- 1. $\vec{F}(x,y,z)=(x,y,z)$. Prove there doesn't exist a vector field \vec{G} such that $\vec{F}=\vec{\nabla}\times\vec{G}$.
- 2. Compute the volume of the solid $E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \le 1, y^2 + z^2 \le 1\}$
- 3. f(x, y, z) is a scalar function and $\vec{F}(x, y, z)$ is a vector field. Prove

$$\vec{\nabla}.(f\vec{F}) = f(\vec{\nabla}.\vec{F}) + (\vec{\nabla}f).\vec{F}$$

- 4. Let E be the unit cube $E=\{(x,y,z)\in\mathbb{R}^3:0\leq x\leq 1,0\leq y\leq 1,0\leq z\leq 1\}$. Let S be the boundary of E with outward orientation. If $\vec{F}(x,y,z)=(2xy,3ye^z,x\sin z)$, compute $\oiint_S\vec{F}.d\vec{S}$
- 5. $\vec{F}(x,y,z)$ is a vector field defined on \mathbb{R}^3 . 0 < r < R are constants. Let S_R (S_r) denote the sphere of radius R (r) centered at origin. E is the region bounded by these two spheres. Prove

$$\iiint_E div\vec{F} dV = \oiint_{S_R} \vec{F} \cdot d\vec{S} - \oiint_{S_r} \vec{F} \cdot d\vec{S}$$