1. If \(T \in \Lambda^k(V) \), \(\vec{v}_1, \ldots, \vec{v}_k \) is a set of \(k \) linearly dependent vectors on \(V \), prove \(T(\vec{v}_1, \ldots, \vec{v}_k) = 0 \)

Solution: Since \(\vec{v}_1, \ldots, \vec{v}_k \) is a set of \(k \) linearly dependent vectors, there exists \(a_1, \ldots, a_k \in \mathbb{F} \) such that
\[
a_1 \vec{v}_1 + \ldots + a_k \vec{v}_k = \vec{0}
\]
and at least one \(a_i \neq 0 \). Then it implies we can write
\[
\vec{v}_i = -\frac{a_1}{a_i} \vec{v}_1 - \ldots - \frac{a_{i-1}}{a_i} \vec{v}_{i-1} - \frac{a_i+1}{a_i} \vec{v}_{i+1} - \ldots - \frac{a_k}{a_i} \vec{v}_k
\]
So
\[
T(\vec{v}_1, \ldots, \vec{v}_n)
= T(\vec{v}_1, \ldots, \vec{v}_i, \ldots, \vec{v}_k)
= a_1 \frac{T(\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_1, \vec{v}_{i+1}, \ldots, \vec{v}_k) - \cdots - a_i \frac{T(\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_k) - \cdots - a_k \frac{T(\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_k, \vec{v}_{i+1}, \ldots, \vec{v}_k) - \cdots - 0 = 0
\]

2. If \(T \in \Lambda^k(V) \) and \(S \in \Lambda^l(V) \), prove \(T \wedge S = (-1)^{kl} S \wedge T \)

Solution: If \(\{\vec{v}_1, \ldots, \vec{v}_n\} \) is a basis for \(V \) and \(\phi_1, \ldots, \phi_n \) is the dual basis for \(V^* \). First we show that \(\phi_i \wedge \phi_j = -\phi_j \wedge \phi_i \):
\[
\phi_i \wedge \phi_j(\vec{u}_1, \vec{u}_2)
= \sum_{\sigma \in S_2} \text{sgn}(\sigma) \phi_i(\vec{u}_{\sigma(1)}) \phi_j(\vec{u}_{\sigma(2)})
= \phi_i(\vec{u}_1) \phi_j(\vec{u}_2) - \phi_i(\vec{u}_2) \phi_j(\vec{u}_1)
= - \phi_j(\vec{u}_1) \phi_i(\vec{u}_2) + \phi_j(\vec{u}_2) \phi_i(\vec{u}_1)
= - \sum_{\sigma \in S_2} \text{sgn}(\sigma) \phi_j(\vec{u}_{\sigma(1)}) \phi_i(\vec{u}_{\sigma(2)})
= - \phi_j \wedge \phi_i(\vec{u}_1, \vec{u}_2)
\]
This implies
\[\phi_{i_1} \wedge ... \wedge \phi_{i_k} \wedge \phi_j = (-1)^k \phi_j \wedge ... \wedge \phi_j \wedge \phi_{i_1} \wedge ... \wedge \phi_{i_k} \]

If \(T = \sum_{1 \leq i_1 < ... < i_k \leq n} T_{i_1...i_k} \phi_{i_1} \wedge ... \wedge \phi_{i_k} \) and \(S = \sum_{1 \leq j_1 < ... < j_l \leq n} S_{j_1...j_l} \phi_{j_1} \wedge ... \wedge \phi_{j_l} \), we get

\[T \wedge S = \left(\sum_{1 \leq i_1 < ... < i_k \leq n} T_{i_1...i_k} \phi_{i_1} \wedge ... \wedge \phi_{i_k} \right) \wedge \left(\sum_{1 \leq j_1 < ... < j_l \leq n} S_{j_1...j_l} \phi_{j_1} \wedge ... \wedge \phi_{j_l} \right) \]

\[= (-1)^k \sum_{1 \leq i_1 < ... < i_k \leq n} \sum_{1 \leq j_1 < ... < j_l \leq n} T_{i_1...i_k} S_{j_1...j_l} \phi_{j_1} \wedge ... \wedge \phi_{j_l} \wedge \phi_{i_1} \wedge ... \wedge \phi_{i_k} \]

\[= (-1)^k \sum_{1 \leq j_1 < ... < j_l \leq n} \sum_{1 \leq i_1 < ... < i_k \leq n} S_{j_1...j_l} T_{i_1...i_k} \phi_{j_1} \wedge ... \wedge \phi_{j_l} \wedge \phi_{i_1} \wedge ... \wedge \phi_{i_k} \]

\[= (-1)^k \left(\sum_{1 \leq j_1 < ... < j_l \leq n} S_{j_1...j_l} \phi_{j_1} \wedge ... \wedge \phi_{j_l} \right) \wedge \left(\sum_{1 \leq i_1 < ... < i_k \leq n} T_{i_1...i_k} \phi_{i_1} \wedge ... \wedge \phi_{i_k} \right) \]

\[= (-1)^k S \wedge T \]

3. If \(\{ \vec{v}_1, ..., \vec{v}_n \} \) is a basis for a \(n \)-dimensional vector space \(V \) and \(\{ \phi_1, ..., \phi_n \} \) is the dual basis for \(V^* \), prove for each \(\sigma \in S_n \),

\[\phi_{\sigma(1)} \wedge ... \wedge \phi_{\sigma(n)} = sgn(\sigma) \phi_1 \wedge ... \wedge \phi_n \]

Solution:

Method I: By (2), \(\phi_i \wedge \phi_j = -\phi_j \wedge \phi_i \). We can get from \(\phi_{\sigma(1)} \wedge ... \wedge \phi_{\sigma(n)} \) to \(\phi_1 \wedge ... \wedge \phi_n \) by odd number of transpositions if \(sgn(\sigma) = -1 \), and even number of transpositions if \(sgn(\sigma) = +1 \), so we get the conclusion.
Method II:

\[\phi_{\sigma(1)} \wedge ... \wedge \phi_{\sigma(n)}(\vec{v}_1, ..., \vec{v}_n) \]

\[= n! \text{Alt}(\phi_{\sigma(1)} \otimes ... \otimes \phi_{\sigma(n)})(\vec{v}_1, ..., \vec{v}_n) \]

\[= \sum_{\tau \in S_n} \text{sgn}(\tau) \phi_{\sigma(1)}(\vec{v}_{\tau(1)}) ... \phi_{\sigma(n)}(\vec{v}_{\tau(n)}) \]

\[= \sum_{\tau \in S_n} \text{sgn}(\tau) \phi_{\sigma(1)}(\vec{v}_{\tau(1)}) ... \phi_{\sigma(n)}(\vec{v}_{\tau(n)}) \]

\[= \text{sgn}(\sigma) \sum_{\tau \in S_n} \text{sgn}(\tau) \phi_{\sigma(1)}(\vec{v}_{\tau(1)}) ... \phi_{\sigma(n)}(\vec{v}_{\tau(n)}) \]

\[= \text{sgn}(\sigma) \sum_{\tau \in S_n} \text{sgn}(\tau) \phi_{\sigma(1)}(\vec{v}_{\tau(1)}) ... \phi_{\sigma(n)}(\vec{v}_{\tau(n)}) \]

\[= \text{sgn}(\sigma) \sum_{\tau \in S_n} \phi_{\tau(1)}(\vec{v}_{\tau(1)}) ... \phi_{\tau(n)}(\vec{v}_{\tau(n)}) \]

\[= \text{sgn}(\sigma) \text{Alt}(\phi_1 \otimes ... \otimes \phi_n)(\vec{v}_1, ..., \vec{v}_n) \]

\[= \text{sgn}(\sigma) \phi_1 \wedge ... \wedge \phi_n(\vec{v}_1, ..., \vec{v}_n) \]

4. \(T \in T^k(V) \) is called a symmetric \(k \)-tensor if for any \(\vec{v}_1, ..., \vec{v}_k \in V \) and any \(\sigma \in S_k \), \(T(\vec{v}_{\sigma(1)}, ..., \vec{v}_{\sigma(k)}) = T(\vec{v}_1, ..., \vec{v}_k) \). The set of all symmetric \(k \)-tensors form the subspace \(\text{Sym}^k(V) \) of \(T^k(V) \).

(i). Given any \(T \in T^k(V) \), define \(\text{Sym}(T) \) to be the \(k \)-tensor:

\[\text{Sym}(T)(\vec{v}_1, ..., \vec{v}_k) = \frac{1}{k!} \sum_{\sigma \in S_k} T(\vec{v}_{\sigma(1)}, ..., \vec{v}_{\sigma(k)}) \]

Prove \(\text{Sym}(T) \in \text{Sym}^k(V) \).

Solution:

For any \(\tau \in S_k \),

\[\text{Sym}(T)(\vec{v}_{\tau(1)}, ..., \vec{v}_{\tau(k)}) \]

\[= \frac{1}{k!} \sum_{\sigma \in S_k} T(\vec{v}_{\sigma(1)}, ..., \vec{v}_{\sigma(1)}) \]

\[= \frac{1}{k!} \sum_{\sigma \in S_k} T(\vec{v}_{\sigma(1)}, ..., \vec{v}_{\sigma(1)}) \]

\[= \text{Sym}(T)(\vec{v}_1, ..., \vec{v}_k) \]
The second last equality is because for fixed $\tau \in S_k$, there is a bijection

$$S_k \rightarrow S_k$$

given by $\sigma \mapsto \sigma \tau$

(ii). If $T \in Sym^k(V)$, prove $Sym(T) = T$

Solution:
If $T \in Sym^k(V),$

$$Sym(T)(\vec{v}_1, ..., \vec{v}_k)$$

$$= \frac{1}{k!} \sum_{\sigma \in S_k} T(\vec{v}_{\sigma(1)}, ..., \vec{v}_{\sigma(k)})$$

$$= \frac{1}{k!} \sum_{\sigma \in S_k} T(\vec{v}_1, ..., \vec{v}_k)$$

$$= \frac{1}{k!} \times k! T(\vec{v}_1, ..., \vec{v}_k)$$

$$= T(\vec{v}_1, ..., \vec{v}_k)$$

(iii). $T \in T^2(V)$, prove $T = Sym(T) + Alt(T)$

Solution: If $T \in T^2(V),$

$$Sym(T)(\vec{v}_1, \vec{v}_2) = \frac{1}{2!} \sum_{\sigma \in S_2} T(\vec{v}_{\sigma(1)}, \vec{v}_{\sigma(2)}) = \frac{T(\vec{v}_1, \vec{v}_2) + T(\vec{v}_2, \vec{v}_1)}{2}$$

$$Alt(T)(\vec{v}_1, \vec{v}_2) = \frac{1}{2!} \sum_{\sigma \in S_2} sgn(\sigma)T(\vec{v}_{\sigma(1)}, \vec{v}_{\sigma(2)}) = \frac{T(\vec{v}_1, \vec{v}_2) - T(\vec{v}_2, \vec{v}_1)}{2}$$

So

$$[Sym(T) + Alt(T)](\vec{v}_1, \vec{v}_2)$$

$$= Sym(T)(\vec{v}_1, \vec{v}_2) + Alt(T)(\vec{v}_1, \vec{v}_2)$$

$$= \frac{T(\vec{v}_1, \vec{v}_2) + T(\vec{v}_2, \vec{v}_1)}{2} + \frac{T(\vec{v}_1, \vec{v}_2) - T(\vec{v}_2, \vec{v}_1)}{2}$$

$$= T(\vec{v}_1, \vec{v}_2)$$

4
We conclude \(T = Sym(T) + Alt(T) \)

(iv). Prove \(Sym^2(V) \cap \Lambda^2(V) = \{0\} \)

Solution: If \(T \in Sym^2(V) \), then \(T(\vec{v}_1, \vec{v}_2) = T(\vec{v}_2, \vec{v}_1) \). If \(T \in \Lambda^2(V) \), then \(T(\vec{v}_1, \vec{v}_2) = -T(\vec{v}_2, \vec{v}_1) \).

Combining these two equations, we see if \(T \in Sym^2(V) \cap \Lambda^2(V) \), then \(T(\vec{v}_1, \vec{v}_2) = 0 \) for any \(\vec{v}_1, \vec{v}_2 \in V \).

(v). \(T \in T^2(V) \). Prove \(T \) can be decomposed as the sum of a symmetric 2-tensor and an alternating 2-tensor in a unique way. (Remark: This is equivalent to say \(T^2(V) = Sym^2(V) \oplus \Lambda^2(V) \))

Solution: By (iii), we know \(T = Sym(T) + Alt(T) \), which gives one such decomposition. We next prove this decomposition is unique:

If \(T = \omega_1 + \eta_1 = \omega_2 + \eta_2 \), where \(\omega_1, \omega_2 \in Sym^2(V) \) and \(\eta_1, \eta_2 \in \Lambda^2(V) \), then

\[
\omega_1 - \omega_2 = \eta_2 - \eta_1
\]

The left side belongs to \(Sym^2(V) \) while the right side belongs to \(\Lambda^2(V) \), so

\[
\omega_1 - \omega_2 = \eta_2 - \eta_1 \in Sym^2(V) \cap \Lambda^2(V) = \{0\}
\]

We conclude \(\omega_1 = \omega_2 \) and \(\eta_1 = \eta_2 \), so the decomposition is unique.

(vi). \(\{\vec{u}_1, ..., \vec{u}_n\} \) is a basis of \(V \). \(T \in T^2(V) \). \(A = (a_{ij}) \) is the \(n \times n \) matrix such that \(a_{ij} = T(\vec{u}_i, \vec{u}_j) \). A square matrix \(A \) is called skew-symmetric if \(A^t = -A \), where \(A^t \) denotes the transpose of \(A \). Prove \(T \in Sym^2(V) \) if and only if \(A \) is a symmetric matrix, and \(T \in \Lambda^2(V) \) if and only if \(A \) is a skew-symmetric matrix.

Solution:

\(T \in Sym^2(V) \iff T(\vec{e}_i, \vec{e}_j) = T(\vec{e}_j, \vec{e}_i) \iff a_{ij} = a_{ji} \iff A \) is symmetric.

\(T \in \Lambda^2(V) \iff T(\vec{e}_i, \vec{e}_j) = -T(\vec{e}_j, \vec{e}_i) \iff a_{ij} = -a_{ji} \iff A \) is skew-symmetric.

(vii). Prove Each \(n \times n \) matrix can be written as a sum of a symmetric matrix and a skew-symmetric matrix in a unique way.

Solution: Fixing a basis \(\{\vec{e}_1, ..., \vec{e}_n\} \), there is a one-to-one correspondence between 2-tensors on \(V \) and \(n \times n \) matrices as described in (vi). So given \(n \times n \) matrix \(A \), it corresponds to some 2-tensor \(T \). In (v) we proved \(T = \omega + \eta \) can be decomposed as a sum of a symmetric 2-tensor \(\omega \) and an alternating 2-tensor.
\(\eta \) in a unique way, and in (vi) we proved \(\omega \in Sym^2(V) \) if and only if its matrix \(B \) is a symmetric matrix, and \(\eta \in \Lambda^2(V) \) if and only if its matrix \(C \) is a skew-symmetric matrix, so \(A = B + C \) can be written as a sum of a symmetric matrix and a skew-symmetric matrix in a unique way.

(viii). Write the matrix \[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]
as the sum of a symmetric matrix and a skew-symmetric matrix.

Solution: If the matrix of \(T \) is \(A = (T(\vec{e}_i, \vec{e}_j)) \), then the matrix for \(Sym(T) \) is \(\left(\frac{T(\vec{e}_i, \vec{e}_j) + T(\vec{e}_j, \vec{e}_i)}{2} \right) = \frac{1}{2}(A + A^t) \) and the matrix for \(Alt(T) \) is \(\left(\frac{T(\vec{e}_i, \vec{e}_j) - T(\vec{e}_j, \vec{e}_i)}{2} \right) = \frac{1}{2}(A - A^t) \).

So \(A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t) \). Applying this formula we get
\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 5 \\
3 & 5 & 7 \\
5 & 7 & 9
\end{bmatrix} + \begin{bmatrix}
0 & -1 & -2 \\
1 & 0 & -1 \\
2 & 1 & 0
\end{bmatrix}
\]