- 1. Find the surface area of the torus obtained from rotating the circle in yz-plane $(y-b)^2+z^2=a^2$ around z-axis, where 0 < a < b are constants
- 2. Evaluate

$$\iint_{S} x^2 z + y^2 z \, dS$$

where S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

- 3. A surface S is parameterized by $\vec{r}(\theta, z) = (\cos \theta, \sin \theta, z), 0 \le \theta \le 2\pi, -1 \le z \le 1$. It is orientation agrees with $\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial z}$
 - (i). What surface is it geometrically?
 - (ii). If $\vec{F}(x, y, z) = (-y, x, z)$, evaluate

$$\iint_{S} \vec{F} . d\vec{S}$$

- (iii). Can you explain the result you obtained in (ii) geometrically?
- 4. If S is the part of the graph of a smooth function $z = f(x, y) = 1 x^2 y^2$ above xy-plane with upward orientation, $\vec{F}(x, y, z) = (y, x, z)$, compute

$$\iint_{S} \vec{F} \cdot d\vec{S}$$

5. Evaluate the surface integral $\iint_S \vec{F} \cdot d\vec{S}$, where $\vec{F} = \langle x, -z, y \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant, with orientation pointing towards the origin.