1. $\{\vec{v}_1,...,\vec{v}_n\}$ are n linearly independent vectors in \mathbb{R}^n . If $\vec{v}.\vec{v}_i = 0$ for any $i \in \{1,2,...,n\}$, prove $\vec{v} = \vec{0}$

Solution: Since $\{\vec{v}_1, ..., \vec{v}_n\}$ are n linearly independent vectors in \mathbb{R}^n , they form a basis of \mathbb{R}^n . So each element of the standard basis $\{\vec{e}_1, ..., \vec{e}_n\}$ can be written as a linear combination of $\{\vec{v}_1, ..., \vec{v}_n\}$, i.e. there exists $a_{i1}, ..., a_{in}$ such that

$$\vec{e_i} = a_{i1}\vec{v_1} + \dots + a_{in}\vec{v_n}$$

Then $\vec{v} \cdot \vec{e_i} = a_{i1}\vec{v} \cdot \vec{v_1} + ... + a_{in}\vec{v} \cdot \vec{v_n} = 0 + ... + 0 = 0$ for i = 1, ..., n.

Since $\{\vec{e}_1,...,\vec{e}_n\}$ is an orthonormal basis of \mathbb{R}^n , there exists $b_1,...,b_n \in \mathbb{R}$ such that $\vec{v} = b_1\vec{e}_1 + ... + b_n\vec{v}_n$.

 $0 = \vec{v} \cdot \vec{e_i} = b_1 \vec{e_1} \cdot \vec{e_i} + ... + b_n \vec{e_n} \cdot \vec{e_n} = b_i$ for all i = 1, ..., n, we conclude $\vec{v} = 0$.

- 2. \vec{S} is an oriented surface with boundary a closed curve C with orientation compatible with that of \vec{S} . f(x,y,z) is a smooth scalar function defined in a region containing \vec{S} .
 - (i). Prove that for any unit vector \hat{u} ,

$$\hat{u}.(\iint_{S} -\vec{\nabla} f \times d\vec{S}) = \hat{u}.(\oint_{C} f \, d\vec{r})$$

(Hint: Apply Stokes' Theorem to $f\hat{u}$)

Solution:

By Stokes' Theorem, we know

$$\iint_{S} \vec{\nabla} f \times \hat{u}.\,d\vec{s} = \oint_{C} f \hat{u}.\,d\vec{r}$$

so

$$\iint_{S} \hat{u} \times (-\vec{\nabla}f) \, d\vec{S} = \oint_{C} f \hat{u}. \, d\vec{r}$$

Since \vec{u} is a constant vector, we see

$$\hat{u}.(\iint_{S} -\vec{\nabla} f \times d\vec{S}) = \hat{u}.(\oint_{C} f d\vec{r})$$

(ii). Prove $\iint_S -\vec{\nabla} f \times d\vec{S} = \oint_C f d\vec{r}$

Solution: We have shown in (i) that $\hat{u}.(\iint_S -\vec{\nabla} f \times d\vec{S}) = \hat{u}.(\oint_C f d\vec{r})$ for any unit vector \vec{u} , so

$$\vec{e_i} \cdot (\iint_S -\vec{\nabla} f \times d\vec{S} - \oint_C f d\vec{r}) = 0$$

for the standard basis $\{\vec{e}_1,...,\vec{e}_n\}$. By Question 1, we conclude

$$\iint_S -\vec{\nabla} f \times \, d\vec{S} - \oint_C f \, d\vec{r} = 0$$

So

$$\iint_S -\vec{\nabla} f \times \, d\vec{S} = \oint_C f \, d\vec{r}$$

3. f, g, h are single-variable smooth functions $\mathbb{R} \longrightarrow \mathbb{R}$. Show that the vector field $\vec{F}(x, y, z) = (f(x), g(y), h(z))$ is conservative.

Solution: \vec{F} is a vector field defined on \vec{R}^3 , which is open and simply-connected. We see $\vec{\nabla} \times \vec{F} = \vec{\nabla} \times (f(x), g(y), h(z)) = 0$, so the vector field is conservative.

4. Use Stokes' Theorem to evaluate $\iint_S \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ where $\vec{F} = (y^2z, zx, x^2y^2)$, and \vec{S} is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 1$, oriented upward.

Solution: The boundary of \vec{S} is the circle $x^2 + y^2 = 1, z = 1$ oriented counterclockwise, which can be parameterized by $\vec{r}(t) = (\cos t, \sin t, 1), 0 \le t \le 2\pi$. So by Stokes' Theorem,

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$$

$$= \oint_{C} \vec{F} \cdot d\vec{r}$$

$$= \int_{0}^{2\pi} (\sin^{2} t, \cos t, \cos^{2} \sin^{2} t) \cdot (-\sin t, \cos t, 0) dt$$

$$= \int_{0}^{2\pi} -\sin^{3} t + \cos^{2} t dt$$

$$= \pi$$

5. S is the cylinder $x^2 + y^2 = 1, 0 \le z \le 1$. The two boundary circles C_1 and C_2 are oriented counterclockwise seen from above. If \vec{F} is a vector field on \mathbb{R}^3 such that $\iint_S \vec{\nabla} \times \vec{F} \cdot d\vec{S} = 0$, prove

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$

Solution: Let S_1 be the disk $x^2 + y^2 = 1$, z = 1 and S_2 be the disk $x^2 + y^2 = 1$, z = 0. $S \cup S_1 \cup S_2$ is a closed surface, and we take the outward orientation of it. Then

$$\int_{S \cup S_1 \cup S_2} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = 0$$

$$\Rightarrow \int_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} + \int_{S_1} \vec{\nabla} \times \vec{F} \cdot d\vec{S} + \int_{S_2} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = 0$$

$$\Rightarrow 0 + \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{-C_2} \vec{F} \cdot d\vec{r} = 0$$

$$\Rightarrow \int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$