- 1. Show that if $\vec{u} + \vec{v}$ and $\vec{u} \vec{v}$ are orthogonal, then $|\vec{u}| = |\vec{v}|$
- 2. Find an unit vector that makes an angle of $\frac{\pi}{3}$ with $\vec{v} = <1, \sqrt{3}, -2\sqrt{3} >$ and perpendicular to $\vec{k} = <0, 0, 1 >$.
- 3. $\vec{u} \cdot \vec{v} = \sqrt{3}$ and $\vec{u} \times \vec{v} = <1, 2, 2>$. Compute the angle between \vec{u} and \vec{v} .
- 4. Find the distance from (1, 2, 4) to the plane 3x + 2y + z 5 = 0
- 5. Find an equation of the plane passing through (0, 2, 4), (1, -3, 2) and (-3, -2, 1)