Homework IV

Solution
1 First-Half
1. Compute
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Solution:

Let u =23 — 1, then du = (2* — 1) dxr = 32%dx
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2. Compute
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Solution:

Let u = 22 4+ 1, then du = 2zdx,
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Solution: Let x = t2, then
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4. Compute

1
/ﬂdw

Solution:
Inz
/ —dm—/ Inzdlnz
1 [
= —(Inz)?
2 1
1
2
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6. The demand function of some goods is P = f(Q) = %, and the
supply function is P = ¢g(Q) = @ + 2. Compute the consumer surplus
and producer surplus.

Solution:
We first find the equilibrium point (Q*, P*) by solving the equations
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We get Q* = 3, P* = 5.
The consumer surplus is
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The producer surplus is
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Second-Half

. In a forest, the proportion of trees shorter than x feet is given by
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Compute the average height of the trees in the forest.

Solution: F(z) = 1 for # > 20 implies that the height of any tree is
no taller than 20, so we only need to study the interval [0,20]. The
density function is

The average height is
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. Calculate the double integral:
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where R = [0, 2] x [0, 3]

Solution:
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3. Find the volume of the solid that lies under the plane 4x+6y—2z415 =
0 and above the rectangle R = [—1,2] x [1, 2]

Solution: The surface can be rewritten as
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4. Rewrite the following integral in the form of [[ f(z,y)dydx
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The region D is the following:

Solution:
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So the double integral can be written as
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where D is the triangle with vertexes (1,1), (—1,—1),(-3,1)

Solution:
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6. Compute the area of the region bounded between the curves y = —1?
and y = 22 — 8 by double integral
Solution:
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