Vectors

Liming Pang

1 Basic Definitions

Definition 1. A vector in a line/plane/space is a quantity which has both magnitude and direction. The magnitude is a nonnegative real number and the direction is described by a ray in the line/plane/space. The magnitude of a vector \vec{v} is dented by $|\vec{v}|$.

Remark 2. There is a unique vector of magnitude 0, denoted by $\vec{0}$, and we do not assign a specific direction to $\vec{0}$.

Example 3. A good example of vectors is the concept of force in physics. When describing a force, we need to know its magnitude (how strong it is) and its direction. Forces of the same magnitude and different directions may have different effects on a particle/object.

Example 4. Each real number can be regarded as a vector. The magnitude of a real number is its absolute value, and the direction depends on whether it's positive, negative or zero.

Geometric representation of vectors: An oriented line segment from a point A to a point B represents a vector \vec{v} . The length of the line segment represents the magnitude of \vec{v} , and the orientation represents the direction of \vec{v} . A is called the initial point of \vec{v} , and B is called the terminal point of \vec{v} . We also write $\vec{v} = \overrightarrow{AB}$.

With the help of geometric representation, we can define the algebraic operations of vectors.

Definition 5. \vec{u} and \vec{v} are two vectors, positioned in the way that the terminal point of \vec{u} coincides with the initial point of \vec{v} , then define $\vec{u} + \vec{v}$ to be the vector with initial point same as the initial point of \vec{u} and terminal point same as the terminal point of \vec{v} .

Figure 1: Vector Addition

Definition 6. \vec{u} and \vec{v} are two vectors, positioned in the way that the initial point of \vec{u} coincides with the initial point of \vec{v} , then define $\vec{u} - \vec{v}$ to be the vector with initial point same as the terminal point of \vec{v} and terminal point same as the terminal point of \vec{u} .

Figure 2: Vector Subtraction

Definition 7. \vec{v} is a vector. Define $-\vec{v}$ to be the vector that has same magnitude with \vec{v} but opposite direction.

Remark 8. By the above definitions, we can indeed interpret $\vec{u} - \vec{v}$ to be $\vec{u} + (-\vec{v})$, as shown by the following picture:

Figure 3: $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$

Definition 9. $\vec{\lambda}$ is a real number and \vec{v} is a vector. Define the scalar multiplication $\lambda \vec{v}$ as follows: $|\lambda \vec{v}| = |\lambda| |\vec{v}|$. The direction of $\lambda \vec{v}$ is same as that of \vec{v} if $\lambda > 0$, the direction of $\lambda \vec{v}$ is same as that of $-\vec{v}$ if $\lambda < 0$, and $\lambda \vec{v} = \vec{0}$ if $\lambda = 0$.

Figure 4: Scalar Multiplication

Remark 10. In particular, we see $-\vec{v} = (-1)\vec{v}$.

Definition 11. \vec{u} and \vec{v} are vectors forming an angle θ $(0 \le \theta \le \pi)$ when their initial points coincide. Define the dot product of \vec{u} and \vec{v} to be the real number $\vec{u}.\vec{v} = |\vec{u}||\vec{v}|\cos\theta$

Example 12. If we take the doc product of \vec{v} with itself, $\theta = 0$, we see

$$\vec{v}.\vec{v} = |\vec{v}||\vec{v}|\cos 0 = |\vec{v}|^2$$

Definition 13. Two nonzero vectors \vec{u} and \vec{v} are perpendicular if the rays representing their directions are perpendicular. Two nonzero vectors \vec{u} and \vec{v} are parallel if the rays representing their directions are parallel.

Proposition 14. \vec{u} and \vec{v} are two nonzero vectors. They are perpendicular if and only if $\vec{u}.\vec{v} = 0$, and they are parallel if and only if $\vec{u}.\vec{v} = \pm |\vec{u}| |\vec{v}|$

Remark 15. When \vec{u} is perpendicular to \vec{v} , we can denote it by $\vec{u} \perp \vec{v}$

Proposition 16. The following rules hold for dot product:

- 1. $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- 2. $(\lambda \vec{u}).\vec{v} = \vec{u}.(\lambda \vec{v}) = \lambda(\vec{u}.\vec{v})$
- 3. $\vec{u}.(\vec{v}+\vec{w}) = \vec{u}.\vec{v}+\vec{u}.\vec{w}, \ (\vec{v}+\vec{w}).\vec{u} = \vec{v}.\vec{u}+\vec{w}.\vec{u}$

Exercise 17. When $|\vec{u}| = |\vec{v}|$, show that $(\vec{u} + \vec{v}) \perp (\vec{u} - \vec{v})$ by applying the above propositions. Can you also give a geometric argument?

2 Vectors in Cartesian Coordinates

In Cartesian Coordinates (i.e. rectangular coordinates), for any point P = (x, y), we can construct the vector with initial point 0 = (0, 0) and terminal point P, and denote it as \overrightarrow{OP} . We call \overrightarrow{OP} the position vector of the point P. On the other hand, given a vector \vec{v} , we put its initial point coincide with 0 = (0, 0) and its terminal point will be at some point P = (x, y). We then denote $\vec{v} = \overrightarrow{OP} = (x, y)$.

Remark 18. We regard two vectors \vec{u} and \vec{v} to be equal if they have the same magnitude and same direction, regardless of their actual positions drawn on the plane.

Example 19. In this example, $\vec{u} = \vec{v} = \overrightarrow{OP} = (1, 2)$

The Coordinates bring a convenient description of vector operations:

Proposition 20. If $\vec{u} = (x_1, y_1)$, $\vec{v} = (x_2, y_2)$, and λ is a real number, then $\vec{u} + \vec{v} = (x_1 + x_2, y_1 + y_2)$, $\vec{u} - \vec{v} = (x_1 - x_2, y_1 - y_2)$, $\lambda \vec{u} = (\lambda x_1, \lambda y_1)$.

Proposition 21. If $A = (x_1, y_1)$ and $B = (x_2, y_2)$, then the vector $\overrightarrow{AB} = (x_1 - x_2, y_1 - y_2)$.

Proposition 22. If $A = (x_1, y_1)$ and $B = (x_2, y_2)$, then the dot product $\vec{u}.\vec{v} = x_1x_2 + y_1y_2$

Proposition 23. If $\vec{v} = (x, y)$, then $|\vec{v}| = \sqrt{x^2 + y^2}$

Definition 24. A vector \vec{v} is called a unit vector if $|\vec{v}| = 1$.

Proposition 25. If \vec{v} is a nonzero vector, then the vector $\frac{1}{|\vec{v}|}\vec{v}$ is a unit vector that has the same direction as \vec{v} . We sometimes also write this vector as $\frac{\vec{v}}{|\vec{v}|}$.

Example 26. Let A = (1,3), B = (2,0). We see $\overrightarrow{AB} = (2,0) - (1,3) = (1,-3)$

Example 27. Let $\vec{u} = (1,4)$, $\vec{v} = (4,-1)$. Then: $\vec{u} + \vec{v} = (1,4) + (4,-1) = (5,3)$, $\vec{u} - \vec{v} = (1,4) - (4,-1) = (-3,5)$. $\vec{u}.\vec{v} = 1 \times 4 + 4 \times (-1) = 0$, so $\vec{u} \perp \vec{v}$.

Example 28. $\vec{u} = (3,4)$. $|\vec{u}| = \sqrt{3^2 + 4^2} = 5$, so $\frac{1}{5}\vec{u} = (\frac{3}{5}, \frac{4}{5})$ is a unit vector.

The dot product can be applied to compute the angle between vectors: We know by definition $\vec{u}.\vec{v} = |\vec{u}||\vec{v}|\cos\theta$, so $\cos\theta = \frac{\vec{u}.\vec{v}}{|\vec{u}||\vec{v}|}$

Example 29. $\vec{a} = (\sqrt{3}, 1), \ \vec{b} = (3, -\sqrt{3}).$ Let's compute the angle between these vectors. $\vec{a}.\vec{b} = \sqrt{3} \times 3 + 1 \times (-\sqrt{3}) = 2\sqrt{3}.$ $|\vec{a}| = \sqrt{(\sqrt{3})^2 + 1^2} = 2,$ $|\vec{b}| = \sqrt{3^2 + (\sqrt{3})^2} = 2\sqrt{3}.$ So

$$\cos \theta = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|} = \frac{2\sqrt{3}}{2 \times 2\sqrt{3}} = \frac{1}{2}$$

So $\cos \theta = \frac{1}{2}$ and $0 \le \theta \le \pi$, we conclude $\theta = \frac{\pi}{3}$