '�F i(x) ! R 'd�as n !1. In particular, if � is ergodic, then �-a.e. x is �-generic, and if x is �-generic,then every y 2W s(x) is �-generic as well.The corollary stated in the introduction is an immediate consequence of the followinggeneral fact. 31



Proposition 3. Let F : (M;�) 	 be as above. If � is an ergodic SBR measure with nozero Lyapunov exponents, then there is a Borel subset Y � M with positive Riemannianmeasure such that every y 2 Y is �-generic.Proof: Since � is an SBR measure, there is a piece of unstable manifold 
 and a setA � 
 with mA > 0 such that every x 2 A is �-generic. (As usual, m denotes the inducedRiemannian measure on 
.) Using the absolute continuity of the W s-foliation discussed inthe last subsection, we see that Y := [x2AW s(x)has the desired properties. �4.1.3. Ergodic properties of SBR measures.The following is proved by Pesin [P2] when � is equivalent to Riemannian volumeand generalized by Ledrappier [L] to the situation where � has absolutely continuousconditional measures on Wu:Let � be as above and (F; �) be ergodic. Then there are pairwise disjoint Borel setsA1; : : : ; An 2M , such that(1) F (Ai) = Ai+1 for i < n, F (An) = A1;and(2) (FnjAi; �jAi) is Bernoulli for all i.4.2. The support of ��.Recall the sequence of choices leading to the selection of \good" parameters in [BC2]:First � > 0 is �xed. Then a0 < a1 < 2 are chosen with a0 very near 2. Next, b is chosensu�ciently small depending on a0 and a1; and �nally, for �xed b, \good" maps Ta;b areselected by varying a 2 (a0; a1).Consider �rst the 1-d situation. Assume that � > 0 is �xed, so that ��, the outermostintervals on the partition of (��; �) are determined. (See Subsection 3.1 for de�nitions.)Let x̂a be the unique �xed point of fa : [�1; 1] 	. For a = 2 since f2 is topologicallyconjugate to its piecewise linear model, Sn�0 f�n2 x̂2 is dense in [�1; 1]. So 9N0 2 Z+,intervals ~�� � ��, and a neighborhood V of x̂2, such that fN02 ~�� � V . Moreover, onecan choose N0 , ~�� and V such that for all x 2 ~��, fN02 x is \free". Chose a0 such thatfor all a 2 (a0; 2), this picture persists with the same N0, ~�� and V .Returning now to our H�enon maps Ta;b, we assume b is su�ciently small that the �xedpoint ẑa;b lies in V � R, and that if 
 is a curve with small Hausdor� distance from either�+ � f0g or �� � f0g, then TN0a;b 
 contains a curve with small Hausdor� distance fromV �f0g. Moreover, it is clear from our derivative estimates is Section 2 that if, in addition,
 �W and is a free segment, then TN0
 is a C2(b) curve, which must then intersectW sloc(ẑ)with an angle � �=4 in at least one point.>From our construction of �� in Section 3, it follows that the support of �� containsa curve 
 near �+ � f0g or �� � f0g that is the C1-limit of free segments in W . Thisguarantees that 
 intersects W s(ẑ) transversally, which in turn implies that Wuloc(ẑ) �supp ��. Since � =W , it follows that � � supp ��. The reverse inclusion is obvious.32



4.3 Uniqueness of SBR measures.Suppose that �� is not unique, so that there is another SBR measure � on �. Withoutloss of generality we may assume that � is ergodic. Fix N1 2 Z+ with ��N1 > 0. (See4.1.1 for de�nition.) We claim that 9z1 2 �N1 such that in a neighborhood of z1 we havethe following picture: (For notational simplicity let us confuse A � B�N1 (z1) with expz1 Ain the next few paragraphs.)In B�N1 (z1), there is a \rectangle" two of whose sides, 
1 and 
2, are Wuz1-manifolds.Let us assume that 
1 = Wuz1(z1). The other two \sides" of this \rectangle" are sets ofthe form W sz1(Ai), i = 1; 2, where Ai is a subset of 
1 and W sz1(Ai) := Sz2Ai W sz1(z). Thesets A1 and A2 are to have the following properties:(1) m(A1);m(A2) > 0 (m = Leb on 
1);(2) every z 2 A1 [A2 is generic with respect to �.Moreover, there is at least one point w 2 � in the \interior" of our \rectangle". (SeeFigure 1.)
Let us assume this picture for now and complete the proof. We claim that there is aWu-leaf 
 with the following properties:(3) m-a.e. z 2 
 is generic with respect to ��;(4) 
 connects the \outside" of our \rectangle" to the \inside".To see that this claim is valid, recall the geometric properties of �̂ in Section 3 and theargument in Section 4.2 showing that Wuloc(ẑ) is the C1 limit of curves with property (3).Iterating forward, we see that every compact segment of W is the C1 limit of curves withproperty (3). Now w 2 � = �W is \inside" our \rectangle", whereas we may assume thatẑ is \outside". (3) and (4) should now be obvious.Since 
 clearly cannot intersect 
1 or 
2, it must intersect W sz1(A1) [W sz2(A2). If weshow that this intersection has positive m-measures in 
, then we will have proved that apositive m-measure set in 
 is generic with respect to both �� and �, forcing � = ��.33



Two points need to be justi�ed. First, the \rectangle" in our picture. Let D = fz 2R2 : z is generic with respect to �g. Chose z1 2 �N1 such that(i) �fz 2 �N1 : d(z; z1) < �g > 0 for all � > 0,(ii) mfz 2 Wuloc(z1) : z 2 �N1 \ D and du(z; z1) < �g > 0 for all � > 0. (Heredu := dist along Wu(z1).)Let 
1 =Wuz1(z1). Then A1 and A2 can be chosen as subsets of 
1\�N1 \D. To completeour \rectangle" and to guarantee that some point of � lies inside, it su�ces to argue thatarbitrarily near 
1, there are in�nitely many Wuz1-curves. If this was not the case, then by(i) above we must have �
1 > 0. A standard argument in nonuniform hyperbolic theorythen tells us that for some for some n > 0, Tn
 � 
 and TnjT�n
 is, in suitable coordinates,expanding. (See e.g. [K] for more details.) This implies that �fz1g > 0, contradicting ourassumption that � is SBR.The other point which perhaps needs some justi�cation is our assertion thatm �
 \ �W sz1(A1) [W sz1(A2)�� > 0:We may assume that A1 is a Cantor set, and is = T1n=1 En where each En is the disjointunion of a �nite number of curve segments fEn;i; 1 � i � ing in 
1. For each (n; i) letyln;i and yrn;i be the left and right endpoint of En;i, and let Sn;i be the strip in B�N1 (z1)bounded by W sz1(yln;i);W sz1 (yrn;i) and @B�N1 (z1). Then clearly TnSi Sn;i =W sz1(A1). Letus assume that 
 connects the two sides of S1;1 and let �1 be a subsegment of 
 joiningW sz1(yl1;1) to W sz1(yr1;1). For each (n; i) with n > 1, choose inductively �n;i � some �n�1;jsuch that �n;i joins W sz1(yln;i) to W sz1(yrn;i). Then for every (n; i), we havem(�n;i) � min dist between W sz1(yln;i) and W sz1(yrn;i)� c � dist �L \W sz1(yln;i); L \W sz1(yrn;i)� ;where L is any line in B�N1 (z1) parallel to Eu(z1) and c > 0 is a constant depending onlyon the angle between Eu(z1) and Es(z1). Using the absolute continuity of theW s-foliation(see Section 4.1.1) we may then conclude thatm(�n;i) � c � �N1 �m(A1 \ En;i)and hence m �
 \W sz1(A1)� � m \n [i �n;i! � c � �N1 �mA1:4.4 Bernoulliness of (T; ��).In light of Section 4.1.3 it su�ces to show that (Tn; ��) is ergodic for all n � 1. Letus �x n0 2 ZZ+ and let �0 be one of the ergodic components of (Tn0 ; ��) with absolutelycontinuous conditional measures on Wu-manifolds. From our construction of �� it followsthat for some k 2 Z+; �0(T kX) > 0, where X is the set in Section 3.4.3. Using again thefact that points in the same Wu-leaf belong in the same ergodic component of Tn0, we seethat Wuloc(ẑ) � supp �0, from which it follows that supp�0 = �. Let �0 be �0 normalized.34



Repeating the argument in Section 4.3 with (Tn0 ; �0) in place of (T; ��), we see that �0is the unique SBR measure for Tn0. Thus (Tn0 ; ��) has only one ergodic component andour proof is complete.4.5 Further properties of (T; ��) and an open problem. We mention a couple of factsabout (T; ��) that follow from general nonuniform hyperbolic theory. Let �1 > 0 > �2 bethe Lyaponov exponents of (T; ��). We have the entropy formulah��(T ) = �1;where the quantity on the left is metric entropy. (See [P2],[LS].) Using [Y1] and theentropy formula above, we obtain the following formula for the dimension of ��:HD(��) = h��(T ) �� 1�1 � 1�2� = 1� �1�2 = 1 + �1�1 � log b :We �nish by mentioning a problem the resolution of which would give a more completegeometric picture of these \good" H�enon maps. LetB = fz 2 R2 : d(Tn;�)! 0 as n!1g:The set B is called the basin of attraction of � and is known to contain an open neighbor-hood of �. Proposition 3 in Section 4.1 tells us that a positive Lebesgue measure subsetof B consists of points that are ��-generic. That is to say, the statistics of these orbitsare completely governed by the invariant measure ��. It would be nice to know if thisproperty holds not just on a large set but almost everywhere in B.References[B] Bowen, R., Equilibrium states and the ergodic theory of Anosov di�eomorphisms, Lecture Notes inMath. # 470, Springer-Verlag (1975).[BC1] Benedicks, M. & Carleson, L., On iterates of x 7! 1 � ax2 on (�1; 1), Ann. Math. 122 (1985),1{25.[BC2] Benedicks, M. & Carleson, L., The dynamics of the H�enon map, Ann. Math. 133 (1991), 73{169.[BM] Benedicks, M. & Moeckel, R., An attractor for the H�enon map, Preprint ETH, Z�urich.[BY] Benedicks, M. & Young, L.S.,Random perturbations and invariant measures for certain one-dimen-sional maps., To appear in Ergod. Theory & Dyn. Systems.[L] Ledrappier, F., Propri�et�es ergodiques des mesures de Sinai, Publ. Math. IHES 59 (1984), 163{188.[LS] Ledrappier, F. & Strelcyn, J.-M., A proof of the estimation from below in Pesin's entropy formula,Ergod. Th. & Dynam. Sys. 2 (1982), 203{219.[LY] Ledrappier, F. & Young, L.-S., The metric entropy of di�eomorphisms. Part I. Characterization ofmeasures satisfying Pesin's formula. Part II. Relations between entropy, exponents and dimension,Ann. Math. 122 (1985), 509{539, 540{574.[MV] Mora, L. & Viana, M., Abundance of strange attractors, IMPA reprint (1991).[K] Katok, A., Lyapunov exponents, entropy and periodic orbits for di�eomorphisms, Publ. Math.I.H.E.S. 51 (1980), 137{174. 35
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