Vectors

Liming Pang

1 Basic Definitions

Definition 1. A vector in a line/plane/space is a quantity which has both
magnitude and direction. The magnitude is a nonnegative real number and
the direction is described by a ray in the line/plane/space. The magnitude
of a vector ¢ is dented by |¥].

Remark 2. There is a unique vector of magnitude 0, denoted by 5, and we
do not assign a specific direction to 0.

Example 3. A good example of vectors is the concept of force in physics.
When describing a force, we need to know its magnitude (how strong it is)
and its direction. Forces of the same magnitude and different directions may
have different effects on a particle/object.

Example 4. Fach real number can be regarded as a vector. The magnitude
of a real number s its absolute value, and the direction depends on whether
it’s positive, negative or zero.

Geometric representation of vectors: An oriented line segment from a
point A to a point B represents a vector v. The length of the line segment
represents the magnitude of ¢, and the orientation represents the direction
of ¥. A is called the initial point of ¥, and B is called the terminal point of
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With the help of geometric representation, we can define the algebraic
operations of vectors.

. We also write v = A



Definition 5. « and ¢ are two vectors, positioned in the way that the ter-
minal point of « coincides with the initial point of ¢/, then define @ + v' to be
the vector with initial point same as the initial point of # and terminal point
same as the terminal point of .
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Figure 1: Vector Addition

Definition 6. u and ¢ are two vectors, positioned in the way that the initial
point of # coincides with the initial point of ¢/, then define # — ¥ to be the
vector with initial point same as the terminal point of ¥ and terminal point
same as the terminal point of .

Figure 2: Vector Subtraction

Definition 7. ¥ is a vector. Define —v to be the vector that has same
magnitude with ¥ but opposite direction.

Remark 8. By the above definitions, we can indeed interpret 4 — ¢ to be
U + (—70), as shown by the following picture:



Definition 9. X is a real number and @ is a vector. Define the scalar multi-
plication v as follows: |Av| = |A||¢]. The direction of \¥/ is same as that of
v if A > 0, the direction of Av' is same as that of —¢ if A < 0, and \v' = 0 if
A=0.
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Figure 4: Scalar Multiplication

Remark 10. In particular, we see —0' = (—1).

Definition 11. @ and ¥ are vectors forming an angle 6 (0 < # < 7) when
their initial points coincide. Define the dot product of « and v to be the real
number 4.7 = |i]||¥] cos 0

Example 12. If we take the doc product of U with itself, § = 0, we see
7.0 = |0]|t] cos 0 = |o]?

Definition 13. T'wo nonzero vectors @ and v are perpendicular if the rays
representing their directions are perpendicular. Two nonzero vectors « and
v are parallel if the rays representing their directions are parallel.



Proposition 14. @ and ¥ are two nonzero vectors. They are perpendicular
if and only if U.U =0, and they are parallel if and only if U.U = +£|u||v]

Remark 15. When 4 is perpendicular to v, we can denote it by « L ¢

Proposition 16. The following rules hold for dot product:

Exercise 17. When |i| = |0, show that (4 + ¥) L (4 — V) by applying the
above propositions. Can you also give a geometric argument?

2 Vectors in Cartesian Coordinates

In Cartesian Coordinates (i.e. rectangular coordinates), for any point P =
(x,y), we can construct the vector with initial point 0 = (0,0) and terminal
point P, and denote it as O? We call ﬁ the position vector of the point
P. On the other hand, given a vector ¢, we put its initial point coincide with
0 = (0,0) and its terminal point will be at some point P = (x,y). We then
denote @ = OP = (z,y).

Remark 18. We regard two vectors « and ¢ to be equal if they have the same
magnitude and same direction, regardless of their actual positions drawn on
the plane.

Example 19. In this example, 1 = U = ﬁ =(1,2)
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The Coordinates bring a convenient description of vector operations:

Proposition 20. If i@ = (z1,11), ¥ = (x2,y2), and X is a real number, then
U+ U= (01 + 22,91 +32), U—T= (21— 22,51 — ¥2), M = (Av1, A\y1).

Proposition 21. If A = (z1,11) and B = (x2,12), then the vector AB =
(T1 — 22,91 — Y2).

Proposition 22. If A = (x1,y1) and B = (x9,ys), then the dot product
UV = 1172 + Y192

Proposition 23. If ¥ = (z,y), then |v] = /22 + y?
Definition 24. A vector ¢/ is called a unit vector if |0] = 1.

Proposition 25. If U is a nonzero vector, then the vector |£|z7 1S a unit vector

that has the same direction as U. We sometimes also write this vector as
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Example 26. Let A = (1,3), B = (2,0). We see AB = (2,0) — (1,3) =

(17_3)
Example 27. Let @ = (1,4), v = (4,—1). Then: @+ v = (1,4) + (4,-1) =
(5,3), © — 7 = (1,4) — (4, ):(—3,5). U0 =1x4+4+4x(=1) =0, so
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Example 28. @ = (3,4). [i| = V32442 =5, so i = (
vector.
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The dot product can be applied to compute the angle between vectors:
We know by definition @.0' = |u[v] cos #, so cos ) = 72
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Example 29. @ = (v/3,1), b= (3, —V/3). Let’s compute the angle between

these vectors. @.b = /3 x 3+ 1 x (=/3) = 2v3. |d] = \/(V3)2+ 12 = 2,
bl = /32 + (V3)2 = 2V/3. So

a.

. b 2v3 1
cos bt = - = = _
@] 2x2v3 2

So cos @ :% and 0 < 0 <7, we conclude 0 =73




