- 1. $\{\vec{v}_1, ..., \vec{v}_n\}$ are *n* linearly independent vectors in \mathbb{R}^n . If $\vec{v}.\vec{v}_i = 0$ for any $i \in \{1, 2, ..., n\}$, prove $\vec{v} = \vec{0}$
- 2. \vec{S} is an oriented surface with boundary a closed curve C with orientation compatible with that of \vec{S} . f(x, y, z) is a smooth scalar function defined in a region containing \vec{S} .
 - (i). Prove that for any unit vector \hat{u} ,

$$\hat{u}.(\iint_S -\vec{\nabla}f \times d\vec{S}) = \hat{u}.(\oint_C f \, d\vec{r})$$

(Hint: Apply Stokes' Theorem to $f\hat{u}$)

- (ii). Prove $\iint_{S} \vec{\nabla} f \times d\vec{S} = \oint_{C} f \, d\vec{r}$
- 3. f, g, h are single-variable smooth functions $\mathbb{R} \longrightarrow \mathbb{R}$. Show that the vector field $\vec{F}(x, y, z) = (f(x), g(y), h(z))$ is conservative.
- 4. Use Stokes' Theorem to evaluate $\iint_S \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ where $\vec{F} = (y^2 z, zx, x^2 y^2)$, and \vec{S} is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 1$, oriented upward.
- 5. S is the cylinder $x^2 + y^2 = 1, 0 \le z \le 1$. The two boundary circles C_1 and C_2 are oriented counterclockwise seen from above. If \vec{F} is a vector field on \mathbb{R}^3 such that $\iint_S \vec{\nabla} \times \vec{F} \cdot d\vec{S} = 0$, prove

$$\int_{C_1} \vec{F}.\,d\vec{r} = \int_{C_2} \vec{F}.\,d\vec{r}$$