- 1. Translate the suffix notation $\delta_{ij}c_j + \epsilon_{kji}a_kb_j = d_le_mc_ib_lc_m$ into ordinary vector equation.
- 2. Use suffix notation to show that the $n \times n$ identity matrix commutes with any $n \times n$ matrix with respect to matrix multiplication.
- 3. Compute $\epsilon_{ijk}\epsilon_{ijk}$
- 4. Use Suffix notation to show $\vec{a}.(\vec{b} \times \vec{c}) = -\vec{c}.(\vec{b} \times \vec{a})$
- 5. Using suffix notation to find an alternative expression for $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d})$ which doesn't involve cross product.
- 6. If A, B are two $n \times n$ matrices, use suffix notation to prove $(AB)^T = B^T A^T$, where ^T means transpose