1. If T_{ij} represents a 2-tensor, prove T_{ii} is independent of coordinates.

2. If T_i and S_j represent 1-tensors, prove $T_i S_j$ represents a 2-tensor.

3. If T_{ijkl} represents a tensor of rank 4, prove T_{ijjl} represents a tensor of rank 2.

4. Construct an isotropic 5-tensor on \mathbb{R}^3 and prove it is isotropic.

5. (i). If x_i represents a 1-tensor, and $A = (a_{ij})$ denotes the matrix of change of basis, prove that $\frac{\partial x'_i}{\partial x_j} = a_{ij}$ and $\frac{\partial x_i}{\partial x'^j} = a_{ji}$

 (ii). If f is a smooth function, prove $\frac{\partial f}{\partial x_i}$ represents a 1-tensor.

 (iii). If u_i represents a 1-tensor, prove $\frac{\partial u_i}{\partial x_j}$ represents a 2-tensor.

6. $\sigma \in S_n$. Define the $n \times n$ matrix $A = (\delta_{i\sigma^{-1}(j)})$.

 (i). If $n = 3$, $\sigma(1) = 3, \sigma(2) = 1, \sigma(3) = 2$, write out A explicitly.

 (ii). Prove $A \in O_n(\mathbb{R})$.

 (iii). Prove $A \in SO_n(\mathbb{R})$ if and only if $\text{sgn}(\sigma) = +1$.