1. $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ and $G: \mathbb{R}^m \longrightarrow \mathbb{R}^k$ are differentiable maps. Prove the chain rule:

$$D(G \circ F)(x) = DG(F(x))DF(x)$$

- 2. (1). $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a differentiable function such that $f'(x) \neq 0$ for any $x \in \mathbb{R}$. Prove f is a one-to-one function.
 - (ii). Prove $p: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $p(x) = x^5 + x^3 + x + 1$ is a bijective function.

(iii). Compute
$$(p^{-1})'(1)$$

- 3. Verify that the function $F(x, y) = (x^2 + y^2, x y^3)$ is locally invertible at (0, 1), and compute $DF^{-1}(1, -1)$
- 4. $F : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a continuously differentiable function. If there is a sequence $\{x_n\} \in \mathbb{R}^n$ such that $\lim_{x \to \infty} x_n = x_0, x_0 \neq x_n$ for any $n \in \mathbb{N}$, and $f(x_n) = a \in \mathbb{R}^n$ for any $n \in \mathbb{N}$, prove $DF(x_0)$ is not invertible.
- 5. $F(x, y, z) = (x + y + z, x^2 + y^2 + z^2)$. Prove there exist differentiable g(x) and h(x) defined in some neighbourhood of x = 0 such that g(0) = 1, h(0) = 2 and on this neighbourhood F(x, g(x), h(x)) = (3, 5). Compute g'(0) and h'(0).
- 6. A surface is defined by the equation $xy + y^2z + z^3x = 3$. Find the equation of the tangent plane for the surface at (1, 1, 1).