1. $\vec{F}(x,y,z)=(y,z,x)$ is a vector field. \vec{S} is the unit sphere $x^2+y^2+z^2=1$ with outward orientation. Compute

$$\iint_S \vec{F} \times \, d\vec{S}$$

2. $\vec{F}(x,y,z)=x+y+z$ is a scalar function. C is the oriented intersection curve of the paraboloid $z=x^2+y^2$ and the plane x+y=0 from (0,0,0) to (1,-1,2). Compute

$$\int_C f \, d\vec{r}$$

3. If f(x, y, z) is a scalar function and $\vec{F}(x, y, z)$ is a vector field, prove

$$\vec{\nabla} \times (f\vec{F}) = f(\vec{\nabla} \times \vec{F}) + \vec{\nabla} f \times \vec{F}$$

4. If f(x, y, z) and g(x, y, z) are scalar functions, $\vec{F} = g \vec{\nabla} f$, show that

$$\vec{F}.Curl(\vec{F})=0$$

5. Show that $\vec{F}(x, y, z) = (y, z, x)$ is not a conservative vector field.