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Abstract

We prove the emergence of chaotic behavior in the form of horseshoes and strange
attractors with SRB measures when certain simple dynamical systems are kicked at
periodic time intervals. The settings considered include limit cycles and stationary
points undergoing Hopf bifurcations.

This paper is about a mechanism for producing chaos. The scheme consists of periodic kicks
interspersed with long periods of relaxation. We apply it to some very tame dynamical
settings, such as limit cycles and stable equilibria undergoing Hopf bifurcations, and prove
the appearance of chaotic behavior under reasonable conditions.

The results in this paper, beginning with the statements in Section 1, are rigorous. The
rest of this introduction is devoted to a nontechnical discussion of some of the ideas and
issues surrounding this work.

Main results

In Theorem 1, we prove that when suitably kicked, all limit cycles can be turned into
strange attractors with strong stochastic properties.

Theorems 2 and 3 have to do with Hopf bifurcations. In the absence of forcing, the
picture for a supercritical Hopf bifurcation is classical and well known: a stable fixed point
loses its stability when a pair of complex conjugate eigenvalues crosses the imaginary axis,
resulting in the appearance of a limit cycle which increases in diameter as it moves away
from the newly unstable fixed point. Subjecting this system to periodic kicks, we prove that
if there is a sufficiently strong “twist” at the fixed point and the forcing is of a suitable type,
then in lieu of the limit cycle, a strange attractor sometimes emerges from the bifurcation.

The appearance of horseshoes is also proved in both situations.
The results above are related as follows. For arbitrary limit cycles, even though the

geometric principles are clear, it is difficult to formulate a quantitative statement without
detailed knowledge of the local geometry. In Hopf bifurcations, this information is contained
in the first three derivatives at the bifurcating point. It can be condensed, in fact, into a
single number called the “twist factor”.

Horseshoes and strange attractors

We clarify what is meant by “horseshoes” and “strange attractors”.
“Horseshoes” as introduced by Smale [S] are invariant Cantor sets on which the map is

hyperbolic and has positive topological entropy. Since they are not attracting, these sets
represent, from the observational point of view, transient chaos.
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The term “strange attractor” is used in this paper to summarize a number of precisely
defined dynamical properties that together imply sustained, observable chaos. These prop-
erties include, for example, positive Lyapunov exponents starting from almost all initial
conditions in the basin, statistical coherence in the sense of orbits in large sets organizing
themselves according certain special invariant measures called SRB measures, and strong
stochastic properties such as exponential correlation decay for sequences of observations of
the type ϕ,ϕ ◦ F, · · · , ϕ ◦ Fn, · · · . (See Sect. 1.1 for more detail.)

Horseshoes are created by “stretch-and-fold” type actions. They are robust; once they
develop, they persist. The creation of strange attractors with SRB measures requires a
balance that is considerably more subtle. For the logistic family, it has been proved that
two kinds of maps with opposite behaviors – those with invariant densities and those with
periodic sinks – partition parameter space in a complicated way; see e.g. [L]. There is
evidence of a similar picture for invertible maps in 2D; see e.g. [N], [WY2]. Though yet
unsubstantiated, current thinking is that outside of the Axiom A category, SRB measures
in general is a “positive probability phenomenon” rather than one that occurs on open sets
of parameter space, even when the map has stretch-and-fold geometry.

Our results in Theorems 1–3 reinforce this emerging picture: Our a priori conditions
for the existence of strange attractors are more stringent than those for horseshoes. When
these conditions are met, we prove the presence of horseshoes for open sets of parameters,
and strange attractors for maps corresponding to parameters in a positive measure set.

A mechanism for the production of chaos

Our scheme relies on the natural forces of shear to exaggerate the irregularities brought
on (deliberately) by the kick. We explain – on an intuitive level – how this works in Hopf
bifurcations in 2D.

For argument’s sake, let 0 be the fixed point and Γ = {r =
√
µ} be the emerging

limit cycle, µ being the bifurcation parameter. Suppose we give the system a kick in the
radial direction, distorting the shape of Γ as shown in Fig. 1(a). Generically, the unforced
system has a “twist”, meaning points at different distances from 0 rotate at different speeds.
During the relaxation period, some points on this distorted circle rotate ahead of others. A
stretch-and-fold action results if the twist is sufficiently strong; see Fig. 1(b).

(b)(a)

Figure 1 A Hopf attractor
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Supporting analysis

We focus on strange attractors as the corresponding proofs for horseshoes are quite
simple. Our analysis is based on [WY1] and [WY3], which together contain one of the very
few rigorous theories of strange attractors besides Axiom A theory. We discuss briefly below
the approach in these two papers and how to apply the results.

[WY1] and [WY3] are about maps with attracting sets on which there is strong dissi-
pation and (in most places) a single direction of instability. Two-parameter families {Ta,b}
are considered. Roughly speaking, a is a parameter that allows us to effect changes along
the unstable direction and b is the inverse of “dissipation”. The idea is to try to pass to
the singular limit at b = 0 to obtain a one-paramter family of 1D maps. Now 1-dimensional
objects are considerably simpler than n-dimensional objects, and the theory of 1D maps
is fairly well developed. We proved in [WY1] and [WY3] that if the singular limit above
makes sense, and if the resulting family of 1D maps has certain good properties, then some
of these properties can be passed back to b > 0, and they in turn allow us to prove the
desired results on strange attractors for a positive measure set of a.

Parts of the analysis in [WY1] and [WY3] have their origins in [BC], which contains
the pioneering work on Hénon attractors. Some of the ideas in [BC] in turn come from the
theory of 1D maps; see [J] in particular.

We emphasize that in contrast to earlier results, the theory in [WY1] and [WY3] is
“generic”, in the sense that the conditions under which it holds pertain only to certain
general characteristics of the maps and not to specific formulas or contexts. To prove
Theorems 1–3, we will show that the present setting fits into the framework of [WY1] and
[WY3], and then leverage the results in these two papers.

Relation to previous works

An application of [BC] to show the presence of strange attractors (in a weaker sense
than explained above) in 2D homoclinic bifurcations is given in [MV].

The first evidence of chaotic behavior in periodically forced systems goes back to the
work of Cartwright and Littlewood on the van der Pol oscillator [CL]. Levinson [Ln] made
considerable progress on a simplified (linearized) model of this system, for which thirty
years later Levi [Li] proved the existence of horseshoes. Numerical work by Zaslavsky [Z]
suggested the presence of strange attractors for an even simpler second order equation. Not
knowing about [Z], we studied again the same equation recently and proved (rigorously)
the existence of horseshoes and strange attractors [WY2].

To our knowledge, the forcing of limit cycles had not been studied previously in the gen-
erality of Theorem 1 of this paper. Also, to our knowledge, chaotic behavior in connection
with Hopf bifurcations had not been observed or predicted prior to this work.

We mention also a connection of a different kind. Not all of our perturbations are small;
large kicks are sometimes needed to “break” limit cycles. But under suitable circumstances,
such as when the twist factor in a Hopf bifurcation is large, we prove that strange attractors
may result from mild disturbances applied at infrequent time intervals. In this regard our
results are in the direction of Ruelle and Takens [RT]; see also [NRT]. Our mechanism,
which relies on shear, is different and perhaps more natural.
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1 Precise Statements of Results

1.1 Horseshoes and strange attractors

In this subsection we isolate and define precisely a number of dynamical properties com-
monly associated with chaos. These are the properties which will appear in our results
stated in Sects. 1.2–1.4.

The following is a slight generalization of Smale’s horseshoe as introduced in [S]:

(i) Let f : M → M be a C1 embedding of a Riemannian manifold M into itself with a
compact invariant set Λ. We say f |Λ is uniformly hyperbolic if there is a continuous
splitting of the tangent bundle over Λ into Eu ⊕ Es such that Df |Eu is expanding
and Df |Es is contracting (i.e. ∃C > 0 and λ > 1 s.t. for all v ∈ Eu, ‖Dfn(v)‖ ≥
Cλn‖v‖ ∀n ≥ 0 etc.)

(ii) Let Σn = {1, 2, · · · , n}Z, and let σ : Σn → Σn be the shift operator. Then (Σn, σ) is
called the full shift on n symbols.

An embedding f : M →M is said to have a horseshoe if

(H) for some N,n ∈ Z
+, fN has a uniformly hyperbolic invariant set Λ ⊂ M such that

fN |Λ is topologically conjugate to (Σn, σ).

Horseshoes are robust in the sense that they persist under perturbations of f . Having
a horseshoe is a notion of topological chaos. It implies in particular that f has positive
topological entropy. But since horseshoes usually have Lebesgue measure zero, it is entirely
possible for a map to have a horseshoe and at the same time to have the orbit of Lebesgue-
almost every point tend to a stable equilibrium.

Next we describe a dynamical picture which is chaotic not only from the topological
but also from the probabilistic point of view; it represents a stronger form of chaos. Let
f be an embedding such that f(Ū) ⊂ U for some open set U . In this paper, we refer to
Ω := ∩n≥0f

n(Ū ) as an attractor and U as its basin. Our dynamical results include a number
of properties frequently associated with “strange attractors”. (We regard the term “strange
attractor”, which embodies a wide range of ideas, as descriptive rather than technically
defined.) We give precise definitions of the relevant properties below, and label them as
(SA1)–(SA4). Later on, to remind the reader what (SA1)–(SA4) stands for, we will refer
to an attractor f |Ω having these properties as “a strange attractor with (SA1)–(SA4)”.

First, we recall the definition of SRB measures. An invariant Borel probability measure ν
for f is called an SRB measure if f has a positive Lyapunov exponent ν-almost everywhere
and the conditional measures of ν on unstable manifolds are equivalent to the Riemannian
volume on these leaves. See [Y] for more information.

The following are properties we associate with the idea of strange attractors:

(SA1) Positive Lyapunov exponents For Lebesgue-a.e. x ∈ U , the orbit of x has a
positive Lyapunov exponent, i.e.

lim
n→∞

1

n
log ‖Dfn(x)‖ > 0.
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(This property is important enough that we state it separately; it, in fact, follows
from (SA2).)

(SA2) Existence of SRB measures and basin property

(a) f admits at least one and at most finitely many ergodic SRB measures all of which
have no zero Lyapunov exponents; we denote them by ν1, · · · , νr;

(b) for Lebesgue-a.e. x ∈ U , ∃j = j(x) such that for every continuous function
ϕ : U → R,

1

n

n−1
∑

i=0

ϕ(f ix) →
∫

ϕdνj .

(SA3) Statistical properties of dynamical observations

(a) For every ergodic SRB measure ν and every Hölder continuous function ϕ : Ω → R,
the sequence {ϕ ◦ f i}i=0,1,··· obeys a Central Limit Theorem, i.e. if

∫

ϕdν = 0, then
1√
n

∑n−1
0 ϕ ◦ f i converges in distribution to the normal distribution, and the variance

is strictly positive unless ϕ ◦ f = ψ ◦ f − ψ for some ψ.

(b) Suppose that for some N ≥ 1, fN has an SRB measure ν that is mixing. Then
given a Hölder exponent η, ∃τ = τ(η) < 1 such that for all ϕ,ψ : Ω → R Hölder with
exponent η, ∃K = K(ϕ,ψ) such that ∀n ≥ 1,

∣

∣

∣

∣

∫

(ϕ ◦ fnN)ψdν −
∫

ϕdν

∫

ψdν

∣

∣

∣

∣

≤ K(ϕ,ψ)τn.

We remark that all ergodic SRB measures with no zero Lyapunov exponents are
mixing up to a finite factor.

The first part of (SA2) can sometimes be strengthened to

(SA4) Uniqueness of SRB measure and ergodic properties

(a) f admits a unique (and hence ergodic) SRB measure ν;

(b) (f, ν) is mixing or, equivalently, isomorphic to a Bernoulli shift.

1.2 Chaotic behavior in periodically kicked limit cycles

A periodic orbit γ of a flow is called a limit cycle if it is attractive, a hyperbolic limit cycle
if the eigenvalues of its section maps have moduli < 1. It is well known that hyperbolic
limit cycles are robust, so that given a flow ϕt with such a cycle and a time T , if κ is a
small perturbation, then under the iteration of ϕT ◦κ, all points continue to be attracted to
a simple closed curve. Theorem 1 describes some possible scenarios if larger perturbations
are permitted.

Theorem 1 (Creation of strange attractors from limit cycles) Let ϕt be a C4

flow on an n-dimensional Riemannian manifold M . Assume that ϕt has a hyperbolic limit
cycle γ. For n = 2, assume also that the normal bundle to γ is orientable. Let U be a
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neighborhood of γ, and let Emb3(U,M) be the space of C3 embeddings of U into M . Then
there is an open set E ⊂ Emb3(U,M) such that the following hold for every κ ∈ E:

(i) ϕT ◦ κ has a horseshoe (i.e. Property (H)) for all large T ;
(ii) ϕT ◦ κ has a strange attractor with (SA1)–(SA4) for a positive measure set of T .

Remark The ideas embodied in Theorem 1 can be expressed in many different ways. The
presence of a parameter is important, for as we will see in Section 2, our conclusion will
invariably be that maps corresponding to a positive measure set of parameters have strange
attractors. In Theorem 1, we have chosen – for convenience – this parameter to be T , the
time interval between consecutive kicks. One can, for example, fix T and use instead one
or more parameter families of kick maps with suitable properties. We leave these variants
of our results to the reader, our intent here being only to illustrate the general idea.

1.3 Periodically forced Hopf bifurcations in 2D

The following are the general equations for a Hopf bifurcation in 2D, written in normal
form in complex coordinates:

ż = λµz + aµz
2z̄ + bµz

3z̄2 + · · · (1)

where µ ∈ R is a parameter, aµ, bµ ∈ C are constants, and λµ = µ+ (ω + µγµ)i, γµ, ω ∈ R,
ω 6= 0. That is to say, at the bifurcation parameter µ = 0, the linearized equation at the
bifurcation point z = 0 is ż = iωz, and that λµ crossses the imaginary axis from left to
right as µ increases past zero.

For our purposes, it is convenient to write these equations in polar coordinates:

ṙ = (µ− αµr
2)r + r5gµ(r, θ) ,

θ̇ = ω + γµµ+ βµr
2 + r4hµ(r, θ) .

(2)

Here ω,αµ, βµ, γµ ∈ R are constants, and gµ and hµ are functions which we will assume to be
of class C4; all depend smoothly on µ. (ω and γ are as in equation (1), while a = −α+ iβ.)
In addition to assuming ω 6= 0, we consider in this paper the case α > 0, i.e. the case of a
generic supercritical Hopf bifurcation. From the main terms of equation (2), one sees that

as µ increases from 0, an attracting invariant circle of radius ≈
√

µ
α

appears.

For references on Hopf bifurcations, see e.g. [H], [GH] and [MM].
From here on we omit the subscript µ in the constants in our equations except where

the dependence on µ is at issue.

To the system described by equation (2), we give a kick which leaves 0 fixed and which
is radial in space and periodic in time, resulting in

ṙ = (µ− αr2)r + r5g(r, θ) + rΦ(θ)

∞
∑

n=0

δ(t− nT ) ,

θ̇ = ω + γµ+ βr2 + r4h(r, θ) .

(3)

Here δ(·) is the usual δ-function, Φ : S1 → R is a C3 function, and T is the period of
the kick. Equation (3) is to be interpreted as follows: Since the kicks are radial, they do
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not affect the θ-coordinate. At times t = nT , n = 0, 1, 2, · · · , the r-coordinate changes
abruptly from r−(nT ) to r+(nT ) where r+(nT ) := limε→0 rε(ε) and rε(t) is the solution of
ṙε = 1

ε
rεΦ(θ) with rε(0) = r−(nT ), that is to say,

r+(nT ) = r−(nT ) eΦ(θ(nT )).

During the time interval (nT, (n + 1)T ), the system evolves according to (2) with initial
position (r+(nT ), θ(nT )) and final position (r−((n + 1)T ), θ((n + 1)T )). For each µ, let
Fµ,T : R

2 → R
2 denote the time-T -map of the system defined by (3).

Theorem 2 Assume β0

α0
6= 0, and let Φ0 : S1 → R be a C3 function with nondegenerate

critical points. We consider forcing functions Φ of the form Φ = AΦ0, A ∈ (0,∞). In (1)
and (2) below, we assert that if | β0

α0
|A is sufficiently large, then there is a set of parameters

(µ, T ) for which Fµ,T has chaotic behavior.

(1) (Existence of horseshoes) There exists K0 = K0(Φ0) such that if | β0

α0
|A > K0,

then for all µ in some interval (0, µ0), there exist T0(µ) = O( 1
µ
) and an open set

∆0(µ) ⊂ (T0,∞), ∆0(µ) roughly 2π
ω

-periodic, such that for all T ∈ ∆0(µ), Fµ,T has a

horseshoe, i.e. Property (H). If | β0

α0
|A is sufficiently large, then ∆0(µ) = (T0,∞).

(2) (Existence of strange attractors) There exists K1 = K1(Φ0) such that if | β0

α0
|A >

K1, then the following hold for all µ in some interval (0, µ1): There exist T1(µ) = O( 1
µ
)

and a positive Lebesgue measure set ∆1(µ) ⊂ (T1,∞), ∆1(µ) roughly 2π
ω

-periodic, such

that for all T ∈ ∆1(µ), Fµ,T has a strange attractor with (SA1)–(SA3). If | β0

α0
|A is

sufficiently large, then Fµ,T has property (SA4) as well.

In general, the larger the twist factor | β0

α0
|, the weaker the forcing required. If | β0

α0
| >> 1,

then very mild disturbances (with e.g. Φ(θ) = ε sin θ) at periodic time intervals can give
rise to strange attractors. Also, T1 is usually >> T0.

Remark Our purpose here is to bring to light the phenomenon of chaos appearing in
periodically-kicked Hopf bifurcations, and to call the reader’s attention to a relevant set of
mathematical tools. No attempt has been made to formulate the most general results. In
Theorems 2 and 3, for example, kicks that are not radial can be considered. To gain more
insight into what kind of kicks are suitable, see the intuitive explanation in the introduction.
For alternate formulations regarding parameters, see the Remark following Theorem 1.

1.4 Hopf bifurcations in higher dimensions

The following is a direct generalization of our results in 2D: Consider as before a 1-parameter
family of equations on R

n having a stationary solution at 0. Suppose that for µ < 0, the
eigenvalues at 0 all have strictly negative real parts, and that at µ = 0, a pair of complex
conjugate eigenvalues crosses the imaginary axis. We decompose the tangent space at 0 into
R

n = V c ⊕ V s where V c is the 2-dimensional subspace corresponding to the leading pair
of eigenvalues and V s is the invariant subspace corresponding to the rest. The existence
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of a center manifold W c tangent to V c is well known. We assume that the bifurcation is
supercritical, and that the unforced equation restricted to W c is in normal form. (See Sect.
4.5 for the precise meaning of this last condition.)

To this bifurcation, we add a forcing that is radial. Let Sn−1 = {u ∈ R
n : ‖u‖ = 1},

Φ̄0 : Sn−1 → R, and ū = u
‖u‖ . We consider a forcing of the form AΦ̄0(ū)u

∑∞
n=0 δ(t− nT ).

Theorem 3 Let α and β be as in equation (2) for the unforced equation restricted to W c,
and assume Φ̄0|(Sn−1∩V c) is C3 with nondegenerate critical points. Then results analogous
to those in Theorems 2 hold.

2 Sufficient Conditions for Strange Attractors (and Horse-
shoes)

In this section we recall some results on the existence of strange attractors of certain types.
The framework here is considerably more general than that in Section 1; it is unrelated
to Hopf bifurcations or limit cycles. We will focus primarily on conditions that guarantee
(SA1)–(SA4). Weaker conditions that guarantee the presence of horseshoes are discussed
in Sect. 2.3.

2.1 Conditions for (SA1)–(SA4)

We recall in this subsection some earlier results which will be used in this paper. [WY1],
which contains a 2D version of the results below, is the backbone of the strange attractor
results in all of our theorems. A couple of useful modifications of the conditions in [WY1]
are pointed out in [WY2]. The n-dimensional version of [WY1] is proved in [WY3]. This
version is used in the proofs of Theorems 1 and 3.

We consider a family of maps Ta,b : M = S1×D →M where D is the closed unit disk in
R

n−1, a ∈ [a0, a1] ⊂ R and b ∈ B0 where B0 is any subset of R \ {0} with an accumulation
point at 0.3 Points in M are denoted by (x, y) with x ∈ S1 and y ∈ D.

Very roughly, the parameters a and b can be thought of as having the following meanings:
a moves points along S1 × {0}, which, in most places, is a direction of instability, while 1

|b|
can be interpreted as a measure of dissipation. In particular, Ta,0 has infinite dissipation;
it sends all of M to a one-dimensional object (see (C1) below).

(C0) Regularity conditions
(i) For each b ∈ B0, the function (x, y, a) 7→ Ta,b(x, y) is C3;
(ii) each Ta,b is an embedding of M into itself;
(iii) there exists K > 0 independent of (a, b) such that for all (a, b),

|detDTa,b(z)|
|detDTa,b(z′)|

≤ K ∀z, z′ ∈ S1 ×D.

3The formulation here (with b 6= 0) together with (C1) is equivalent to that in [WY1] and [WY3]. We
have elected to state (C1) as a separate condition because in applications, the definition of Ta,b for b 6= 0
usually comes for free while the existence of the singular limit Ta,0 has to be proved.
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(C1) Existence of singular limit
There exist Ta,0 : M → S1 × {0}, a ∈ [a0, a1], such that as b→ 0, the maps
(x, y, a) 7→ Ta,b(x, y) converge in the C3 norm to (x, y, a) 7→ Ta,0(x, y).

Identifying S1 × {0} with S1, we refer to Ta,0 as well as its restriction to S1 × {0}, i.e.
the family of 1D maps fa : S1 → S1 defined by fa(x) = Ta,0(x, 0), as the singular limit of
Ta,b. The rest of our conditions are imposed on the singular limit alone.

The next condition in [WY1] or [WY3] is the existence of a∗ ∈ [a0, a1] such that f = fa∗

satisfies the so-called Misiurewicz condition. In practice, we have found that (C2) below is
more directly checkable, albeit a little more cumbersome to state. That (C2) implies the
condition in [WY1] and [WY3] is proved in [WY2], Appendix A.

(C2) Existence of a sufficiently expanding map from which to perturb
There exists a∗ ∈ [a0, a1] such that f = fa∗ has the following properties: There are
numbers c1 > 0, N1 ∈ Z

+, and a neighborhood I of the set C := {f ′ = 0} such that
(i) f is expanding on S1 \ I in the following sense:

(a) if x, fx, · · · , fn−1x 6∈ I, n ≥ N1, then |(fn)′x| ≥ ec1n;
(b) if x, fx, · · · , fn−1x 6∈ I and fnx ∈ I, any n, then |(fn)′x| ≥ ec1n;

(ii) fnx 6∈ I ∀x ∈ C and n > 0;
(iii) in I, the derivative is controlled as follows:

(a) |f ′′| is bounded away from 0;
(b) by following the critical orbit, every x ∈ I \ C is guaranteed a recovery

time n(x) ≥ 1 with the property that f jx 6∈ I for 0 < j < n(x) and
|(fn(x))′x| ≥ ec1n(x).

Next we introduce the notion of smooth continuations. Let Ca denote the critical set of
fa. For x = x(a∗) ∈ Ca∗ , the continuation x(a) of x to a near a∗ is the unique critical point
of fa near x. If p is a hyperbolic periodic point of fa∗ , then p(a) is the unique periodic
point of fa near p having the same period. It is a fact that in general, if p is a point whose
fa∗-orbit is bounded away from Ca∗ , then for a sufficiently near a∗, there is a unique point
p(a) with the same symbolic itinerary under fa.

(C3) Parameter transversality
For each x ∈ Ca∗, let p = f(x), and let x(a) and p(a) denote the continuations of
x and p respectively. Then

d

da
fa(x(a)) 6= d

da
p(a) at a = a∗.

(C4) Nondegeneracy at “turns”

∂

∂y
Ta∗,0(x, 0) 6= 0 ∀x ∈ Ca∗ .
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(C5) Conditions for mixing
(i) ec1 > 2 where c1 is in (C2).
(ii) Let J1, · · · , Jr be the intervals of monotonicity of fa∗ , and let P = (pi,j) be the

matrix defined by

pi,j =

{

1 if f(Ji) ⊃ Jj ,

0 otherwise .

Then there exists N2 > 0 such that PN2 > 0.

Theorem A ([WY1], [WY3]) Suppose {Ta,b} satisfies conditions (C0)–(C4). Then for all
sufficiently small b ∈ B0, there is a positive measure set of a for which Ta,b has properties
(SA1), (SA2) and (SA3).

Theorem B ([WY1], [WY3]; and appendix of [WY2]) In the sense of Theorem A,
(C0)–(C5) =⇒ (SA1)–(SA4).

2.2 Model singular limit maps

In this subsection, we consider an (abstractly defined) class of 1D maps which satisfy Con-
ditions (C2), (C3) and (C5) in Sect. 2.1. The maps in this class will be shown later on
to arise as singular limits in the situations of interest.

Proposition 2.1 Let Φ : S1 → R be a C3 function with nondegenerate critical points.
Then there exist L1 and δ depending on Φ such that if L ≥ L1 and Ψ : S1 → R is a C3

function with ‖Ψ‖C2 ≤ δ and ‖Ψ‖C3 ≤ 1, then the family

fa(θ) = θ + a+ L(Φ(θ) + Ψ(θ)), a ∈ [0, 1],

satisfies (C2) and (C3) in Sect. 2.1. (C5) holds if L1 is sufficiently large.

This is a slightly more general setting than that treated in Sects. 5.2 and 5.3 of [WY2],
but the proofs are identical.

2.3 Conditions for horseshoes

It is a general fact that the existence of an SRB measure with nonzero Lyapunov exponents
implies the presence of horseshoes. This follows from

Theorem [K] Let f : M → M be a C1+α diffeomorphism of a compact Riemannian
manifold, and let µ be an invariant probability measure with (i) nozero Lyapunov exponents
and (ii) hµ(f) > 0. Then f has a horseshoe.

In general, horseshoes appear considerably before strange attractors. We give a sufficient
condition in the spirit of Sect. 2.1. The following applies to one value of a at a time, so let
a = a0 = a1 in the notation of Sect. 2.1.

10



Lemma 2.1 Assume (C0)(i),(ii) and (C1) with C3 replaced by C1, and also (C2)(i)(a).
Let I be as in (C2). If there is a point in

⋂

n≥0 f
−n(S1 \I) which is not eventually periodic,

then Ta,b has a horseshoe for all small b.

Proof: Relaxing c1 to c1
2 , (C2)(i)(a) continues to hold (for the same N1) if I in (C2) is

replaced by a slightly smaller neighborhood Ĩ of the critical set. This implies there exists
ε > 0 such that for all x with x, fx, · · · , fnx ∈ S1 \ I, there is a small interval J containing
x such that J, f(J), · · · .fn(J) ⊂ S1 \ Ĩ and fn(J) = [fnx−ε, fnx+ε]. Let N ≥ N1 be such
that all intervals having the same N -itinerary have lengths < ε. Consider {x : f ix ∈ S1 \ Ĩ
for 0 ≤ i ≤ N}, and let J1, · · · , Jr be the components of this set corresponding to distinct
itineraries. Define a transition matrix A on {1, 2, · · · , r} by letting aij = 1 if and only if
fNJi ⊃ Jj , and let Λ+ = Λ+

N,A = {x ∈ S1 : ∀j ≥ 0, ∃i(j) s.t. fNjx ∈ Ji(j) and ai(j)i(j+1) =
1}. We claim that

⋂

n≥0

f−n(S1 \ I) ⊂ Λ+ ⊂
⋂

n≥0

f−n(S1 \ Ĩ).

The first containment above is a consequence of our choice of ε and N : if x is such that
x, fx, · · · , fNx ∈ (S1 \ I), x ∈ Ji, f

Nx ∈ Jj , then fNJi ⊃ [fNx − ε, fNx + ε] ⊃ Jj .
Our assumption on ∩f−n(S1 \ I) ensures that fN |Λ+ is a nontrivial shift of finite type.
From this it follows from a standard argument that for some k, n, fNk|Λ+ has an invariant
set topologically conjugate to (Σ+

n , σ), the one-sided full shift on n symbols. The second
containment in the displayed expression is obvious; it ensures that fN |Λ+ is expanding. The
existence of a horseshoe now follows immediately from invariant cones arguments. �

3 Periodically-kicked Limit Cycles

This section contains geometric ideas leading to the proof of Theorem 1.

3.1 Existence of singular limits

The setting is as follows. Let ϕt be a flow on a Riemannian manifold M with a periodic orbit
γ. We assume γ is a hyperbolic limit cycle, i.e. if Σ is a codimension one disk transversal to
γ at x, and g : Σ → Σ is the return map, then all the eigenvalues of Dg(x) have modulus
< 1. We consider a periodically kicked system represented by the iteration of ϕT ◦ κ where
κ : M →M is a map and T is a long period of relaxation. We will prove in this subsection
that under very mild conditions, singular limits in the sense of Sect. 2.1 exist for ϕT ◦ κ as
T → ∞.

First we introduce the relevant geometric objects. Let V = {x ∈ M : ϕt(x) → γ as
t→ ∞}. For each x ∈ γ, let W ss(x) denote the strong stable manifold through x, i.e.

W ss(x) = {y ∈M : d(ϕt(x), ϕt(y)) → 0 as t→ ∞}.

Then V is foliated by W ss-leaves each one of which is an immersed codimension one sub-
manifold meeting γ in exactly one point. Let π : V → γ be the projection map obtained
by sliding along W ss-leaves, i.e. for y ∈ V , π(y) is the unique point x ∈ γ such that
y ∈W ss(x).
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Next we introduce a family of maps in the spirit of Sect. 2.1. Let p be the period
of γ, and let bn, n = 1, 2, · · · , be a (any) monotonically decreasing sequence of numbers
accumulating at 0. For n = 1, 2, · · · and a ∈ [0, p), we define

Ta,bn
= ϕnp+a ◦ κ

where κ is the “kick”.

Proposition 3.1 Let ϕ : M × R → M be any C4 flow with a hyperbolic limit cycle γ,
and let U be a tubular neighborhood of γ. We assume κ : Ū → M is a C3 embedding with
κ(Ū ) ⊂ V . Then for all large n, Ta,bn

(U) ⊂ U and the following are true:
(i) {Ta,bn

} is of the form specified in the paragraph before (C0) in Sect. 2.1;
(ii) conditions (C0) and (C1) in Sect. 2.1 are satisfied; and
(iii) the singular limit Ta,0 is of the form

Ta,0 = ϕa ◦ π ◦ κ .

Proof: First, we argue that pointwise for each y ∈ U , Ta,bn
(y) → Ta,0(y) as n → ∞: For

y ∈ U , we have z := κ(y) ∈ V , and by definition of W ss,

d(ϕt(z), ϕt(π(z))) → 0 as t→ ∞.

That ϕnp+a(π(z))) = ϕa(π(z)) follows immediately from the fact the period of the cycle is
p. Since κ(Ū) is a compact subset of V , the convergence above is, in fact, exponentially
fast and uniform for all y ∈ Ū . To prove (C0)(iii), let J be such that |det(Dϕp(z))| = e−J

for all z ∈ γ. The exponential convergence above implies that |det(DTa,bn
)(z)| differs from

e−Jn by at most a constant for all z ∈ Ū . The verification of (C0) is complete.
(C1) requires that we prove a stronger form of convergence than that in the last para-

graph. Observe that (a, z) 7→ Ta,bn
(z) can be written in the composite form

(a, z) 7→ (a, κ(z)) 7→ (a, (ϕp)
n(κ(z))) 7→ ϕa((ϕp)

n(κ(z))) .

Since the first map is C3 and the last is C4, to prove the asserted C3-convergence, it suffices
to show that (ϕp)

n converges in C3 to π as n→ ∞. Recall from standard stable manifolds
theory that for a C4 flow, each W ss(x)-leaf is locally a C4 embedded disk [HPS]. This
together with the fact that all the leaves of W ss are ϕt-images of W ss(x) for some x implies
that as a foliation, W ss is also C4. The required convergence is thus tantamount to the
following calculus lemma:

Lemma 3.1 Let I = (0, 1), D = {y ∈ R
n−1 : |y| < 1}, and consider H : I ×D → I ×D of

the form
H(x, y) = (x, h(x, y))

where (i) h(x, 0) = 0 for all x ∈ I,
(ii) for all i, |∂yi

h| ≤ λ for some λ < 1, and
(iii) ‖H‖C4 < K for some K > 0.

Then as n→ ∞, Hn converges in the C3-norm to H0 where H0(x, y) = (x, 0).

12



Proof of Lemma 3.1: For notational simplicity, we give a proof only in two dimensions.
Let us write Hn(x, y) = (x, hn(x, y)). Since |hn(x, y)| ≤ λn, convergence in C0 is assured
as explained earlier. Computing recursively, we obtain

∂1hn(·) =

n−1
∑

k=0

∂2h(H
n−1·) · · · ∂2h(H

k+1·) ∂1h(H
k·) ,

∂2hn(·) = ∂2h(H
n−1·) ∂2h(H

n−2·) · · · ∂2h(·) .
It follows immediately that |∂2hn| ≤ λn. Using also |∂1h(x, y)| ≤ K|y|, we see that each
term in ∂1hn(·) is bounded above by λn−k−1 ·Kλk, so that |∂1hn| ≤ Knλn−1.

Moving on to second derivative estimates, since ∂ijhn is computed by differentiating
each factor in each term of ∂jhn, we observe that ∂ijhn has ≤ 2n2 terms, and each term
has ≤ (n+ 1) factors. Moreover, if ∂2h(H

k·) is differentiated, then our previous estimate of
|∂2h(H

k·)| ≤ λ is replaced by one of the following: |∂12h(H
k·)| ≤ K, |∂22h(H

k·)∂1hk(·)| ≤
K2kλk−1 (K in the case k = 0), or |∂22h(H

k·)∂2hk(·)| ≤ Kλk. If ∂1h(H
k·) is differentiated,

then our previous estimate of |∂1h(H
k·)| ≤ Kλk is replaced by |∂11h(H

k·)| ≤ Kλk or
estimates identical to those above for |∂12h(H

k·)|. We conclude that |∂ijhn| ≤ 2n2 · const
· n2λn−2.

A similar argument gives |∂ijkhn| ≤ const nαλn−3 for some α. (The boundedness of the
fourth derivative of H is used to control ∂111h.) �

3.2 Creation of strange attractors from limit cycles

We now use the ideas developed in Sect. 3.1 to prove Theorem 1, which says that when
suitably kicked, any hyperbolic limit cycle will exhibit chaotic behavior. See Sect. 1.2 for
the precise statement.

Proof of Theorem 1: First we produce an open set E ⊂ Emb3(U,M) consisting of suitable
kicks. This step is not necessary, but some readers may find it helpful to first “straighten
out” the W ss-foliation. More precisely, we may assume, via a C4 change of coordinates,
that γ = {y = 0} and the W ss-manifolds are codimension one planes perpendicular to γ.
That this can be done is explained in Sect. 3.1.

One way to choose E is to begin by selecting a C3 map Φ : S1 → R with nondegenerate
critical points. Proposition 2.1 gives an open set of L and Ψ such that fa(θ) := θ + a +
L(Φ(θ) + Ψ(θ)) satisfies Conditions (C2), (C3) and (C5). These choices of L and Ψ give
rise to a collection of f0, which constitutes an open set Ê0 of C3 maps from S1 to itself.
From Ê0, we construct an open set E0 ⊂ Emb3(γ,M) consisting of κ0 such that π ◦κ0 = f0.
Given f0, the existence of κ0 is trivial in dimensions > 2: simply lift the image of κ(γ)
in the “vertical” direction to avoid self-intersections. An argument (which we leave as an
exercise for the reader) is needed for 2D: use (i) f0 has degree one and (ii) our limit cycle
γ has an orientable normal bundle. From E0 we construct E ⊂ Emb3(U,M) where κ ∈ E is
obtained by extending κ0 ∈ E0 to U in such a way that ∂yi

(π ◦ κ) 6= 0 for some i at points
whose θ-coordinates are near the critical points of π ◦ κ0. This completes our construction
of E .
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For each κ ∈ E , we now introduce, as in Sect. 3.1, a 2-parameter family of maps from a
tubular neighborhood of γ to itself, namely Ta,bn

= ϕnp+a ◦ κ where p is the period of the
cycle and a ∈ [0, p). Proposition 3.1 says that this family is of the type considered in Sect.
2.1, and that (C0) and (C1) are valid provided κ(U) remains in the basin of attraction of
γ. By design, the singular limit is what we started with in the last paragraph, so (C2),
(C3), (C4) and, if we so desire, (C5), are met. Thus [WY3] (the relevant portion of which
is summarized in Theorems A and B in Sect. 2.1) applies.4

[WY3] tells us that for each sufficiently large n, there is a positive Lebesgue measure
set ∆n ⊂ [0, p) such that for all a ∈ ∆n, Ta,bn

has a strange attractor with the properties in
(SA1)–(SA4). Thus the dynamical description in Theorem 1(2) holds for all T ∈ {np+a :
a ∈ ∆n, n ≥ n0 for some n0 ∈ Z

+}. (There is no relation between“T”, the period of the
kicks, and Ta,bn

; we regret the unfortunate notation.)
As for Theorem 1(1), if L in the singular limit is sufficiently large, then Lemma 2.1

says that horseshoes are present for all a provided that bn is sufficiently small, i.e. they are
present for all T ≥ some T0. �

3.3 More on production of chaos: example and discussion

Sect. 3.2 contains an abstract existence result. We now turn to a more practical question:
given an arbitrary limit cycle (the way it is embedded in the ambient manifold), what kinds
of kicks will result in chaotic behavior?

Example. A linear model. Consider

θ̇ = 1 + σ · y ,

ẏ = −Λy + AΦ(θ)v(θ)

∞
∑

n=0

δ(t− nT )
(4)

where θ ∈ S1, y ∈ R
n−1, σ is a fixed vector in R

n−1, and Λ is an (n−1)× (n−1) matrix all
of whose eigenvalues have strictly positive real parts. For simplicity, we assume the kicks
are perpendicular to the limit cycle {y = 0}, with the amplitude of the kicks at (θ,y) given
by AΦ0(θ) and the direction by v ∈ Sn−2. The W ss-manifolds here are a family of parallel
codimension one planes. A simple computation gives

fa(θ) = θ + a+AΦ(θ) σtΛ−1v(θ) .

Observe that the effect of the kick is magnified by σtΛ−1v, an amount determined by the
competition between shear and rate of contraction in the direction of v. In particular, for
n = 2, where σ, λ = Λ ∈ R and v = +1 or −1, we have the following:

Proposition 3.2 (cf. [WY2], Theorems 2 and 3) In dimension 2, given a C3 function Φ0

with nondegenerate critical points, there exists K1 = K1(Φ0) such that if

σ

λ
A :=

shear

contraction
· amplitude of kick > K1,

4Orientability of the normal bundle to γ is assumed in the setup in [WY1] and [WY3], although it is not
essential in the proofs.
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then the time-T -map of (4) has a horseshoe, i.e. Property (H), for all large T and a strange
attractor with (SA1)–(SA4) for a positive measure set of T .

This follows from a direct application of [WY1] (see Sect. 2.1). For (C2), (C3) and
(C5), see Proposition 2.1. (C4) is satisfied since ∂yTa,0 = σ

λ
6= 0.

(θ, 0)

W
ss
− leaves

λ
σ

0

0

(θ + −ΑΦ  (θ), 0)

(θ, ΑΦ  (θ))

Fig. 2 Geometric view of singular limit for equation (4) in dimension 2

Remark on general situation. Consider now a completely arbitrary limit cycle in any
dimension. For the linearized equation, the W ss-plane through a point can be computed
from the cumulative action as the point moves once around the cycle. When a kick-force
is added, its effect is, as in the example above, determined by the angles the W ss-planes
make with the periodic orbit γ and the directions of the kick in relation to the W ss-planes.
An explicit solution may not be available, but the geometric principles behind it are clear.

The picture rendered by the linearized equation, however, may not be an accurate
reflection of that for the nonlinear flow: The smaller the angles between the limit cycle and
the W ss-leaves, the more prominent is the role played by curvature (or second derivatives).
If these angles are small, and if to obtain the singular limit we have to slide a nontrivial
distance along (curved) W ss-leaves (see Sect. 3.1), then the information given by the
linearized equation is even less meaningful. Finally, for our scheme to work, care must be
taken to ensure that the kick does not take us outside of the basin of attraction.

From the discussion above, we see that in general, the answer to when chaotic behavior
arises depends on fairly detailed information along the limit cycle. In the case of Hopf
bifurcations, this information is contained in the first few derivatives at a single point. This
together with the frequent occurrence of Hopf bifucations makes it a natural setting for the
type of results formulated here.

4 Proof of Results on Hopf Bifurcations

For the 2D result, the situation can be summarized as follows:

1. The dynamical properties in our theorems are derived from the “abstract theory” in
[WY1] and [WY3]. In these two papers, we proved that these and other properties
are enjoyed by maps satisfying a certain set of conditions. The aim of this section is
to prove that these conditions are met by the system defined by equation (3).
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2. The conditions in [WY1] and [WY3], which for the convenience of the reader we have
reproduced in Sect. 2.1, are primarily of two types: the first concerns the existence of
a singular limit; the second concerns the properties of the maps in the singular limit.
These two aspects are discussed separately in the next two paragraphs.

3. The existence of a singular limit has been proved in a much more general setting than
is needed here; see Proposition 3.1.

4. Instead of verifying the remaining conditions directly for equation (3), we have identi-
fied a class of model 1D maps and proved that if a singular limit belongs in this class,
then it has many of the desired properties. See Proposition 2.1.

5. In this section we will prove that the singular limits of equation (3) belong in the class
in Propositin 2.1. The delicateness of the situation stems from the fact that we are
dealing with a degenerate problem. The degeneracy here is twofold: as µ → 0, the
limit cycle degenerates to a point, at the same time that it loses its hyperbolicity.

The remainder of this section is organized as follows: The 2D case is treated in Sects.
4.1–4.4. We will focus on proving the presence of strange attractors. The proof for horse-
shoes follows from a (considerably simpler) version of our arguments here together with
Lemma 2.1. The reduction of the n-dimensional result to 2D is carried out in Sect. 4.5.

4.1 Standardizing coordinates

We begin by blowing up the neighborhoods of 0. The purpose of this coordinate change is

to standardize the size and position of the limit cycle for all µ. Let y = r
√

α
µ
− 1. Then

equation (3) in Sect. 1.3 becomes

θ̇ = ω̂ +
β

α
µ(y + 2)y + µ2 ĥ(θ, y) ,

ẏ = −µ(y2 + 3y + 2)y + µ2 ĝ(θ, y) + (y + 1)Φ(θ)

∞
∑

n=0

δ(t− nT )
(5)

where y ∈ (−1,∞), θ ∈ R/(2πZ), and

ω̂ = ω + (γ +
β

α
)µ ,

ĝ(θ, y) =
1

α2
(y + 1)5 g(θ,

√

µ

α
(y + 1)) ,

ĥ(θ, y) =
1

α2
(y + 1)4 h(θ,

√

µ

α
(y + 1)) .

(6)

Observe that the presence of the ω̂-term in equation (5) prevents us from getting rid of the
degeneracy at µ = 0 by a simple rescaling of time.
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4.2 Singular limit in the absence of higher order terms

In this subsection, we set ĝ = ĥ = 0, and consider the flow ϕt generated by the unforced
equation

θ̇ = ω̂ + σ(y)y ,

ẏ = −λ(y)y
(7)

where

σ(y) =
β

α
µ(y + 2) , λ(y) = µ(y2 + 3y + 2) .

Let µ be fixed for the rest of this subsection. As explained in Sect. 3.1, the singular limit
maps are related to limn→∞ ϕtn where tn = 2nπ

ω̂
.

Proposition 4.1 For all small µ > 0 and −1 < y <∞,

lim
n→∞

ϕtn(θ, y) = (θ +
β

α
ln(y + 1), 0) .

Let (θ(t), y(t)) denote the solution of (7) with initial conditions (θ0, y0). Proposition 4.1
follows immediately from Lemma 4.1 by letting n→ ∞.

Lemma 4.1

θ(t) = θ0 + ω̂t+
β

α
ln

(

y0 + 1

y(t) + 1

)

.

Proof: The reader can verify that this is the solution by direct differentiation. We arrived
at the formula above by formally substituting ds = − 1

λ(y)dy into the integral in

θ(t) = θ0 + ω̂t+

∫ t0

0
σ(y(s))ds,

obtaining
∫ t

0
σ(y(s))yds = −

∫ y(t)

y0

σ(y)

λ(y)
dy = −β

α

∫ y(t)

y0

1

1 + y
dy .

�

Let π be the projection map in Sect. 3.1. We observe:
(i) π(θ, y), which is the limit in Proposition 4.1, is defined for all θ ∈ S1 and y > −1.
(ii) From the formula for π, we deduce the following geometric information about the W ss-
foliation: its leaves are invariant under translations in the θ-direction; their slopes have the
same sign (either positive or negative) everywhere; near y = 0, the slopes are ≈ −β

α
; they

tend to +∞ or −∞ as y → ∞ and to 0 as y → −1.
(iii) As µ → 0+, π(θ, y) → (θ + β0

α0
ln(y + 1), 0) where α0 and β0 are the values of α and

β at µ = 0. This is strong indication that in spite of the weakening hyperbolicity, the
W ss-structure remains robust up to µ = 0.
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4.3 Effects of higher order terms

We continue to consider the unforced equation. Let ϕt and ϕ̃t denote respectively the flows
with and without higher order terms. When it is useful to identify the parameter µ, we will
write ϕµ,t and ϕ̃µ,t. In this subsection and the next, if X is a quantity or object pertaining
to ϕt, then the corresponding quantity or object for ϕ̃t is denoted by X̃.

For each small µ > 0, let γµ denote the limit cycle for ϕt, and call its period pµ. To
compare ϕt and ϕ̃t, we make a time change for ϕ̃t to synchronize their periods, i.e. to set
p̃µ = pµ. From the magnitudes of the higher order terms, we see that this time change,
which will be assumed for the rest of the proof, is of order 1 ± O(µ2). We also introduce
ιµ : γ̃µ → γµ by letting

ιµ(ϕ̃t(0, 0)) = ϕt(0, y0)

where (0, y0) is the point in γµ whose θ-coordinate is 0. Next we fix a compact domain of
the infinite cylinder S1 ×R in which all the action will take place: let −1 < A0 < emin Φ − 1
and A1 > emaxΦ − 1, and let A = S1 × [A0, A1]. The main result of this subsection is

Proposition 4.2 For µ > 0 sufficiently small, πµ is defined on A, and

‖(ι−1
µ ◦ πµ) − π̃µ‖C3 → 0 as µ→ 0 .

Even though the higher order terms in equation (5) tend to zero as µ→ 0, this alone is
insufficient justification for Proposition 4.2 because as µ→ 0, the unforced part of equation
(5) tends to the totally degenerate, completely integrable system

θ̇ = ω, ẏ = 0 .

Let Φµ = ϕµ,[ 1

µpµ
]pµ

and Φ̃µ = ϕ̃µ,[ 1

µpµ
]pµ

where [x] is the greatest integer ≤ x.

Lemma 4.2 There exists M such that for all small µ > 0, the following hold on A:
(a) ‖Φµ‖C4 , ‖Φ̃µ‖C4 ≤ M ;
(b) ‖Φµ − Φ̃µ‖C3 = O(µ).

Proof of Proposition 4.2 assuming Lemma 4.2: The task here is to deduce singular
limit information, which depends on an infinite number of iterates, from the finite-time
information provided by Lemma 4.2.

Observe that both Φµ and Φ̃µ leave points on their limit cycles fixed, and have uniform
“hyperbolic” estimates, i.e. the smaller eigenvalues are uniformly bounded away from 1 and
the angles between the stable and neutral directions are uniformly bounded away from 0.

Let qµ = (0, y0) ∈ γµ. From Lemma 4.2(a) and the uniformness of hyperbolicity, we
see that there exists ε̂ > 0 such that for all small µ > 0, the local stable manifolds of Φµ

through qµ and Φ̃µ through (0, 0) are well defined as graphs of τµ, τ̃µ : [−ε̂, ε̂] → S1. We
claim that

‖τµ − τ̃µ‖C3 → 0 as µ→ 0.

This is true because from Lemma 4.2(a), the set N := {Φµ, Φ̃µ;µ ∈ (0, µ0)} is bounded in
the C4-norm, and so it is relatively compact with respect to the C3-topology. The mapping
G → τG is continuous with respect to the C3 topologies for both G and τG (see [HPS]).

18



Hence it is uniformly continuous on N . The convergence to 0 of ‖τµ − τ̃µ‖C3 now follows
from Lemma 4.2(b).

As noted in the last paragraph of Sect. 4.2, the W ss-leaves of Φ̃µ run from top to
bottom of the annular region A. Since each of these (long) W ss-leaves is contained in the
(ϕ̃t)

−1-image of graph(τ̃µ) for some t ≤ T1, it follows that the leaves of the W ss-foliation
for ϕt behave similarly and that the two foliations are asymptotically close in C3 as µ→ 0
(meaning there exist diffeomorphisms which converge to the identity in C3 carrying the
leaves of one to those of the other). By an argument similar to that in the last paragraph,
we see also that as µ → 0, γµ converges in C3 to γ̃µ = {y = 0}, and ιµ converges in C3 to
the identity map. The assertion in Proposition 4.2 follows. �

The proof of Lemma 4.2 uses the following elementary fact:

Lemma 4.3 Let Ω ∈ R
N be a convex open domain, and let W and Z be C1 vector fields

on Ω. Suppose that for t ∈ [0, t0], ξ(t), η(t) ∈ Ω are solutions of

dξ

dt
= W (ξ) and

dη

dt
= Z(η)

with ξ(0) = η(0). Then for all t ∈ [0, t0],

‖ξ(t) − η(t)‖ ≤ C1

C2
(eC2t − 1)

where C1 := supx∈Ω ‖W (x)−Z(x)‖ and C2 :=
∑N

i=1 supx∈Ω ‖DZi(x)‖, Zi being the compo-
nent functions of Z.

Proof: Writing
dξ

dt
− dη

dt
= (W (ξ) − Z(ξ)) + (Z(ξ) − Z(η)),

we see that ‖ξ(t) − η(t)‖ ≤ x(t) where x(t) satisfies the growth condition dx
dt

= C1 + C2x,

x(0) = 0. The solution of this equation is x(t) = C1

C2
(eC2t − 1). �

Proof of Lemma 4.2: We rescale time (for both equations) by letting t′ = µt but continue
to write t instead of t′, i.e. ϕt is now the flow generated by

θ̇ =
ω̂

µ
+
β

α
(2 + y)y + µ ĥ(θ, y),

ẏ = −(2 + 3y + y2)y + µ ĝ(θ, y).

(8)

The analogous time change is made for the equation with no higher order terms.
First we verify that for t ∈ [0, 1) and µ ∈ (0, µ0), the first four derivatives of ϕt |A are

uniformly bounded. For ϕt itself, we have |y(t) − y(0)| = O(µ). Let X denote the vector
field in equation (8). Since

Dϕt(·) = I +

∫ t

0
DX(ϕs(·))Dϕs(·)ds
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and DX and ϕt are uniformly bounded (the only unbounded term, ω̂
µ
, does not appear), it

follows that Dϕt is uniformly bounded. Bootstrapping our way up, we see that the same
result holds for Di(ϕt), i = 2, 3, 4. A similar argument works for ϕ̃t, proving (a).

Next we wish to apply Lemma 4.3 with dξ
dt

= W (ξ) representing the zeroth through

third variational equations of ϕt,
dη
dt

= Z(η) the corresponding equations for ϕ̃t, and t0 = 1.

We claim that C1 = O(µ). This is because all the terms involving ĝ or ĥ have a copy of µ
in front, and the first time change (made at the beginning of Sect. 4.3) creates a difference
of O(µ) in the lower degree terms: before the second time change, this difference is O(µ2);
it gets multiplied by 1

µ
in the second time change. The uniform boundedness of ‖DZi‖ is

justified above . The conclusion of Lemma 4.3 is precisely the claim in Lemma 4.2(b). �

4.4 Completing the proof

We now include back the forcing term in the equation. In the coordinates of Sect. 4.1, we
see from Sect. 1.3 that the effect of the kick at time 0 is given by

κ(θ, y) := (θ, y+) = (θ, (y + 1) eΦ(θ) − 1 ) ,

so that starting from |y| small, (ϕt ◦ κ)(θ, y) ∈ A for all t > 0. We continue to use ϕµ,t

and ϕ̃µ,t to denote the time-t-maps of the flows with and without higher order terms,
synchronizing for each µ the periods of the limit cycles as before.

Proof of Theorems 2: Let Ta,0,µ = limn→∞(ϕµ,npµ+a ◦ κ), and define T̃a,0,µ, fa,µ and

f̃a,µ accordingly. As explained in the beginning of this section, it suffices to verify for
given Φ that Ta,0,µ and fa,µ satisfy Conditions (C2)–(C5) on a parameter interval (0, µ0).
Combining the formula for κ with Proposition 4.1, we have that for a ∈ [0, pµ),

T̃a,0,µ(θ, y) = (θ + a+
β

α
(ln(1 + y) + Φ(θ)), 0) , (9)

so that

f̃a,µ(θ) = θ + a+
β

α
Φ(θ) = θ + a+

β

α
AΦ0(θ) . (10)

Identifying γ̃µ = S1 × {0} with S1 and using ιµ : γ̃µ → γµ as conjugating map, we obtain
fa,µ : S1 → S1 as

fa,µ(θ) = (ι−1
µ ◦ πµ) ◦ (κ ◦ ιµ)(θ) + a.

By Proposition 4.2 and the fact that κ◦ ιµ → κ, we have that ‖fa,µ− f̃a,µ‖C3 → 0 as µ→ 0.

Thus if |β
α
|A is sufficiently large, then fa satisfies the conditions in Proposition 2.1. Also,

∂yTa,0 ≈ ∂yT̃a,0 = β
α
. Part (1) of Theorem 2 now follows from Lemma 2.1; part (2) follows

from Theorems A and B (see Sect. 2.1). �

4.5 Hopf bifurcations in n-dimensions

The hypotheses and notation are as in Sect. 1.4. First we make precise what is meant by
“the unforced equation restricted to W c is in normal form”. Let h : V c → V s be such that
W c = graph(h), and let Π : R

n = V c ⊕ V s → V c be the projection map. Let ϕt be the
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given flow on R
n, and let ϕ∗

t be the flow on V c defined by ϕ∗
t (z) = Π ◦ ϕt(z, h(z)). Our

assumption is that the equation for ϕ∗
t has the form of equation (2). The twist condition

in Theorem 4 is computed from this equation.

Proof of Theorem 3: We carry out in detail the strange attractor part of the proof,
leaving the horseshoe part (which is considerably simpler) to the reader as before.

I. Structure of unperturbed flow near 0 . There exist µ0 > 0 and neighborhoods R of 0 in
R

n such that the following hold for all µ ∈ [0, µ0):
(i) ϕt(R) ⊂ R for all t > 0.
(ii) Defined everywhere on R is a codimension two Dϕt-invariant strong stable subbundle

roughly parallel to V s. We denote this subbundle by Es,2 and the invariant manifolds
tangent to it by W s,2. By the Invariant Section Theorem, W s,2 as a foliation is C3 assuming
the flow is C4 (see [HPS]). Let π2 : R→W c be projection by sliding along W s,2-leaves.

(iii) ϕt has a limit cycle γ contained inW c. Through each point in γ passes a codimension
one strong stable manifold which we denote by W s,1. (These are the W ss-manifolds in
previous sections.) Let π1 be the projection onto γ by sliding along W s,1-leaves. Note that
wherever W s,1 is defined, its leaves contain those of W s,2.

II. Reduction of problem. For each µ, let Ta,bn
be defined as in Sect. 3.1. We are guaranteed

for general reasons the existence of a well defined singular limit Ta,0. The problem is reduced
to proving (C2)–(C5) for this singular limit.

Since Ta,0 alone matters, and (C4) requires only that we guarantee a nonzero derivative
for Ta,0 in some direction normal to γ, while (C2), (C3) and (C5) pertain to the restriction
of Ta,0 to γ, it may be sufficient to restrict the domain of Ta,0 to W c, that is to say, the
problem is reduced to one in 2D, involving the flow ϕt|W c and kick κ̂ := π2 ◦ κ|W c .

Now the hypotheses of Theorem 3 are on the kick-system (ϕ∗
t , κ|V c) (note that κ leaves

V c fixed). To make use of this information, we project the kick-system (ϕt|W c , κ̂) to V c,
resulting in (ϕ∗

t , κ
∗) where the kick map κ∗ : V c → V c is given by κ∗(z) = Π◦π2 ◦κ(z, h(z)).

The problem is thus reduced to comparing the two systems (ϕ∗
t , κ|V c) and (ϕ∗

t , κ
∗), the

objective being to deduce singular limit information about the second from that of the first.

III. Magnified coordinates. The proof of Theorem 2 is carried out in blown-up coordinates.
Accordingly, we consider an O(

√
µ)-neighborhood of 0 in R

n and magnify coordinates (in
all directions) by a factor ∼ 1√

µ
, obtaining for ϕ∗

t a limit cycle of radius ≈ O(1). Since mag-

nification decreases higher derivatives, W c and the W s,2-leaves are increasingly “straight”
as µ → 0. More precisely, in coordinates magnified by ∼ 1√

µ
, ‖h‖C3 and ‖Π ◦ π2 − Π‖C3

tend to 0 as µ→ 0.
As for κ, since this map is scale invariant, meaning κ(rz) = rκ(z), r > 0, we have, in

magnified coordinates, ‖κ|A‖C3 = O(1) where A = {3
4 < |z| < 5

4}. (It is necessary to bound
the domain away from 0 because κ is not differentiable at 0.)

IV. Comparison of (ϕ∗
t , κ|V c) and (ϕ∗

t , κ
∗) in magnified coordinates. We write κ∗ − κ|V c as

Π ◦ π2 ◦ κ(z, h(z)) − κ(z, 0)

= [(Π ◦ π2 − Π) ◦ κ(z, h(z))] + [Π ◦ (κ(z, h(z)) − κ(z, 0))] .
(11)
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From the fact that ‖h‖C3 = o(1), ‖κ‖C3 = O(1) in the relevant region, and ‖Π◦π2−Π‖C3 =
o(1), we see that ‖κ∗ − κ|V c‖C3 = O(1) and ‖κ∗ − κ|V c‖C2 = o(1) as µ→ 0. It follows that
in these coordinates, the singular limit maps Ta,0 corresponding to the two kick-systems are
also C3-bounded and C2-near each other.

By our assumptions on (ϕ∗
t , κ|V c) and from our proof in the 2D case, we know that for

this system fa is in the model class considered in Sect. 2.2. By Proposition 2.1, this model
class is robust under the type of perturbations above, and maps in this class satisfy (C2),
(C3) and (C5). Similarly, information for (C4) is passed from one system to the other.

The desired result for the n-dimensional system is proved. �
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