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1 Directional Derivative

The partial derivatives of a multi-variable function f(x, y), ∂f
∂x

and ∂f
∂y

, tell
us the rate of change of the function along the x-axis and y-axis respectively.
But in general what about the rate of change in other directions?

On the xy-plane, each direction can be represented by a unit vector ~u.
We are going to define the directional derivative of a function z = f(x, y) at
(x0, y0) in the direction ~u:

On the xy-plane, consider the line l passing through (x0, y0) and parallel
to the unit vector ~u. Passing through the line l, there is a unique vertical
plane α, and α intersects the graph of z = f(x, y) along a curve C, so C
projects to l on the xy-plane.

If we start at (x0, y0) and travel along ~u direction for a distance h, arriving
at (x, y). Then the vector with initial point (x0, y0) and terminal point (x, y)
is (x − x0, y − y0) = h~u. Since ~u is a unit vector, let ~u = (a, b), where
a2 + b2 = 1. So:

(x− x0, y − y0) = h~u = (ha, hb)

which implies
x = x0 + ha, y = y0 + hb

so the rate of change of f along ~u at (x0, y0) is

D~uf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

We call it the directional derivative of f at (x0, y0) in the direction of ~u.
Indeed there is a faster way to evaluate the directional derivative.
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Theorem 1. If f is a differentiable function of x and y, then f has a direc-
tional derivative in the direction of any unit vector ~u = (a, b) and

D~uf(x0, y0) = a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0)

Proof. Define g(h) = f(x0 + ha, y0 + hb). We get

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
= D~uf(x0, y0)

On the other hand, by the chain rule,

g′(h) =
∂f

∂x
(x0 + ha, y0 + hb)

d(x0 + ha)

dh
+
∂f

∂y
(x0 + ha, y0 + hb)

d(y0 + hb)

dh

= a
∂f

∂x
(x0 + ha, y0 + hb) + b

∂f

∂y
(x0 + ha, y0 + hb)

when h = 0, we get

g′(0) = a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0)

Combining the above results, we conclude

D~uf(x0, y0) = a
∂f

∂x
(x0, y0) + b

∂f

∂y
(x0, y0)
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Remark 2. If the unit vector ~u forms an angle θ with the positive x-axis,
then ~u = (cos θ, sin θ). We can compute the directional derivative by

D~uf(x0, y0) =
∂f

∂x
(x0, y0) cos θ +

∂f

∂y
(x0, y0) sin θ

Example 3. Find the directional derivative D~u if f(x, y) = x3 − 3xy + 4y2,
and ~u is the unit vector given by angle θ = π

6
. What is D~uf(1, 2)?

D~uf(x, y) =
∂f

∂x
(x, y) cos

π

6
+
∂f

∂y
(x, y) sin

π

6
= (3x2 − 3y)

√
3

2
+ (−3x+ 8y)

1

2

and

D~uf(1, 2) =
13− 3

√
3

2

2 Gradient

In the previous section, we have seen that if a unit vector ~u = (a, b), the
directional derivative of f along ~u is given by

D~uf(x, y) = a
∂f

∂x
(x, y) + b

∂f

∂y
(x, y)

We can rewrite it in the following form as a dot product:

D~uf(x, y) = (
∂f

∂x
(x, y),

∂f

∂y
(x, y)).(a, b)

Definition 4. The gradient of a function f(x, y) is∇f(x, y) = (∂f
∂x

(x, y), ∂f
∂y

(x, y))

By this definition, we can write

D~uf(x, y) = ∇f(x, y).~u

Example 5. Find the gradient of the function f(x, y) = x2y3−4y at (2,−1),
and find the directional derivative in the direction of the vector ~v = (2, 5).

∇f(x, y) = (∂f
∂x

(x, y), ∂f
∂y

(x, y)) = (2xy3, 3x2y2 − 4), so ∇f(2,−1) =

(−4, 8).
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Note that ~v is not a unit vector, so we first compute the unit vector in the
direction of ~v, which is ~v

|~v| = ( 2√
29
, 5√

29
). So

D ~v
|~v|
f(2,−1) = ∇f(2,−1).

~v

|~v|
= (−4, 8).(

2√
29
,

5√
29

) =
32√
29

Theorem 6. If f(x, y) is a differentiable function, then the maximum value

of D~uf(x0, y0) is |∇f(x0, y0)|, and it is achieved when ~u = ∇f(x0,y0)
|∇f(x0,y0)|

Proof. D~uf(x0, y0) = ∇f(x0, y0).~u = |∇f(x0, y0)||~u| cos θ = |∇f(x0, y0)| cos θ,
so it achieves maximum when θ = 0.

Example 7. f(x, y) = xey. In which direction does f have the maximum
rate of change at (2, 0)? What is the maximum rate of change?

∇f(x, y) = (ey, xey), so ∇f(2, 0) = (1, 2). The maximum rate of change
is along the direction of (1, 2) and the maximum rate of change is |(1, 2)| =√
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3 Level Set

Definition 8. f(x, y) is a function, and c is a real number. Define the set
{(x, y) ∈ R2|f(x, y) = c} to be the level set of f corresponding to the value
c.

In other words, the level set of f(x, y) corresponding to the value c is the
set of points (x, y) at which the value of f is c.

Example 9. f(x, y) = x + y. The level set f(x, y) = 0 is the set of points
satisfying x+ y = 0, i.e. the straight line y = −x.

Example 10. Let f(x, y) = x2 + y2, then the level set f(x, y) = 1 is the unit
circle centred at origin.

Exercise 11. Sketch the level set of the function f(x, y) = xy = c. (You
may need to discuss the cases c > 0, c = 0, c < 0 separately.)

Example 12. In geology, the altitude is a function of the location on earth.
People often use a topographic map to describe altitude by sketching some
level sets, in which case is often a curve. When the curves are denser, it
means the area is steeper. If we travel along a level curve, the altitude doesn’t
change.
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It turns out there is a close relation between level sets and gradient of a
function:

Theorem 13. f(x, y) is a differentiable function. If f(x, y) = c is a level
set and ∇f(x, y) 6= (0, 0), then ∇f(x, y) is perpendicular to the tangent line
of f(x, y) = c at (x, y).

Coming back to the previous example regarding topographic maps, the
above theorem indicates that if we want to climb onto a mountain in a
shortest path, we should always go in the direction perpendicular to the
level curve, since this is the direction of the gradient.

Remark 14. The concept of level sets also applies to functions of more vari-
ables. For example, f(x, y, z) = x2 + y2 + z2, the level set f(x, y, z) = 1 is
the unit sphere centred at origin.
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