1. Show that if $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are orthogonal, then $|\vec{u}| = |\vec{v}|$

Solution:

Method I:

If $\vec{u} + \vec{v} \perp \vec{u} - \vec{v}$, then

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = 0$$

$$\vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} - \vec{v} \cdot \vec{v} = 0$$

$$\vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{v} = 0$$

$$|\vec{u}|^2 - |\vec{v}|^2 = 0$$

$$|\vec{u}|^2 = |\vec{v}|^2$$

$$|\vec{u}| = |\vec{v}|$$

Method II:

Assume $\vec{u} = \langle x_1, y_1, z_1 \rangle, \vec{v} = \langle x_2, y_2, z_2 \rangle$.

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = 0$$

$$< x_1 + x_2, y_1 + y_2, z_1 + z_2 > \cdot < x_1 - x_2, y_1 - y_2, z_1 - z_2 > = 0$$

$$(x_1 + x_2)(x_1 - x_2) + (y_1 + y_2)(y_1 - y_2) + (z_1 + z_2)(z_1 - z_2) = 0$$

$$x_1^2 - x_2^2 + y_1^2 - y_2^2 + z_1^2 - z_2^2 = 0$$

$$x_1^2 + y_1^2 + z_1^2 = x_2^2 + y_2^2 + z_2^2$$

$$|\vec{u}|^2 = |\vec{v}|^2$$

$$|\vec{u}| = |\vec{v}|$$

2. Find an unit vector that makes an angle of $\frac{\pi}{3}$ with $\vec{v} = <1, \sqrt{3}, -2\sqrt{3}>$ and perpendicular to $\vec{k} = <0, 0, 1>$.

Solution: Assume $\vec{u} = \langle x, y, z \rangle$ is a unit vector $(|\vec{u}| = 1)$ that makes an angle of $\frac{\pi}{3}$ with \vec{v} and perpendicular to $\vec{k} = \langle 0, 0, 1 \rangle$, then

$$0 = < x, y, z > \cdot < 0, 0, 1 > = z$$

so $\vec{u} = \langle x, y, 0 \rangle$. Also,

$$\frac{1}{2} = \cos\frac{\pi}{3} = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} = \frac{x + \sqrt{3}y}{4}$$

We get $x + \sqrt{3}y = 2$. Together with $|\vec{u}| = x^2 + y^2 = 1$, we get $x = \frac{1}{2}, y = \frac{\sqrt{3}}{2}$, so $\vec{u} = \langle \frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \rangle$

3. $\vec{u} \cdot \vec{v} = \sqrt{3}$ and $\vec{u} \times \vec{v} = <1, 2, 2>$. Compute the angle between \vec{u} and \vec{v} .

Solution: Let θ be the angle between \vec{u} and \vec{v} .

$$\sqrt{3} = \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

$$3 = |\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\theta$$

So the quotient of the above equations implies $\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{3}}{3}$, and $0 \le \theta \le \pi$, hence $\theta = \frac{\pi}{3}$

4. Find the distance from (1,2,4) to the plane 3x + 2y + z - 5 = 0

Solution: Let P = (1,2,4). We can arbitrarily pick a point on the plane, say Q = (0,0,5). Then $\overrightarrow{PQ} = \langle -1,-2,1 \rangle$. By the equation of the plane, we see $\overrightarrow{n} = \langle 3,2,1 \rangle$ is a normal vector to the plane.

So the distance from P to the plane is $\frac{|\overrightarrow{PQ} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|} = \frac{|-6|}{\sqrt{14}} = \frac{3}{7}\sqrt{14}$

5. Find an equation of the plane passing through (0, 2, 4), (1, -3, 2) and (-3, -2, 1)

Solution: Let P = (0, 2, 4), Q = (1, -3, 2), R = (-3, -2, 1).

Then $\overrightarrow{PQ} = <1, -5, -2>$ and $\overrightarrow{PR} = <-3, -4, -3>$ are parallel to the plane, so $\overrightarrow{PQ} \times \overrightarrow{PR} = <7, 9, -19>$ is a normal vector to the plane. So the equation of the plane is given by

$$7(x-0) + 9(y-2) - 19(z-4) = 0$$
, i.e. $7x + 9y - 19z + 58 = 0$