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Hyperobolicity in dynamical systems is a geometric condition de-
scribing the exponential divergence of nearby orbits. It leads to ir-
regular, chaotic and unpredictable patterns of behavior. Along with
quasi-periodic dynamics or KAM theory, which lies at the opposite
end of the ordered—disordered spectrum of dynamical behaviors, hy-
perbolic theory is one of the better understood areas of dynamical
systems today.

This article is about the geometric and ergodic theory of hyperbolic
systems. My aim here is not to give a complete list of all the important
results, but to focus on a few areas of activity and to describe in as
coherent a fashion as I can some of the progress over the last 20-30
years. The topics I have chosen are

I. Billiards and related physical systems
IT. Strange attractors with one direction of instability
III. Entropy, Lyapunov exponents and dimension

IV. Correlation decay and related statistical properties

This article is intended for the broader mathematics community as
well as researchers in dynamical systems. Some background material
is included at the beginning for readers not in dynamics.

1. BACKGROUND AND DEFINITIONS

1.1. Continuous Time versus Discrete Time.

All the dynamical systems considered in this article take place on
finite dimenional manifolds or Euclidean spaces. A continuous time
system is one defined by an ordinary differential equation; a discrete
time system is generated by the iteration of a map which is often but
not always assumed to be invertible. Many (though not all) of the
results discussed here have both continuous and discrete time versions.
For simplicity we will often discuss only the discrete time case.



1.2. First Definitions from Ergodic Theory.

The usual setting for abstract ergodic theory consists of the fol-
lowing objects: Let (X, B, ) be a probability space, i.e. (X,B) is a
measure space and g is a measure on (X, B) with u(X) = 1.

DEFINITION 1.2.1. T :(X,B,u) — (X, B, ) is called a measure-
preserving transformation (abbrev. mpt) if for every A € B,
T~YA) € B and p(T~(A)) = u(A).

DEFINITION 1.2.2. A mpt (T, u) is called ergodic if for every
Ac B, T7'A = A implies that pA =0 or 1.

The most often used theorem in ergodic theory is probably the
Birkhoff Ergodic Theorem.

THEOREM 1.2.3 (Birkhoff Ergodic Theorem 1932). Let (T, u)
be a mpt, and let o € L*(p). Then I¢* € LY (p) s.t.

n—1
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ngoT”%go* a.e.
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Moreover, ¢* satisfies p* o T = * a.e. and [o*dpy = [pdp. It
follows that if (T, ) is ergodic, then ¢* = [ pdu a.e.

An often used application of the Birkhoff Ergodic Theorem is the
following. Let (T, ) be ergodic, and let A € B. Then for p-a.e. x,

1
ﬁ#{0§k<n:Tkx€A} — u(A) asn — oo.

DEFINITION 1.2.4. (T, p) is called mixing if VA, B € B,u(T~"AN
B) = u(A)u(B) as n — oo.

We remark that mixing is a stronger condition than ergodicity.



1.3. Invariant Measures for Continuous Maps.

Let X be a compact metric space, and let 7" : X — X be a contin-
uous transformation.

PROPOSITION 1.3.1. The set of T-invartant Borel probability mea-
sures, denoted Mr(X), is nonempty.

PROOF. By the Riesz Representation Theorem we know that there
is a one-to-one correspondence between M(X), the set of all Borel
probability measures on X, and C(X)*, where C(X) is the Banach
space of continuous real-valued functions on X. Thus M(X) is a
nonempty, compact, convex, metrizable space. Now let x € X, and
let d, denote the Dirac measure at z, i.e. 0,(F) = 1 iff x € E for

n—1
every Borel set E. Let p, := % > dpi,. Then any accumulation point
i=0

of py, is an element of My (X). |

Except in the conservative case, differential equations and maps
generally do not come equipped with natural invariant measures.
Proposition 1.3.1 tells us that invariant measures always exist. The
problem is that Mz (X) is generally too large, and the ergodic prop-
erties of (T, u) depend entirely on the choice of . A question of great
importance, then, is:

Given a differential equation or a map, which invariant measures
should we consider?

The answer to this question depends naturally on the goals of one’s
investigation.

1.4. Physically Relevant Invariant Measures.

In this article, we will adopt the viewpoint that the Lebesgue mea-
sure class is of special interest, and that sets of positive Lebesgue
measure correspond to the only events that can be observed physi-
cally.

Thus for example, in a Hamiltonian system, Liouville measure is
our measure of interest, even though most Hamiltonian systems ad-
mit many other invariant measures (e.g. every periodic orbit supports



one). We will refer to dynamical systems that come equipped with an
invariant measure equivalent to the Riemannian volume as “conser-
vative dynamical systems”.

For “dissipative systems”, i.e. systems that are not conservative,
the situation is trickier. Consider, for example, the situation of an
attractor defined by a map f : U — U where U is an open domain
and f(U) C U. Then Q := N> f*U is a compact invariant set that
attracts all points in U, i.e. for all z € U, f™(z) — Q as n — oc.
We call @ an attractor and U its basin of attraction. Now for any
invariant probability measure u, since p(f"U — f*H1U) = 0 for all
n, it follows that p must be supported on €2, and if, for example, f
is volume contracting, so that {2 has Lebesgue measure zero, then all
the invariant Borel probability measures of f are necessarily singular
with respect to Lebesgue measure.

Question: For dissipative systems such as attractors, what
does it mean for an invariant measure to be physically
relevant, and do such measures always exist?

For a special class of attractors called Axiom A or uniformly
hyperbolic attractors, Sinai [S2] and later Ruelle and Bowen [R1],
[BR] discovered certain invariant measures that have the following
special property: they govern the behavior of orbits starting from
positive Lebesgue measure sets even though they themselves may be
singular with respect to Lebesgue measure. The ideas of Sinai, Ru-
elle and Bowen have since been extended by others to more general
dynamical systems, but we will continue to refer to the measures in
question as SRB measures.

We close this section by mentioning the following elementary but
very important idea, namely that expansion is conducive to the ex-
istence of invariant measures absolutely continuous with respect to
Lebesgue (abbrev. acim). This idea is the backbone of a number of
results on invariant densities and SRB measures, some of which are
quite sophiscated. The basic principle is contained in the following
theorem, a proof of which is given in the Appendix.

DEFINITION 1.4.1. f: M — M 1is expanding or uniformly ex-
panding if IA > 1 s.t. Ve € M and Vv € T, M, ||Dfyv|| > Al|v]].
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THEOREM 1.4.2 [KrS]. Let f : M — M be a C* uniformly ex-
panding map of a compact Riemannian manifold. Then f admits an
acim.

1.5. Hyperbolic Fixed Points.
Let f: M — M be a diffeomorphism with a fixed point p.

DEFINITION 1.5.1. We call p a hyperbolic fixed point if there is
a splitting of the tangent space T, M at p into two D f-invariant spaces
E" @@ E?® such that all the eigenvalues of D f,|E* have modulus > 1
and all the eigenvalues of D f,|E® have modulus < 1.

It is easy to see that via a linear change of coordinates, one may
assume that D f,|E™ is uniformly expanding and D f,|E?® is uniformly
contracting.

Hyperbolic fixed points have stable and unstable manifolds. We
denote them by W?*(p) and W"(p) respectively. Stable and unstable
manifolds are f-invariant immersed submanifolds tangent to E® and
E" respectively. They are characterized by

Weip)={x e M:d(f"z) — pasn— oco};

Whp)={ze M :d(f"x) - pasn— o0}

The local stable manifold of size ¢ at p, denoted W3 (p), refers
to the disk of radius § centered at p contained in W?*(p). Local
unstable manifolds are defined similarly.

1.6. Hyperbolic Invariant Sets.

The concept of hyperbolicity in a global sense was first used by
Hedlund and Hopf in their analysis of geodesic flows on manifolds
with negative curvature. This notion was axiomatized in the 1960s
by Smale [Sm], who initiated a program on the geometric theory of a
class of dynamical systems called Aziom A.

Let f be a C? diffeomorphism of a Riemannian manifold M, and
let A C M be a compact f-invariant set.



DEFINITION 1.6.1. We say that f is uniformly hyperbolic on A
if there is a continuous splitting of the tangent bundle over A into a
direct sum of two D f-invariant subbundles, written

TA=FE“® FE?,
so that for all z € A and n > 0, the following hold:
veEYz)= |Df "v| < CA\"|v|

and
v € E(xz)= |Dflv] < CA"|v|

where A < 1 and C > 0 are constants independent of x.

When both E* and E? are nontrivial, which is the case of primary
interest here, the dynamics on A can be quite complicated. A pro-
totypical example of a nontrivial hyperbolic invariant set is Smale’s
horseshoe (see Fig. 1).

o D

Fig. 1 The horseshoe map: B is a square; f stretches B in the
horizontal direction, compresses it in the vertical direction and
bends the resulting rectangle into the shape of a horseshoe; the
two shaded vertical strips are mapped onto the shaded horizon-
tal strips, and the hyperbolic invariant set A = Ng2___ f*(B) is

1=—00
a Cantor set.

An important characteristic of hyperbolicity when both E* and E*
are nontrivial is dynamic instability, meaning that the orbits of most
pairs of nearby points diverge exponentially fast in both forward and
backward times.
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A class of dynamical systems introduced in the 1960s that we will
encounter later on in this article are Anosov diffeomorphisms,
which are maps that are hyperbolic on the entire manifold M. Axiom
A systems are maps that are hyperbolic on certain essential parts of
phase space. (We will not need to know its precise definition here.)

PROPOSITION 1.6.2 Existence of stable and unstable man-
ifolds. Let f be uniformly hyperbolic on A. Then at each = €
A, Wi(x) and W?(x) exist and have the property that f(W3(x))
C W§(fx) and

Wei(p)={ye M :d(f"y, f"x) = 0 as n — oo}.
Analogous results hold for W (x) and W*(z).

That is to say, the picture is identical to that of a hyperbolic fixed
point, except that the point is no longer stationary and the entire
local picture is moving with it.

PROPOSITION 1.6.3 Let A be a uniformly hyperbolic attractor and
U its basin. Then

(a) A is the union of W*(x), x € A;

(b) U is foliated by the stable manifolds of A.

For Anosov diffeomorphisms, we may regard the entire manifold as
M = A = U, so that all results about hyperbolic attractors apply.

1.7. Lyapunov Exponents.

In the 1970s, an almost-everywhere version of hyperbolicity
emerged. The linear part of the theory owes its existence to the fol-
lowing theorem of Oseledec [O].

THEOREM 1.7.1 (Oseledec’s Multiplicative Ergodic Theorem
[O]). Let f: M — M be a diffcomorphism map of a manifold M,
and let i be an f-invariant Borel probability measure. Then at p-a.e.
z, there exist numbers Ay (z) < --- < Ap(z)(7) and a decomposition of
T,.M into

s.t.



(1) Yo #0 € E;i(x),
lim llog|Df"(:1c)v| = — lim llog|Df_"(aU)v| = \i(x);
n—oon

n—oon,

(2) forj #k, lim X log|sin<<(A*"Ej(z), A" Ey(z))| = 0.
n—0o0
The functions x — r(x), \i(x) and E;(x) are measurable.

The numbers \;(z) are called the Lyapunov exponents of f at
x; the multiplicity of \;(x) is dimFE;(x). The functions z — A\;(z)
and dimFE;(x) are clearly constant along orbits, so that if (f,u) is
ergodic, then the local properties of f are summed up in the finite set
of numbers {\q, -, A} counted with multiplicity.

The situation where (f, ;) has no zero Lyapunov exponents almost
everywhere is, in some sense, a relaxation of the uniform hyperbolicity
condition, with E* = &{E; : \; > 0} and E®* = @{E; : \; < 0}. We
say that (f, 1) is nonuniformly hyperbolic.

The translation of this linear theory into a nonlinear one describ-
ing the action of f in neighborhoods of typical trajectories was carried
out by Pesin, who constructed (sometimes very large) changes of co-
ordinates and used them to prove, among other things, the existence
of stable and unstable manifolds at p-a.e. x. The relation between
the uniform and nonuniform settings can be summarized informally
as follows:

THEOREM 1.7.2 [P1]. Let (f,p) be nonuniformly hyperbolic, i.e.
Ai #0 p-a.e. Then there exist closed sets

At € Ay C A3 C --- withu(UA,')Zl

such that
(a) orbits starting from each A; are uniformly hyperbolic;
(b) the strength of hyperbolicity decreases as i tends to infinity.

In the same way that measurable functions are approximated by
continuous ones defined on sets of measure 1 — ¢ (Lusin’s theorem),
Pesin’s theorem gives approximations of nonuniformly hyperbolic sets
by uniformly hyperbolic ones. The closed sets A; are usually not
f-invariant. In the absence of zero Lyapunov exponents, it is also
possible to approximate (f, 1) by uniformly hyperbolic invariant sets
with zero p-measure [Kal.
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1.8. A Hyperbolic Theory of the Future.

With the aid of computer graphics, researchers have become in-
creasingly aware of the abundance of examples whose dynamics are
dominated by expansions and contractions but which do not meet
the rather stringent requirements of Axiom A. Two early examples
are the Lorenz (“butterfly”) attractors and Hénon mappings. The
nonuniform theory discussed in section 1.7 provides a more relaxed
framework for study, namely that of almost everywhere, asymptotic
hyperbolicity. This framework, however, requires that one begins with
a chosen invariant probability measure. The question of which invari-
ant measure aside (see section 1.3), it is also technically very difficult
in general to prove that a dynamical system has nonzero Lyapunov
exponents.

Thus with all the progress that has been made — and I hope this
article will give you a glimpse of it — the challenge for a good hyper-
bolic theory probably lies ahead. A good hyperbolic theory should
give information on dynamical systems that have a great deal
of expansions and contractions on large parts of their phase
spaces. We already know that this information alone is not con-
clusive, but a good theory should point the way to further relevant
characteristics. It should also tell us — based on qualitative or veri-
fiable quantitative properties and not on knowledge of infinitely fine
details — what kind of a picture to expect.

APPENDIX: Expanding Maps (Proof of Theorem 1.4.1.).

We begin with a few easy facts about f:

(1) Jeg > 0 and A\ > 1s.t. d(z,y) < €g = d(fz, fy) > Aod(z,y).
(2) If deg(f) =k, then every x € M has exactly k inverse images.
(3) If €; is sufficiently small, then restricted to any €;-disk D in
M, f~™ has exactly k™ well defined branches Vn > 0. (For
n = 1, this is an immediate consequence of (2). For n > 1,
use (1) and €; < €p.)
Let vy be Riemannian measure on M normalized. !"For n = 1,2,...,
define v, := flvy, i.e. v, (E) = vo(f~"F) for every Borel set E, and
dv,

let p, = =

dIJO :

We claim that
(%) da,3>0 st. a<p, <BVn.



11

To prove this claim, we need the following distortion estimate:

Lemma 5.2.2. Let f be as above. Then 3Cy (independent of n) s.t.
Va,y € X, ifd(fix, fly) < ey Vi <mn, then

det DI™(@) _ coatsma.s")
det Df"(y) ~ .

Proof of Lemma 5.2.2.

det Df"(z) <=

198 ot Dn(y) < 2 108 et DI('0) = logdet DA(S7y)|

< Z Crd(f'z, f'y)  for some C

< Z Ciag " Td(f e, fry) -

1=1

We remark that this estimate relies on the fact that f is C2.
[ |

Continuing with our proof of the theorem, consider z, y in some €;-
disk D. Then ¢, = ), ¢%,, where each ¢!, is the contribution to the
density of v, by pushing along the ith branch of f™"|D. Assuming
that €; < €9, Lemma 5.2.2 tells us that

@Z(x) < eCod(m,y) )
i >

@n(x) < eCod(m,y) )

This together with f pndry = 1 and the compactness of M proves the
claim(*).
n—1
Let p be an accumulation point of {% Y Vitn=12,.. . Then clearly

=0
1 is invariant and has a density with the same upper and lower bounds

as the ¢,’s. This completes our proof.
[ |
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2. BILLIARDS AND RELATED PHYSICAL SYSTEMS

The motivation for this part of dynamical systems is Boltzmann’s
Ergodic Hypothesis, one formulation of which can be stated as follows:

BOLTZMANN’S ERGODIC HYPOTHESIS. Forlarge sys-
tems of interacting particles in equilibrium, time averages are close to
the ensemble average.

In 1963, following earlier observations of Krylov, Sinai [S1] formu-
lated a version of this hypothesis in terms of the ergodicity of hard
balls, that is, the ergodicity of a system of finitely many balls mov-
ing freely in 3-space and interacting completely elastically when they
collide. The ergodicity of hard balls remains an open problem today,
but we have learned a great deal in the last thirty years about certain
related dynamical systems that are simpler, about two-dimensional
billiards in particular. In this section I will report mostly on results
on billiards, returning briefly to hard balls in the last subsection. For
a more comprehensive discussion of recent results on billiards and
hard balls, see [S4] or [Sz].

2.1. Two-dimensional Billiards: an Introduction.

A billiard flow in 2-dimensions is the motion of a point mass in
a bounded domain ©Q C R? or T? where OS2 is the union of a finite
number of smooth curves. The point moves at unit speed, and bounces
off 002 according to the usual laws of reflection, that is, the angle of
incidence is equal to the angle of reflection.

There is a natural section to this flow given by the surface M =
0Q x [~ %, ] which corresponds to collisions with 9. It is convenient
to think of p = (x,0) € M as represented by an arrow with footpoint
at x € J¥2 and making an angle 6 with the normal pointing into €.

(See Fig. 2.)

We consider the Poincaré map or first return map f from this
section to itself and call it the billiard map for the domain €2. It
is straightforward to check that f leaves invariant the probability
measure g = ccosf dx df where c¢ is the normalizing constant, i.e.
w(f~1E) = u(E) for every Borel measurable set E C M, and c is
chosen so that pu(M) = 1.
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f(p)

@ (b)

Fig. 2 Examples of nonhyperbolic billiards

As we will see, the dynamical behavior of a billiard flow or billiard
map depends greatly on the geometry of the table €2. Since this article
is about hyperbolic systems, most of the billiards discussed here have
hyperbolic behavior. Not all billiards are hyperbolic, however. We
mention two examples:

In the case where €2 is an ellipse, it is an exercise to see that the
envelope of every (infinite) billiard trajectory is an ellipse or a hyper-
bola having the same foci as Q (Fig.2(a)). One could thus picture M,
which is diffeomorphic to S x [-%, Z], as being foliated by simple
closed curves that wrap around the S'-direction; these curves are left
invariant by the action of f, which “rotates” the points within each
curve. This kind of dynamics is called quasi-periodic; it has a very

different flavor from hyperbolic dynamics.

In the case of a polygonal domain (Fig.2(b)), it is also easy to see
that f does not expand or contract distances.

2.2. Dispersing Billiards and the Lorentz Gas.

Sinai was the first to investigate rigorously billiards with hyperbolic
properties. He studied in [S3] billiards of dispersing type correspond-
ing to when 0f2 is the union of a finite number of “concave” pieces.
Concave boundaries, by convention, refer to boundary curves whose
center of curvature at each point lies outside of 2.
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The best known example of a dispersing billiard is the Lorentz
gas, which in 2-dimensions is a model for the free motion of a particle
moving in R? among a fixed configuration of convex objects called
“scatterers”. Assuming that the configuration of scatterers is periodic
in space, one obtains a billiard flow on Q = T2 — U¥_,Q; where the
2;’s are disjoint convex regions (see Fig. 3(a)).

€ (b)

Fig. 3 Dispersing billiards

Another example of a domain giving rise to a dispersing billiard
is shown in Fig. 3(b). In this example, if a trajectory runs into
a “corner” — which happens only for a Lebesgue measure zero set of
initial conditions — we will simply not consider that trajectory further.

We explain now some elementary properties of maps f associated
with dispersing billiards.

First, we claim that f is essentially uniformly hyperbolic. A tan-
gent vector at p € M can be represented by a curve in M, which in
turn can be thought of as a parametrized family of arrows containing
the one corresponding to p. We distinguish between families of arrows
that are divergent and those that are convergent, and note that diver-
gent families correspond to a sector, or a cone, in the tangent space to
M at p. Since divergent families of rays become even more divergent
upon being reflected off a concave boundary piece (see Fig. 5(a)),
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we see that Df maps the cone corresponding to divergent rays at p
strictly into that at f(p). (See Fig. 4.) Finding a continuous family
of cones in tangent spaces that are mapped strictly into themselves
by Df is a standard way of proving uniform hyperbolicity — it shows
that on the projective level, at least, Df behaves like a hyperbolic
linear map.

C(p) Df (p)

M Tipy M

Fig. 4 Df(p) maps C(p), a cone in the tangent space at p, strictly
into C'(f(p)), a cone in the tangent space at f(p). A standard way
of proving hyperbolicity is to locate a family of invariant cones.

Next, observe that billiard maps such as those in Fig. 3 are dis-
continuous. For the Lorentz gas, for example, consider the trajectory
of a point mass that meets 0€) tangentially. Trajectories slightly to
the left and to the right of this one will run into different components
of 9Q. This is illustrated in Fig. 5(b). For the billiards in Fig. 3(b),
corners are another source of discontinuity.

We were careful earlier on to claim only that the projectivized
action of Df is uniformly hyperbolic. Indeed, in the coordinates in-
troduced in section 2.1, Df does not necessarily expand the vectors
in E" or contract those in E*® (although this is true for f™). This is
because det(Df) # 1. In fact, Df becomes unbounded (or arbitrar-
ily close to 0) as one approaches the set of discontinuities. This is
illuatrated in Fig. 5(c).
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@ (b) (©

Fig. 5 Properties of dispersing billiards

2.3. Ergodicity of Dispersing Billiards.

An important early breakthrough in the study of billiards is the
following theorem of Sinai, which lends support to the hard balls
version of the Ergodic Hypothesis (see the beginning of section 2).

THEOREM 2.3.1 [S3]. Dispersing billiards are ergodic.

The proof of Sinai’s theorem is far too involved to be given here,
but T would like to use take this opportunity to to explain some of
the basic issues one has to deal with in proving ergodicity for hy-
perbolic systems, and also to indicate the difficulties caused by the
discontinuities in billiard maps.

When studying questions of ergodicity, particularly for hyperbolic
systems, one often distinguishes between two different kinds of issues:
local and global. Local ergodicity is about whether or not ergodic
components are localy open modulo sets of Lebesgue measure 0; this is
equivalent to asking if the time averages of observables are, as n — oo,
locally constant. Global ergodicity, on the other hand, addresses the
issue of transitivity of “larger” regions, such as whether there are
“walls” separating the phase space into noninteracting domains.

For Anosov systems, that is, for systems that are uniformly hy-
perbolic on the entire manifold without discontinuities, there is a well
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established way of proving ergodicity which goes back to Hopf. Let me
first give a sketch of the proof in this simpler setting, and then come
back to explain why this proof needs to be amended in a nontrivial
way for billiard maps on account of the discontinuity curves.

THEOREM 2.3.2 [A]. Let f : M — M be a C? topologically transitive
Anosov diffeomorphism that perserves a Borel probability measure p
equivalent to the Riemannian volume. Then (f,p) is ergodic.

Topological transitivity means that for all open sets U and V/, there
exists n such that fPU NV # ¢.

SKETCH OF PROOF OF THEOREM 2.3.2. To prove ergodicity,
it suffices to show that for every L' function ¢ on M, the trajectory
averages % ?:_014,0 o f* converge p-a.e. to a constant function; in
fact, it suffices to do this for continuous ¢. Now f being Anosov, its
stable and unstable manifolds form a pair of transversal foliations on
M that are invariant under the action of f. For two points x and y
with y € W?*(x), since d(f"z, f"y) — 0 as n — oo, it follows that
their trajectory averages must tend to the same limit as n — oo. This
argument in backward time gives a similar conclusion for points on

the same unstable manifold.

Since locally stable and unstable manifolds form a Cartesian co-
ordinate system (topologically, at least), it is tempting to conclude
immediately that the limit function, which is constant on both stable
and unstable manifolds, would be locally constant. The validity of
this argument actually relies on a rather subtle and very important
property of the stable and unstable foliations, namely their absolute
continuity. The precise definition is as follows:

DEFINITION 2.3.3. A foliation F is called absolutely continuous
iof for every pair of transversals X1 and o connected by a leave L of
F, the holonomy map from a neighborhood of L N ¥4 to Xo carries
sets of Lebesgque measure zero to sets of Lebesque measure zero.

The absolute continuity of the W"-foliation tells us that the con-
ditional measures of p on unstable manifolds are equivalent to the
Riemannian volumes induced on these manifolds; and the absolute
continuity of the W?*-foliation tells us that if A is a full Lebesgue
measure subset of a local unstable leaf W (z), then Uze sW5 () oc-
cupies, up to a set of Lebesgue measure zero, an open neighborhood
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of xg in M. These technical ideas are needed to make the argument
two paragraphs back rigorous.

If a foliation is smooth (meaning its holonomy maps are smooth),
then it is, of course, absolutely continuous. Except for maps of alge-
braic origins, however, stable and unstable foliations of Anosov sys-
tems are almost never smooth. They have been shown to be absolutely
continuous if f is C? [A]. This circle of ideas completes the proof of
“local ergodicity”. Global ergodicity follows from local ergodicity and
the transivity assumption. [

Returning to the billiard map, we now explain how the discontinu-
ity set complicates the picture. Intuitively, the closer a point is to the
discontinuity set, the shorter is its stable curve, for the discontinuity
set breaks up any curve meeting it into more than one component;
distinct components evolve independently and do not lie on the same
stable curve. Indeed, since the images of stable and unstable curves
are again stable and unstable curves respectively, points whose orbits
come arbitrarily close to the discontinuity set in forward (respectively
backward) time also have arbitrarily short stable (respectively un-
stable) curves. We do not, therefore, have a uniform local product
structure of stable and unstable manifolds, which is relied upon heav-
ily in Hopf’s proof of local ergodicity. A great deal of work has to be
done to overcome this.

We remark that current understanding of dispersing billiards in
2-dimensions has gone beyond ergodicity to include statistical prop-
erties such as decay of correlations, central limit theorems, and con-
vergence to Wiener measure etc. (see e.g. [BSC2], [Y3]). Some of
these properties will be discussed in section 5 of this article.

2.4. The Stadium and other billiards with Convex Bound-
aries.

We saw from the examples above that the geometry of €2 influences
strongly the dynmical properties of the billiard map. It is not the case,
however, that hyperbolic behavior is limited to concave boundaries.
Convex boundaries, such as those in the stadium studied by Buni-
movich [Bu] (see Fig. 6), can also produce hyperbolicity if certain
conditions are met. Intuitively, even though nearly parallel rays first
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become convergent upon reflection, they diverge after focussing, and
expansion for the billiard map results if, before the next collision,
these rays have diverged more than they have converged.

Fig. 6 The stadium

Let us prove rigorously that the billiard map associated with the
stadium has nonzero Lyapunov exponents. First we claim that in the
(z,0)-coordinates introduced in section 2.1, the cone corresponding
to x6 > 0 is invariant under Df. We leave this as a simple exercise
in plane geometry.

Note, however, that unlike the case of the Lorentz gas or other
dispersing billiards, D f here does not map the cone at certain points
p = (z,0) strictly into that at f(p). For example, consider billiard
trajectories that are nearly perpendicular to the two straight sides.
They bounce back and forth for a long time without diverging, and

Df has the form <é ;), leaving invariant one side of the cone
{z6 > 0}. Billiard trajectories that are nearly (though not quite)

tangential to the circular parts of the boundary also experience long
stretches of parabolic behavior.

Clearly, compositions of matrices of the form ) does not

1 ¢
0 1
lead to hyperbolic behavior; to guarantee hyperbolicity, it is impor-
tant that D f maps the cones strictly into their interiors. This is where
ergodic theory comes to our rescue: having this strict cone invari-
ance happen with a positive frequency is clearly good enough, and the
Ergodic Theorem says that this is automatic once we know that for
p-a.e. p € M, there exists n = n(p) > 0 such that one has strict cone
invariance at f™(p). Since the set of initial conditions for which the
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trajectory bounces back and forth between the two straight sides or
skims along the circular pieces forever has measure zero, this last con-
dition is satisfied and the existence of a positive Lyapunov exponent
j-a.e. is proved.

We remark that if A\; > Ag are the Lyapunov exponents of (f, i),
then A1 > 0 implies Ay < 0 since A; + Xy = [log|det(Df)|dp = 0. We
mention also that the invariant cones ideas a simple version of which
we used are valid in all dimensions; see [W1].

More general geometric conditions on €2 that give rise to nonzero
Lyapunov exponents of the billiard maps are formulated in [W2].

2.5. Hard Balls.

First we remark on the relation between hard balls and billiards.

Consider the elastic collision of N balls of unit mass and radii > 0
moving freely in T?, the d-dimensional torus. Let (¢;,v;) denote the
position and velocity of the ith particle. Then the configuration space
of the N particles is

Q:={(q1," - ,qn) e TV . lgi —q;| > 2r Vi # j}.

Fixing the energy, total momentum and center of mass, it is not hard
to see that this dynamical system is equivalent to that of the uniform
motion of a point mass moving in

Q N {Z g = 0} x SNd—d—l

where S¥ denotes the unit sphere in RF. Thus systems of hard balls
can be viewed as special cases of billiards in higher dimensions, where
the domains €2 are of a particular shape. In this billiard system, sets
corresponding to {|¢; — ¢;| < 2r} for fixed ¢, j now play the role of
scatterers. These sets are cylinders, which are not strictly convex. The
resulting billiard, therefore, is not dispersing or uniformly hyperbolic.

We close this section with the following result, which has been an-
nounced very recently by Siményi and Szész [SS] and which asserts
that with no restriction on the number of balls, systems of finitely
many balls in a torus with typical mass distributions have nonvanish-
ing Lyapunov exponents.
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APPENDIX : Stable and Unstable Manifolds for Piecewise
Hyperbolic Maps.

Let M be a manifold, and let S C M be a “singularity set” in the
sense that f is only defined on M —S. We assume that f: (M —S) —
M maps M — S diffeomorphically onto its image, and that the first two
derivatives of f are uniformly bounded. Let p be an f-invariant Borel
probability measure on M, and let U(S, ) denote the e-neoghborhood
of S.

PROPOSITION. Assume that that 3C, « such that for all € > 0,
pU(S,e) < Ce®. Then there is a measurable function 6 : M — (0, c0)
such that at p-a.e. z, Wg‘(m) and W(;S(m) exist.

IDEA OF PROOF. When the orbit of a point approaches S too fast,
its stable and unstable manifold may not exist. Let us explain what
may go wrong. Suppose that at x there is a piece of local unstable
manifold of size 4 > 0. For the sake of argument, let us assume
that each iterate of f~1 shrinks W¥(z) by a factor of %, and that
f~"W§(x) is always roughly perpendicular to S. Since f~"Wj(z)N
S = ¢, we must have d(f~"z,S) > 2% Vn > 0. In other words, in
order for W _(z) to exist, the backward orbit must not approach S
faster than the rate of 2%

Let A be the minimum expansion rate in the unstable direction.
Then our assumption that plU(S,e) < Ce® implies that

S opfru(S,e™ ) =Y ul(S, e ) < oo,

n>0

and we conclude by the Borel-Cantelli Lemma that for a.e. z, 3 N(x)
s.t. f7"x ¢ U(S,e™> ")¥n > N(z). This guarantees the existence
of Wi, (z) for a.e. z. For more details see [KS]. |
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3. EXAMPLES OF STRANGE ATTRACTORS

The purpose of this section is to report on recent advances in our
understanding of nonuniformly hyperbolic attractors in 2-dimensions
and in techniques for analyzing them. Out main topic will be the
Hénon attractors, where a breakthrough was made less than ten years
ago. We will begin with some results from 1-dimension on which the
analysis of Benedicks and Carleson is modeled. In the last subsection
a new and considerably larger class of strange attractors having the
Hénon family as a special case will be introduced.

3.1. The quadratic family z — 1 — az?2.

The last two decades saw an explosion of activity in 1-dimensional
dynamics, real and complex. T will limit myself here to the real case,
and to issues that are relevant to our discussion of hyperbolic attrac-
tors in higher dimensions.

Consider f, : [-1,1] — [~1,1] defined by f,(x) = 1 — ax?, where
a € [0,2] is a parameter. We begin with two easy cases.

For f = f, with a near 0, it is easy to see that x = —1 is an
attractive fixed point, and every = € [—1,1] has the property that
f*(z) - —1 as n — oo.

For a = 2, however, we claim that f admits an ergodic invariant
probability measure equivalent to Lebesgue, so that for Lebesgue-a.e.
x, the orbit of = spends a positive fraction of time on every interval
of positive length. One way to see this is to observe that via the
change of coordinates x = h(f) = sin%0, f is conjugate to the map
g(0) =2426 for 6 € [-2,0], 2— 20 for 0 € [0,2]. It is easy to see that
g preserves Lebesgue measure and is ergodic.

The dichotomy suggested by these two sets of behaviors was the
subject of much research in the last 20 years.

The term absolutely continuous invariant probability mea-
sures, meaning invariant measure that have densities with respect to
Lebesgue, will be abbreviated as acim as is often done in the liter-
ature. Recall from section 1.4 that expansions are conducive to the
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existence of acim’s. For the maps f = f,, |f'| > 1 away from the crit-
ical point 0; when an orbit comes to a distance ¢ of 0, it experiences
a contraction of ~ §. The orbit recovers from this derivative loss if
it subsequently stays away from the critical point for a sufficiently
long time. The question is: will expansion or contraction prevail for
typical orbits?

The answer to this very innocent question turns out to be less than
simple. The first major theorem that gives insight into this is due to
Jakobson, proved around 1980:

THEOREM 3.1 [J]. There exists a positive Lebesque measure set of
parameters a with the property that f, has an acim with a positive
Lyapunov exponent.

The latest result on this topic is due to Lyubich, completed in 1998:

THEOREM 3.1.2 [Ly]. For the family f,(x) = 1 —ax?, a € [0,2],
there are sets A, B in parameter space with AU B = [0,2] modulo a
set of Lebesque measure 0 such that
(i) A is open and dense in [0,2], and for all a € A, f, has
an attractive periodic orbit which attracts Lebesque-a.e. x €
[—1,1].
(ii) B has positive Lebesgue measure, and for every a € B, f,
has an acim.

Thus on a positive measure set of parameters, expansion wins,
and on an open and dense set, contraction wins. This intermingling
of parameters with diametrically opposite behaviors underscores the
complexity of the picture.

Part (i) of Theorem 3.1.2 was first announced by Graczyk and
Swiatek [GS]. Unlike the first theorem, Theorem 3.1.2 uses tools
from the complex quadratic family and applies only to the family
fa(z) =1 —ax? a€[0,2]. This theorem is the culmination of ideas
from many sources, including previous work on absolutely continuous
invariant measures on the interval, remormalization ideas from Feigen-
baum, independently Coulette and Tresser, Sullivan and McMullen,
background material on the Madelbrot set from various sources, com-
plex analytic techniques such as quadratic-like maps from Douady-
Hubbard, puzzle ideas from Yoccoz, etc.
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3.2. Expanding Properties of 1-dimensional Maps.

As in the last subsection, let f,(x) = 1—az?, so that f.(0) = 0. To
influence the expanding properties of a map, it is natural to impose
control on the source of nonexpansion, i¢.e. the critical point. This
idea is due to Collet and Eckmann [CE]. We follow the formulation
in [BC1] as they are parallel to the analysis of the Hénon maps in
[BC2]. In [BC1], Benedicks showed that the following two conditions
are satisfied by f = f, for a in a positive measure set of parameters:

for some a > 0 and A > 1,
(i) [f2(0)] > e~ for all n > 1;
(i) [(f™)'(f0)] > A™ for all n > 1.

These conditions are assumed to hold in the rest of this subsection.

Let us fix a small neighborhood (4, 0) of the critical point 0. Outside
of (6,8), it can be shown that f* is expanding for some k, so for
simplicity let us assume that f is expanding. The idea of [BC1] is
that when an orbit comes near 0, it will follow the critical orbit for
some time, and will copy the derivative of the critical orbit, which by
condition (ii) is growing exponentially. This is made precise in the
following easy lemma:

LEMMA 3.2.1 [BC1] (Derivative recovery for = near the crit-
ical point). For x ~e " € (0,0), there exists p ~ p such that

- fiz stays near f*0 for all i < p;

- [(fP) | > A%,

SKETCH OF PROOF. Since |f[0,z]| ~ x2, the fact that 22)\P ~ 1

implies that p ~ —lgg)\ -log% ~ p; also, (fP) x ~ xAP ~ % ~A. W

For f satisfying (i) and (ii) above, the critical orbit is viewed in
[BC1] as an infinite succession of bound and free periods: The initial
stretch of the orbit is viewed as free, and it remains so until the first
time f*(0) € (0,6). Beginning at this time, the orbit is regarded as
“bound” to the critical orbit for p = p(fiz) iterates (where p is given
by the Lemma). It becomes free again at the end of this “bound
period”, and remains free until its next entrance into (9, J), when the
story repeats itself.
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From the discussion above the regularity with which (f™)"(f0)
grows becomes evident: (f™)'(f0) increases exponentially during a
free period; during a bound period, it suffers an initial setback, and
then begins to recover by copying its own history which by condition
(ii) consists of exponential growth (and which we know inductively
happens in a regular fashion). At the end of the bound period, not
only is the initial loss fully recovered, Lemma 3.2.1 guarantees an
exponential gain.

It is this pattern of behavior that will be mimicked in the analysis
of the Hénon maps.

3.3. The Hénon Maps: Elementary Facts and basic Ques-
tions.

The Hénon maps are a 2-parameter family of diffeomorphisms of
the plane given by

Ta,,b(ajv y) = (1 - a'TZ + Y, b'T)

In certain parameter ranges 717, ; is known to have an attractor. Recall
that an attractoris an invariant set {2 with the property that it attracts
all nearby orbits, that is to say, for any starting point z near €2, the
orbit of z will in time be drawn toward 2. The equations above were
first investigated numerically in 1977 by the astronomer Hénon, who
observed that they have attractors with very complicated dynamics.
Many numerical studies were carried out in the late 70’s and early 80’s;
analytically these maps remained intractable until quite recently.
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Fig. 7 This is the computer plot of a single orbit of length 5000
for the map (z,y) — (1—1.42240.3y, x), the original map studied
by Hénon. The overall appearance of the picture does not seem to
depend on the choice of initial condition provided it is chosen from
certain regions of the plane. This particular picture is generated

using the initial condition (z,y) = (0, 0).

Note that in Fig. 7 the map is written in different coordinates than
those given at the beginning of this sebsection (which we will continue
to use). In fact we will consider only parameter values with a < 2
and close to 2, and b very small. These are the parameters studied by
Benedicks and Carleson in [BC2]; they represent a very small fraction
of the parameters for which attractors are known to exist.

We begin with some elementary geometric facts. Let T = Tg
with (a,b) fixed. From the equations of T' it follows easily that T
maps vertical lines to horizonal lines and sends horizontal lines to
parabolas (see Fig. 8). Observe also that T contracts area strongly,
with |det(DT)| = b. Tt is not hard to show that away from the y-axis,
say outside of the region {|z| > v/b}, the dynamics is essentially uni-
formly hyperbolic of saddle type: nearly horizontal tangent vectors
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are mapped by DT to nearly horizontal vectors, and they grow expo-
nentially after a while. Horizontal segments near the y-axis, however,
are mapped to the turns of parabolas. Thus when an orbit gets near
the y-axis, directions of expansion and contraction may get mixed up
and hyperbolicity may be spoiled.

— e omm o

Fig. 8 The geometry of Hénon maps: vertical lines are mapped
to horizontal lines; horizontal lines are mapped to parabolas

An elementary fact, which holds for an open set of parameters in
the region of interest, is that 7" has a compact invariant set €2 located
near [—1,1] x {0}; Q is an attractor in the sense that there is an open
set U C R? containing it with the property that for every z € U,
d(T"(z),Q2) — 0 as n — oo. The maximal set with this property is
called the basin of €2; it is an open and relatively large set, whereas
), being a compact invariant set of an area contracting map, has
Lebesgue measure 0. It is not hard to prove that 2 is not a uniformly
hyperbolic or Axiom A attractor.

Another easy fact is that T has a unique fixed point Z in the quad-
rant {xy > 0}. This fixed point is easily shown to be hyperbolic; the
eigenvalues of DT; are ~ —2 and g and its expanding direction is
roughly horizontal. Let W denote the unstable manifold of Z. Then
W is an infinite curve most of which is roughly horizontal zigzagging
across the attractor making sharp turns at seemingly arbitrary loca-

tions. It is not hard to show that the attractor 2 is in fact the closure
of W.

Next we turn to the dynamics of 7" on 2. As in the 1-dimensional
case there are two competing scenarios:

The first is that most orbits tend eventually to attractive periodic
cycles, which are also called periodic sinks. To see why this may be
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the case, recall that | det(DT)| is very small. If for some z, T™z comes
near z and DT"™(z) is contracting in all directions, then the Contrac-
tion Mapping Theorem gives a periodic sink of period n. Newhouse
observed some time ago that this happens easily near tangencies of
stable and unstable manifolds. He showed in fact that under certain
conditions one typically expects to find infinitely many sinks [N].

A counter-scenario is that the dynamics on €2 is predominantly hy-
perbolic of saddle type, and the resulting dynamic instability gives
rise to a rather “chaotic” picture. (“Chaotic” is used as a descrip-
tive word here; to my knowledge it has no accepted mathematical
definition.) The reasoning is as follows. If b is small, then the strip
{|z] < V/b} is very narrow, and the orbit of an arbitrary point z is
likely to spend most of its time outside of this strip where the map is
uniformly hyperbolic of saddle type. Now we know that there are no
invariant cones, and that the directions of expansion and contraction
may get somewhat confused when an orbit passes through the middle
region. It is not unreasonable, however, to think that while cancella-
tions can and do occur to some degree, they are very unlikely to be
so severe that no exponential growth in || DT™|| survives.

For most parameters (a,b), it is not known which one of these
scenarios occurs, nor is it clear that both cannot co-exist on different
parts of €2; the picture is simply extremely complicated. It is known
that sinks exist for an open set of parameters. Numerics as well
as intuitive thinking favor the “chaotic” regime in certain parameter
ranges, but this thinking was not analytically substantiated until quite
recently.

3.4. The Analysis of Benedicks and Carleson.

Recall that for the 1-dimensional maps discussed in sections 3.1
and 3.2, one gains control of the dynamics by controlling the source
of nonxpansion, namely the critical point. In [BC2|, Benedicks and
Carleson successfully established an analogous picture for the Hénon
maps. Their main results can be summarized as follows:

For all sufficiently small b > 0, there exists a positive measure set
of a for which the following hold for T =T, y: T has a well defined
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critical set C which plays the role of the critical point in 1-dimension.
Orbits of z € C satisfy for alln > 1:

(i) d(T"™z,C) > e ";
(ii) || DT > A™  for some X\ > 1 independent of z;

(i1i) DT} has the derivative recovery property in Lemma 3.2.1
with each return to (§,9) x R.

Observe that (i) and (ii) above are completely analogous to the two
conditions assumed for f, in section 3.2.

The proof of these results is far too involved to be given here, but
I would like to discuss a few of the issues.

First, how to decide which points are in the critical set C? 1In 1-
dimension, the critical point is the point of infinite contraction, when
all previously accumulated expansions are totally destroyed. T" being
a diffeomorphism, there obviously is no direct analog for this. In its
place, we have the following mechanism for destroying hyperbolicity:
the interchanging of stable and unstable directions. That is to say, we
think of a point z as bad for hyperbolicity if there exists a tangent
vector v at z such that for some large n1,ne, both DT "1y and DT™?v
are strongly contracted. Letting n; and ny go to infinity, we see that
tangencies of stable and unstable manifolds are precisely the ultimate
destroyers of hyperbolic behavior.

Observe that if z is a tangency of stable and unstable manifolds,
then so is 7%z for all i € Z, and the closure of these tangency points
are likely to be dense on the entire attractor. Benedicks and Carleson
showed that there is a natural “section” of these tangency points that
lies near {y = 0}. They call this set C and regard it as the source of
nonhyperbolicity. By “section”, I mean all near-intechanges of stable
and unstble directions pass near this set. C is a compact fractal set,
which they constructed as the closure of a countable number of points
on W, the unstable manifold of the fixed point 2. The forward images
of z € C lie at the “turns” of W.

Next we address the following question: knowing exactly what to
look for in terms of mechanisms, why is it hard to identify the set C?
The reason is as follows: To locate tangencies of stable and unstable
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manifolds, it is necessary to first have these manifolds; and to have
these manifolds, one needs to first prove hyperbolicity!

Benedicks and Carleson’s solution for this seemingly circular think-
ing is an inductive construction, in which they start with a picture
in which hyperbolicity for a finite number of iterates is guaranteed.
Using this hyperbolcity they construct temporary stable and unsta-
ble manifolds, that is, manifolds that function as such for a finite
period of time, and used them to construct temporary tengencies.
Pretending these were the true critical points, they iterate forward,
and through parameter selection create a situation analogous to that
in 1-dimension. As a result, hyperbolicity for a larger number of it-
erates is now assured. Using this, they update the location of their
tentative critical set, and continue with the bootstrapping process.

I emphasize that unlike 1-dimension, an inductive process is abso-
lutely essential here for identifying the source of nonhyperbolicity.

We mention one other substantial difference between 1- and 2-
dimensions. In 1-dimension, if the orbit from = to f"*x is expanding,
and the orbit from f"'x to f™2x is expanding, then the orbit from x
to f*1tm2 gy is expanding. This is not the case in dimension 2: concate-
nations of hyperbolic orbits do not necessarily give hyperbolic orbits!
This happens, as we have seen, when the directions that has been
expanded in the first n, iterates get contracted in the next no iter-
ates. Careful control of angles between stable and unstable directions
is required; this is a new element not present in 1-dimension.

3.5. SRB Measures for the Hénon Attractors.

A standard way of making a computer picture of the Hénon attrac-
tor is to pick an initial condition in the basin of the attractor and to
plot the first few thousand iterates of its orbit. (Initial conditions are
typically taken from the basin and not necessarily from the attractor
itself because, as we recall, €} is a measure zero set and it is hard to
know exactly which points lie in it.) Since the plotted orbit limits
on the attractor, one often assumes that the resulting plot is “the
picture” of the attractor. (See Fig. 7.)

This leads naturally to the following question: We know that orbits
of the Hénon map are not all the same; some are periodic, others are
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not; some come closer to the turns than others. We also know from
experience that (for a fixed T') one gets essentially the same picture
independent of the choice of initial condition. Is there a mathematical
explanation for this?

Our computer picture can be thought of as the picture of a proba-
bility measure which gives mass % to each point in an orbit of length n.
Now if T preserved a probability measure p equivalent to Lebesgue
measure on the basin, and (T, u) was ergodic, then we would have
LSy dri, — p. (Here 8, denote point mass at z.) This would
explain why our pictures tend to look very similar.

T, as we know, is area-contracting, and there can be no p absolutely
continuous with respect to Lebesgue. What we see, however, can
be interpreted as evidence for the existence of a physically relevant
tnvartant measure, the kind we have alluded to in section 1.4. For
the parameters studied by Benedicks and Carleson, this is indeed the
case.

THEOREM 3.5.1 [BY1]. For a positive Lebesque measure set of
parameters (a,b), the Hénon map T = T, admits an invariant prob-
ability measure p on its attractor Q0 with the following properties:

(a) f has a positive Lyapunov exponent p-a.e.;

(b) for z in a positive Lebesque measure set in the basin of €0, the
sequence %Z?:_OI Ori, converges weakly to ;1 as n — oo.

The measure g in the theorem above is called an SRB measure.
SRB measures were first discovered in the context of Anosov diffeo-
morphisms and Axiom A attractors by Sinai [S2], Ruelle, and Bowen
[R1], [BR] (see also [Bo]). Not a great deal is known about their ex-
istence outside of the Axiom A category. The Hénon attractors are
the first genuinely nonuniformly hyperbolic attractors for which SRB
measures were shown to exist; they were constructed by Benedicks
and the author.

Let us define SRB measures in general and explain how they cap-
ture the properties of Lebesgue measure even though they themselves
may be singular.

DEFINITION 3.5.2. Let f be a diffeomorphism and p an f-invariant
Borel probability measure with some positive Lyapunov exponents -
a.e. We call n an SRB measure if the conditional measures of pr on
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unstable manifolds are compatible with the volume elements induced
on these submanifolds.

In the absence of zero Lyapunov exponents, typical points in the
phase space are connected to typical points of this measure via stable
manifolds. The following is a general result from nonuniform hyper-
bolic theory:

THEOREM 3.5.3 [PS]. Let f be a C? diffeomorphism admitting an
ergodic SRB measure p with no zero Lyapunov exponents. Then there
erists a set A having positive Lebesque measure such that for every
xr € A, % ?:_01 dfig converges weakly to pu.

The proof of this theorem is similar to that of Theorem 2.3.2 (but
is of course more complicated since no Anosov condition is assumed).
In particular, it uses the absolute continuity of the stable foliation, a
property that continues to be valid in the nonuniform setting.

To prove Theorem 3.5.1, therefore, it is necessary to construct an
invariant measure that has absolutely continuous conditional mea-
sures on unstable manifolds. This is somewhat analogous to the con-
struction of acim’s for 1-dimensional maps (but is more complicated).
Once this measure is constructed and proved to be ergodic, the asser-
tion in part (b) follows from Theorem 3.5.3.

In the special case of the Hénon attractors, more can in fact be
said. It has been announced recently by Benedicks and Viana that
the convergence in Theorem 3.5.1 (b) holds for Lebesgue-a.e. point
in the basin.

3.6. A New Class of Attractors.

We now leave the Hénon family and consider examples of nonuni-
formly hyperbolic attractors in a broader context. Qiudong Wang and
the author introduced a class of attractors constructed as follows:

Start with a map f : N — N where N is a circle or an interval.
Embed N into M = N x D,, where D,, is an n-dimensional disk, and
consider a perturbation or a “fattening up” of f into a diffeomorphism
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T that maps M into itself. The attractor of interest to us is defined
by Q= ﬂionzM.

This is a natural generalization of the construction of the standard
solenoid, an object familiar to topologists. One generally thinks
of this standard solenoid as homeomorphic to the inverse limit of
z +— z¥ and embedded in the solid 3-torus. It can be realized as the
attractor  in the last paragraph where f : S' — S! is taken to be
f(z) = 2* and T maps S* x Dy diffeomorphically onto a subset of itself
winding around k times in the S!-direction. Since we allow f to be
an arbitrary 1-dimensional map, we think of our resulting attractor
as a generalized solenoid.

Anosov diffeomorphisms aside, the standard solenoid, which can be
given a uniform hyperbolic structure, is by far the best known among
Axiom A attractors. The construction above incorporates also the
Hénon attractors, which are derived from f, : [-1,1] — [—1, 1] with
fa(x) = 1 —az? A third known example is given by dissipative
twist maps, the most standard of which can be realized as a suitable
perturbtation of f(z) = = + £ sin(2rz), z € R/Z.

We now specialize to the case where N is a circle and M is an
annulus, and describe the class of attractors that we have been able
to analyze. In order to ensure that 7" has hyperbolic properties, it is
necessary to start with a 1-dimensional map with sufficiently strong
expanding properties. In my work with Wang, we assume that f
satisfies the Misiurewicz considiton, i.e. f is an arbitrary multi-modal
map with the property that its forward critical orbits are uniformly
bounded away from the critical set. We then consider 2-parameter
families T, 3, using the first parameter to control movements along the
circle and the second to control the unfolding of f into a 2-dimensional
map. Mild transversality conditions are assumed on this 2-parameter
family, and the maps 75, are required to be diffeomorphisms.

Then for all sufficiently small b, that is, in the range of maps that
are sufficiently strongly dissipative, there is a positive measure set of
a for which we are able to give a fairly complete analysis of T}, ;. Our
results include:

(1) Construction of the critical set as the sole source of nonhyper-
bolicity. (This part of the analysis is parallel to that of [BC2], from
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which we have borrowed many ideas; we are generally unable to use
their estimates because some of them rely on the specific formulas of
Hénon maps. Our overall approach is more geometric.)

(2) Analysis of the hyperbolic properties of T' on the attractor and
in its basin of attraction.

(3) Description of the global geometry of the attractor, its symbolic
dynamics and topological complexity.

(4) Existence and statistical properties of SRB measures.
We remark that the results above are easily modified to apply to
the Hénon maps, and that (2) and (3) are new even in that setting.

These and other results will be reported in a manuscript soon to be
completed.

4. ENTROPY, LYAPUNOV EXPONENTS
AND DIMENSION

4.1. Motivating Examples.

To motivate our results in this section, we consider first a simple-
minded way of building fractals from a single template.

@ (b)

Fig. 9 Construction of fractal from a single template
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Fig. 9(a) shows a template consisting of a larger ball with three
smaller balls inside. In Fig. 9(b) we put a scaled down copy of this
template on each of the 3 smaller balls, constructing 9 balls that
are another size smaller. This procedure is repeated in Fig. 9(c) on
each of the 9 balls, and so on. Continuing ad infinitum and taking
the intersection, we obtain a fractal A which is nothing other than a
standard Cantor set.

All this can be said in the language of dynamical systems. Let us
call the large ball in the template B and the smaller balls B;. Let
f : UB; — B be such that it maps each B; affinely onto B. Then
A=, f~™(UB;).

It is natural to try to relate the fractal dimension of A to the
characteristics of its generating dynamical system. Assume for sim-
plicity that all the B;’s have the same radii. Consider A := log(radius
B/radius B;) and h := log #(B;). To understand the relation among
h, A, and the Hausdorff dimension ¢ of A, we fix one of these numbers,
vary a second, and observe the effect on the third. This is illustrated
in Fig. 10. From Figs. 10(a) and (b), it seems intuitively clear that if
we decrease A while keeping h fixed, then 0 goes down; likewise Figs.
10(b) and (c) should convince us that if we increase h while keeping
A fixed, then 0 goes up.

@ (b) (©

Fig. 10 Three different templates: observe how the dimension
of the fractal changes with the number and diameter of the

smaller balls

To turn these observations into a theorem that holds for all diffeo-
morphisms (the derivative of which varies from point to point), one
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possibility is to consider averaged quantities, which leads naturally to
the use of ergodic theory.

We consider for the rest of this section a pair (f, ), where f is a
C? diffeomorphism of a compact Riemannian manifold M and p is an
f-invariant Borel probability measure on M.

4.2. Basic Definitions.

In section 1.7 we introduced the idea of Lyapunov exponents,
which are the averaged speeds with which nearby orbits separate.
This is a local, geometric measure of dynamical complexity.

The metric entropy of (f, 1), written h,(f), measures complexity
in the sense of randomness and information. This notion was intro-
duced by Kolmogorov and Sinai around 1959. Roughly speaking, it
measures the amount of uncertainty one faces when attempting to
predict future behaviors of orbits based on knowledge of their pasts.
The formal definition of h,(f) is a little hard to give in this limited
space; so let me define it instead via the Shannon-Breiman-McMillan
Theorem:

Let « be a finite partition of our manifold M. For n > 0, we let o™
be the partition whose elements are sets of the form a™(z) := {y €
M : fixz and f'y belong in the same element of « for all 0 < i < n}.
For simplicity let us assume that (f, ) is ergodic. Then the Shannon-
Breiman-McMillan Theorem says that there is a number h (which we
will take to be the definition of h,(f)) such that if o is a sufficiently
fine partition, then for all sufficiently large n, neglecting a set of small
p-measure we may think of M as made up of ~ e™ elements of a™
each having p-measure ~ e~"",

For a more precise statement we refer the reader to a standard
ergodic theory text, but for our purposes it suffices to think of e™” as
the rate of growth in complexity of f counting only orbits that are
“typical” with respect to p.

Since Lyapunov exponents and metric entropy both reflect proper-
ties of an invariant measure, they can only be related via a notion of
dimension that also reflects properties of this measure.
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Let v be a Borel probability measure on a compact metric space
X, and let B(z,r) denote the ball of radius r about x.

DEFINITION 4.2.1. We say the dimension of the measure v,
written dim(v), is well defined and is equal to o if for v-a.e. x,

. logmB(z,¢)
lim ———— =«
e—=0 loge

DEFINITION 4.2.1. The Hausdorff dimension of v is defined to

be
HD(v) = Inf HD(Y)
YCX
vY =1

where HD(Y') denotes the Hausdorff dimension of the set Y.

The notion dim(v) is not always well defined. It is easy to construct
examples of measures for which the limits as € — 0 do not exist. On
the other hand, if v is an ergodic invariant measure for a locally bi-
Lipschitz map, then once these limits exist, they are constant a.e. It
is also easy to see that if dim(v) is well defined, then it is equal to
HD(v). See e.g. [Y1] for relations between dim(r) and other notions
of dimension.

4.3. Relation between Entropy and Lyapunov Exponents.

The following are the two most basic results in this direction:

THEOREM 4.3.1 (Pesin Formula) [P2]. Let f be a C? diffeomor-
phism of a manifold preserving a Borel probability measure p. If ju is
equivalent to the Riemannian measure on M, then

hu(f) = /Z A madp.

Here m; denotes the multiplicities of the Lyapunov exponents A;,
i.e. m; = dim E; where F; is the subspace corresponding to A;.
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THEOREM 4.3.2 (Ruelle’s Inequality) [R3]. For C!' mappings
(that are not necessarily invertible) and all invariant Borel probability
measures [, we have

hu(f) < / > A midp.

Here is one way to interpret these results: clearly, both h,(f) and
Z)\;Lmi are measures of dynamical complexity. In a conservative
system, all the expansion goes back into the system to make entropy,
so these two invariants coincide and Pesin’s formula holds. A strict
inequality, on the other hand, corresponds to the situation where some
of the expansion is “wasted”, and that can happen only if there is
some “leakage” from the system. Thus the gap in Ruelle’s Inequality
measures, in some sense, the dissipativeness of the system.

Since only positive Lyapunov exponents are involved in the re-
lations above, one may suspect that the gap in Ruelle’s Inequality
measures only dissipativeness in the unstable direction. This is indeed
the case, as expressed in the following theorem. Recall that an SRB
measure is one that has smooth conditional measures on unstable
manifolds (see Definition 3.5.2).

THEOREM 4.3.3 [LS], [Le], [LY1]. For C? diffeomorphisms the
entropy formula in Theorem 4.3.1 holds if and only if u is an SRB
measure.

Before the theorems above were proved in their present generality,
they had been known for some time in the context of Anosov diffeo-
morphisms and Axiom A attractors. (See e.g. [S2], [R1] and [B]).

A sketch of the proof of Ruelle’s Inequality, which is the most
elementary of the three results, is given in the Appendix at the end
of this section.

4.4. Dimension Enters the Picture.

Before giving the full statement of our result, it is instructive to
consider first the special case where f has a single Lyapunov exponent,
A > 0 (such an f is necessarily noninvertible, but that is fine). Let

B(z,e;n) :={y € M :d(f*=z, f*y) < eV 0 <k <n}.
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Then
B(z,e;n) ~ B(z,ee™ ™),

and a small modification of the Shannon-Brieman-McMillan Theorem
tells us that

uB(z,e;n) ~ e

Putting these two lines together gives

h
X

pB(xz,r) ~rX,

which proves that dim(u) exists and is related to h and A by h =
A - dim(p).

The argument above relies on the fact that we are able to gen-
erate dynamically sets that approximate round balls. When there is
more than one positive Lyapunov exponent, this is impossible and the
proofs become considerably more involved.

In the theorem below, f is allowed to be any C? diffeomorphism
and p any invariant Borel probability measure. Recall that Ej; is the
subspace corresponding to the Lyapunov exponent A;. The condi-
tional measures of p on unstable manifolds are denoted p|W*, and
a™ := max(a,0).

THEOREM 4.4.1 (Dimension formula). Assume for simplicity
that (f, p) is ergodic. Then corresponding to each \;, there is a number
0; with 0 < 9; < dim E; such that

(a) hu(f) =2 N0,

(b) dim(u|W") exists and is equal to D oo 0; -
Moreover, if \j # 0 for any i, then

(c¢) dim(u) ezists and is equal to dim(pu|W™) + dim(u|W?*).

Parts (a), (b), and the “<” part of (c) of this theorem are proved
by Ledrappier and the author [LY1]. The reverse inequality in (c) is
proved in a recent preprint by Barreira, Pesin, and Schmeling [BPS].

The numbers “0;” have geometric interpretations as partial dimen-
stons of p in the directions of E;. With this in mind, the dimen-
sion formula in part (a) can be understood as saying that in general,
h = X-6 where X and 0 are the Lyapunov exponent and partial di-
mension vectors.
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Observe that part (a) of this theorem is entirely consistent with the
results in the last subsection. First, with 0 < ¢; < dim FE;, the dimen-
sion formula in (a) implies Ruelle’s Inequality. When p is equivalent
to the Riemannian measure or is SRB, then all the §;’s take on their
maximum values and Pesin’s Formula holds. In this case one also has
that dim(pu|W™) is equal to the topological dimension of the unstable
manifold.

In the remainder of this subsection we will give an outline of the
proof of Theorem 4.4.1(a) and remark on (c).

OUTLINE OF PROOF OF THEOREM 4.4.1 (a). We arrange our
(distinct) Lyapunov exponents in decreasing order

)\1>>\2>"'>)\u-

For each i < u, let W*’s be the unstable manifolds corresponding to
E; & ---® E;. These manifolds are known to exist a.e. and have the
property that W= (z) C Wi(x).

The strategy here is to work with one exponent at a time and to
work our way up the entire hierarchy W' c W2 c -.-W*". For each i,
we introduce a notion of entropy along W?, written h;, measuring the
randomness of f along the leaves of W* and ignoring what happens
in the transverse directions. We also prove that the dimensions of
the conditional measures are well defined. For brevity write o =

dim (p|W?).
The proof consists of the following steps:

(i) b1 = d1)s; o
(11) hz - hz’—l = (51 - 61’—1))\71 for ¢ = 2, e, U
(ifi) P = hu(f)-

The proof of (i) is the same as before since it only involves one
exponent, and d; = d7.

To give an idea of why (ii) is true, consider the action of f on the
leaves of W*, and pretend somehow that a quotient dynamical system
can be defined by collapsing the leaves of W*~! inside W*. This
“quotient” dynamical system has exactly one Lyapunov exponent,
namely A;. It behaves as though it leaves invariant a measure with
dimension §; — d;_; and has entropy h; — h;_1. A fair amount of
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technical work is needed to make this precise, but once properly done,
it is again the single exponent principle at work. Letting 6; = §; —d;_1
for i = 2,...,u, and summing the equations in (ii) over i, we obtain

he = 3 ik,
=1

Step (iii) says that zero and negative exponents do not contribute
to entropy. The influence of negative exponents is easily ruled out,
and an argument similar to that in step (ii) tells us that entropy
does not increase as we go from the unstable foliation to the “center
unstable foliation”. This completes the outline to the proof in [LY1].

[ |

REMARK ON THEOREM 4.4.1(c). Assuming we know that
dim(p|W™) and dim(pu|WW*) are well defined, it is only a matter of their
adding properly. We remark that this would have been a straightfor-
ward consequence of dimension-theoretic considerations if the stable
and unstable foliations were Lipschitz; they are not more than Holder
in general. Another easy but atypical situation is when g is the di-
rect product of two measures, one on W*" and the other one on W?.
Indeed, it is shown in [BPS] that all ergodic measures of diffeomor-
phisms have, up to slow exponential errors, a kind of local product
structure, and this, in essence, is why the dimensions of these condi-
tional measures add.

4.5. Randomly Perturbed Dynamical Systems.

As an example of the simplified dynamical picture created by the
averaging effects of noise, we present the entropy and dimension for-
mulas for random dynamical systems.

Consider as a model of a randomly perturbed dynamical system
compositions foo fi o foo--- where the f;’s are an iid sequence with
repect to a probability measure on the space of C? diffeomorphisms
of a manifold. (This setup is compatible with that of stochastic dif-
ferential equations; see e.g. [Ku].) Let u be an invariant measure for
this process, and let {y,,} denote the distintegration of 1 on bi-infinite
sample paths w = {f; }°

1=—00"

Dynamical invariants such as Lyapunov exponents, entropy and
dimension continue to make sense in this setting; moreover, they are
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nonrandom. We continue to let Ay > Ay > .-+ > A, denote the
distinct Lyapunov exponents. Let o; be defined by §; = o; dim Ej, so
that 0 < g; < 1. Note that these numbers can be defined for all ¢
including those for which \; < 0 (by considering f~! instead of f in
the last subsection).

In order to obtain the results below, we need to assume certain con-
ditions that are a little too technical to state here. There are generic
conditions, and roughly speaking, they guarantee that the images of
points and vectors are sufficiently random that their distributions have
densities. For a precise statement see the papers cited.

THEOREM 4.5.1 [LY2], [LY3]. Assume that the f;’s are sufficiently
random as above. Then:

(a) if Ay > 0, then a.s. the p,’s have the SRB property;

(b) if \i # 0 Vi, then there is an i* s.t. o; =1 fori < i* and o; =0
for i > .

Part (b) says, for example, that mass has a tendency to align itself
with the more expanding directions when a system is stochastically
purturbed.

4.6. APPENDIX: Sketch of Proof of Ruelle’s Inequality.

For simplicity we assume that (f, u) is ergodic. For € > 0, let .
be a partition of M into approximate e-boxes, and let d1,ds, and d3
be prescribed small numbers.

First we choose N s.t. Vz in a good set G' with uG > 1 — 6, DfN
looks like what the Lyapunov exponents say it should.

Next we choose € > 0 small enough that

- in the e-neighborhood of every x € G, Df" is a good approx-
imation of f~; we assume in fact that if a.(z) NG # ¢, then
DfNa(x) is contained in an eeM TN x ... x eAr )N _
box (A; counted with multiplicity), and

- h’(fN) < h(fN; ae) + 53-

Now 1
() = o h(FY) and h(FY:00) < H(F Voo,
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We estimate this latter quantity by

H(fNaela) < Z pA -logry (A)
A€o,

where 7y (A) is the number of elements of f~Na, that meet A, or,
equivalently, the number of elements of a. that intersect fNA. If
AN G # ¢, then we have control on the size and shape of fVA,
obtaining ry (A4) < eNBA +62)mi If ANG = ¢, then TN (A) < eCoN
where Cj is a constant depending only on || D f||. We have thus proved

1
NH(f_Na6|a6) < (1=01) Y (Af +82)mi + 6:1Co

which gives the desired result. [

5. CORRELATION DECAY AND
RELATED STATISTICAL PROPERTIES

5.1. Dynamical Observations and Their Statistics.

In this last section we consider sequences of observations from dy-
namical systems and treat them as random variables in probability.
More precisely, let f : M — M be a dynamical system, g an invariant
probability measure, and ¢ : M — R a function which we think of as a
quantity that can be measured or observed (for example, temperature
in an experiment). We regard the sequence of functions

®, Qoofv gpof27 Tty (pofn,

as random variables on the underlying probability space (M, u), and
ask how they compare qualitatively with genuinely random stochastic
processes (such as outcomes from flipping a coin).
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In this context, the Strong Law of Large Numbers, which says
that almost surely,

1n—l
=Y pofi = /sodu,
n 0

holds when (f, p) is ergodic; this is simply the Birkhoff Ergodic The-
orem.

One could also ask if the Central Limit Theorem holds, that is
to say, for ¢ with [ odu =0 we may ask if

n—1
1 i distr
ﬁZQOOf = N(0,0)
=0

for some o > 0 where AN (0,0) is the normal distribution (or bell-

shaped curve) with variance o2.

Another standard question concerns the decay of correlations
between ¢ and ¢ o f™ for large n. More precisely, if

®(n) := ‘/(wf”)wdu - (/sodu>2

then one could ask if ®(n) tends to zero as n tends to infinity and at
what speed. For example, if ®(n) ~ e~*" for some o > 0 independent
of ¢, then this is a property of the dynamical system (f, 1) and we say
(f, 1) has exponential decay of correlations. Similarly, if ®(n) ~ n=%
for some a > 0, then we say (f, 1) has polynomial decay, and so on.

Y

There are many other questions along similar lines that one can ask.
For example, what about the law of iterated logarithm, the almost sure
invariance principle? Also, do return times to small regions have the
Poisson property? In principle, at least, every limit law for stochastic
processes has a version for observations from dynamical systems.

Of primary interest to us, then, is the following
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Question: given (f, ), do these limit laws hold?

Intuitively, one would guess that the more chaotic a dynamical
system is, the more random observations of the type above are likely
to be, and hence the more likely it is for these laws to be valid.

One must also remember, however, that a dynamical system gen-
erated by the iteration of a map (or by a differential equation) is a
deterministic process: once an initial condition is chosen, all subse-
quent, behavior is totally determined and nothing is left to chance.
This would suggest that observations from dynamical systems can
never be completely random, whatever that means.

5.2. Setting and Previously Known Results.

Since current techniques do not permit us to deal with the question
above in complete generality, we will limit ourselves in this section
to maps that geometrically have a great deal of expansion
and contraction on large parts of their phase spaces. This,
of course, is not a rigorous mathematical definition. I have chosen to
leave it as such rather than to impose artificial boundaries (see section
1.8), and to note only that the class I have in mind includes Axiom A
diffeomorphisms as well as the examples discussed earlier on in this
article.

Having settled on a class of maps, we need to decide next on the
underlying probability u. We take the view here that only properties
that hold on positive Lebesgue measure sets are observable; that is
to say, we are interested primarily in physically relevant invariant
measures. Accordingly, if a system is “conservative”, i.e. if f pre-
serves a measure equivalent to Lebesgue measure, then this will be
the measure of interest to us. If a system is “dissipative” (meaning
not conservative), then we will take p to be an SRB measure if one
exists. (See sections 1.4 and 3.5 for definitions.) Since relatively little
is known about the existence of SRB measures in general, this exis-
tence question will be our first and foremost challenge with regard to
dissipative systems.

Assuming that f is either conservative or it admits an SRB mea-
sure, called p in both cases, we preceed next to the question of cor-
relation decay. Observe that ®(n) as defined in section 5.1 tending
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to zero as n — oo for all measurable or square-integrable ¢ is essen-
tially equivalent to the mizing property of (f, u) (see section 1.2 for
the definition). For this reason, I will sometimes refer to the speed of
correlation decay as the speed of mixing.

Certainly not all (f, u) are ergodic or mixing. There is a theorem
due to Pesin and Ledrappier saying, however, that if u is smooth or is
SRB, and if f has no zero Lyapunov exponents p-a.e., then (f, u) is
made up of at most a countable number of ergodic components each
one of which is mixing up to a finite cycle (see e.g.[P2]). Thus the
question of correlation decay or speed of mixing is always relevant on
each mixing component.

It is not hard to see mixing can be arbitrarily slow if we allow all
measurable or L? test functions, and that questions regarding speeds of
mixing make sense only if we impose some regularity on . (This has
to do with the remark in the last paragraph of section 5.1. Intuitively,
smooth functions are a bit like locally constant ones, and using locally
constant test functions is a bit like coarse-graining, which introduces
randomness into the system.) From here on ¢ will always be assumed
to be at least Holder continuous.

This completes the description of the setting in which the questions
in the last section will be asked.

In the remainder of this article I would like to report on some recent
work that attempts to study systematically these questions, but first
let me some previous results. For the class of dynamical systems under
consideration, the situation can be summarized as follows:

For Anosov diffeomorphisms and attractors of Axiom A maps, SRB
measures always exist, correlation decay is exponential, and the cen-
tral limit theorem always holds (see e.g. [R2]). Correlation decay
questions for Axiom A flows remain not well understood; for recent
progress see [C1], [D]. (Our discussion does not apply to flows.)

Outside of the Axiom A category, much of the progress up until
recently has been focused on individual classes of examples, proving
in most cases exponential decay. Known techniques for proving ex-
ponential mixing include spectral gaps for the Perron-Frobenius or
transfer operator (see e.g. [R2], [HK], [R4]) and the invariant cones
method proposed in [Li] a few years ago. Some techniques using ap-
proximation by Markov chains have also been attempted [BSC2]. To
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my knowledge systematic methods for studying slower decay rates
have — up until quite recently — not been developed.

Our reportoire of examples at this point is rather limited, but these
examples do suggest that many distinct behavior types are possible.
For instance, there are examples on the boundary of Axiom A that do
not admit SRB measures ([Hy], [H1]); others do but have polynomial
decay ([H2], [Y4]).

5.3. A Generic Scheme: Renewal Times, Growth of Unstable
Manifolds, and the Speed of Mixing.

My goals in this subsection are
(1) to give verifiable conditions for the statistical properties above,
(2) to relate them to the geometry of the map.

These conditions are formulated in terms of recurrence times or re-
newal times and are defined for an object whose construction requires
some degree of hyperbolicity. The results contained in this subsection
are published in [Y3] and [Y4].

I will begin with a description of this object. For simplicity of
exposition, allow me to treat temporarily f as though it were an
expanding map, omitting details in connection with collapsing along
local stable manifolds for systems with contracting directions. The
idea is as follows: Pick an arbitrary set A with reasonable properties
and with m(A) > 0 where m is Lebesgue measure. Think of A as
a reference set, and regard A’ C A as having “renewed” itself or
“returned” to A at time n if f™ maps A’ diffeomorphically onto A. We
run the system until almost all points of A have returned, decomposing
A into a disjoint union of subsets {A;} each returning at a different
time. Let R be the return time function. We claim that the statistical
properties of f are to a large extent reflected in the asymptotics of
the sequence m{R > n}.

For difffeomorphisms with hyperbolic properties, that is, for maps
that have contracting as well as expanding directions, the picture
is more complicated. To avoid messy estimates I would choose A
with a product structure (i.e. A is the intersection of transversal
families of W* and W*-disks) even though these sets are not open
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in general. Here m is Lebesgue measure on W*, and we require that
m(ANW*) > 0.

There are also a few technical requirements, the most important
of which is a regularity condition for D f%®i|A; which puts a uniform
bound on the “distortion” or nonlinearity of f#i|A;. This is a natural
condition for C? maps that are sufficiently expanding. This control
of nonlinearities is essential for ensuring some resemblance to inde-
pendence for the dynamics between successive returns to the reference
set. See [Y3] and [Y4] for the precise formulations.

We now explain how this construction is used to study the ques-
tions posed at the beginning of this section. Again we omit details,
sketching only the three basic ideas.

First, we relate the statistical properties of f to the asymptotics
of m{R > n}. We call these “abstract” results because they do not
depend on the characteristics of the individual dynamical system other
than the tail of the return time function R.

THEOREM 5.3.1. [Y3], [Y4]. Let f,A,m and R be as above. Then:

(a) If [ Rdm < oo, then f admits an SRB measure ju.

(b) If, additionally, gcd{R;} = 1, then (f, p) is mizing.

(¢) If m{R > n} < CO™ for some § < 1, then 36 < 1 s.t.
Voo, ), Cn(ep, ) < CO™.

(d) If m{R >n}=0mn"?%) for some a > 1, then Cy,(p,¢) =
O(n=at1).

(e) If R is as in (d) and o > 2, then the CLT holds for all ¢.

Next, we argue that conceptually m{R > n} is essentially the speed
with which arbitrarily small pieces of unstable manifolds grow to a
specified size. (This is not the same as Lyapunov exponents, which
measure pointwise growth rates.) First we describe the picture:

If f has good hyperbolic properties, then we can cover most of
phase space with a finite number of sets I'y,---,I'y with product
structures (they look like W™ x W* trelises). If f is mixing, then in
finite time, f"I'; crosses over I'; in the unstable direction for every
t,7. These structures give the dynamics the flavor of a finite Markov
chain, but one should not carry the analogy too far, for Ul'; is not all
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of phase space, nor is it an invariant set. The rest of phase space is
made up of small bits of stable and unstable manifolds that twist and
turn as described in Section 1.2.

Returning to the problem of estimating m{R > n}, suppose that
I’y is our reference set. Since f is ergodic, it is inevitable that some
parts of I'y will get into the messy regions of phase space before they
return.

It is necessary, therefore, to know how long it takes structures of
arbitrarily small scales to “straighten out” and grow to the scale of
the I';’s. This is also sufficient, for once a W"-leaf reaches a size
comparable to the I';’s, it will soon cross over one of them, and once
it crosses over one I';, it will cross over I'; in a finite number of steps
via the Markov-like action on UI'; described earlier on.

Finally, we observe that while in general it is impossible to know
the detailed structures of a map to arbitrarily small scales, the type
of estimates to which the problem has now been reduced is feasible if
we know the rules of the game.

For example, if there is a recognizable “bad set” (meaning a source
of nonhyperbolicity) with known mechanisms, then the messy parts
are created by interactions with the “bad set”, which also determines
how they evolve. The speed in question is therefore related to the
speed with which the influence of the “bad set” is overcome.

5.4. Applications.

In section 5.3 we proposed a generic scheme for obtaining statistical
information for dynamical systems with some hyperbolic behavior.
We now implement this scheme for some well known examples. Most
of the results discussed below, including those for the Hénon maps
and billiards, are new.

EXAMPLE 1 Ezxpanding maps in 1-d with a neutral fized point [Y4].
Here the “bad set” consists exactly of the neutral fixed point, which
we call 0. If f/(0) = 1 and f”(0) = |z|"~! for some v > 0, then
taking A to be a suitable interval, it is an easy exercise to see that
m{R > n} = O(n™%) where a = % Once this is computed, the

abstract theorem in 3.2 gives immediately the existence of an invariant
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probability density with correlation decay rate (’)(n_%“) for v < 1,
and the CLT for v < 1. See also [H2] for similar results.

EXAMPLE 2 Logistic and Hénon-type maps. For the parameter
values studied in [BC2], the time that it takes an orbit to regain its
hyperbolicity after coming to a distance of § from the “bad set” is
~ log% (see 2.2; the same estimate holds for the Hénon maps). Thus
after each visit to the “bad set”, it is as though there is unobstructed,
uniform growth until the derivatives are fully recovered. This trans-
lates into the estimate m{R > n} < C#™ for some # < 1, from which
we conclude exponential decay of correlations and CLT.

For the logistic family, these results were first proved in [Y2] and
also in [KN]. In the case of the Hénon maps the constructions require
considerably more technical work than we have indicated; they are
carried out in [BY2].

EXAMPLE 3 Billiards. First we consider the Lorenz gas or billiards
on T? with convex scatterers (see section 2.2) and assume in addition
a finite horizon condition, which says that the times between colli-
sions are uniformly bounded. (This requires that the scatterers be
sufficiently dense.) Earlier results [BSC2] have shown that their cor-
relation decay rates are bounded above by ~ e~V™. T had the feeling
this may not be the true decay rate, so I ran these much studied ex-

amples through the analysis in section 5.3. Here is what I have found
in [Y3]:

As observed in section 2.2, the only obstruction to uniform growth
along W"-curves are a finite number of discontinuity curves transver-
sal to W*. To get an idea of what might happen, let v be a short
W*-curve and imagine a scenario in which each component of "~ is
expanded by % and cut into 2 roughly equal pieces with each iteration
— it would be very hard for these components to grow to unit length!

Unlike the logistic and Hénon maps, for which parameters are cho-
sen to guarantee full and immediate recovery after each visit to the
“bad set”, the components of f™v are not guaranteed to grow long
before they get cut again. We rely instead on the geometry of billiards
and a statistical argument, which goes as follows:

It is observed in [BSC1] that no more than Kn branches of the
discontinuity set of f™ can meet in one point, K depending only on the
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billiard table. Thus in n iterates the image of a sufficiently short W*-
curve has at most Kn+1 components while its total length grows by a
factor of A" for some A > 1. On average, therefore, exponential growth
prevails. This translates, after some work, into the estimate m{R >
n} < CO™, from which we conclude that the speed of correlation decay
is actually ~ e=™,

Recently Chernov has used the scheme outlined in the last subsec-
tion to obtain further results on the correlation decay rates for other
kinds of billiards. He has removed the finite horizon condition for the
Lorenz gas model, and has also verified the exponential decay rate
for dispersing billiards in domains with corners (see Fig. 3(b)) under
certain mild conditions [C2]. We are very hopeful that this scheme of
proof will prevail to give further results for similar physical systems.
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