- 1. If T_{ij} represents a 2-tensor, prove T_{ii} is independent of coordinates.
- 2. If T_i and S_j represent 1-tensors, prove $T_i S_j$ represents a 2-tensor.
- 3. If T_{ijkl} represents a tensor of rank 4, prove T_{ijjl} represents a tensor of rank 2.
- 4. Construct an isotropic 5-tensor on \mathbb{R}^3 and prove it is isotropic.
- 5. (i). If x_i represents a 1-tensor, and $A = (a_{ij})$ denotes the matrix of change of basis, prove that

$$\frac{\partial x'_i}{\partial x_j} = a_{ij} \text{ and } \frac{\partial x_i}{\partial x'_j} = a_{ji}$$

- (ii). If f is a smooth function, prove $\frac{\partial f}{\partial x_i}$ represents a 1-tensor.
- (iii). If u_i represents a 1-tensor, prove $\frac{\partial u_i}{\partial x_i}$ represents a 2-tensor.
- 6. $\sigma \in S_n$. Define the $n \times n$ matrix $A = (\delta_{i\sigma^{-1}(j)})$.
 - (i). If n = 3, $\sigma(1) = 3$, $\sigma(2) = 1$, $\sigma(3) = 2$, write out A explicitly.
 - (ii). Prove $A \in O_n(\mathbb{R})$.
 - (iii). Prove $A \in SO_n(\mathbb{R})$ if and only if $sgn(\sigma) = +1$.