

Homework IV Solution

First-Half

1. $h'(t) = \frac{1}{2} \frac{1}{\sqrt{t}} - \frac{1}{2} = \frac{1}{2} \left(\frac{1}{\sqrt{t}} - 1 \right)$. Let $h'(t) = 0$, we get $t = 1$.
 $h''(t) = \frac{1}{2} \left(-\frac{1}{2} t^{-\frac{3}{2}} \right) = -\frac{1}{4} t^{-\frac{3}{2}} \leq 0$ on $[0, 3]$, so the function is concave on $[0, 3]$.

We conclude that $t = 1$ is a maximum point, so at time $t = 1$ the plant is tallest.

2. $f'(x) = 2x + 3$. $f'(x) = 0$ implies $x = -\frac{3}{2}$. So the extreme point is $x = -\frac{3}{2}$.
 $f''(x) = 2 > 0$, so f is convex, the extreme point is a minimum point.
3. $f'(x) = 4x^3 - 12x^2 + 8x = 4x(x^2 - 3x + 2) = 4x(x-1)(x-2)$. So $f'(x) = 0$ when $x = 0, 1, 2$.

The candidates are $x = -1, 0, 1, 2, 3$.

$f(-1) = 9$, $f(0) = 0$, $f(1) = 1$, $f(2) = 0$, $f(3) = 9$.

So the maximum points are $x = -1, 3$, the maximum value is 9. The minimum points are $x = 0, 2$, the minimum value is 0.

4.

$$\begin{aligned}
f'(x) &= \frac{4x(x^4 + 1) - 2x^2(4x^3)}{(x^4 + 1)^2} \\
&= \frac{4x - 4x^5}{(x^4 + 1)^2} \\
&= \frac{4x(1 - x^4)}{(x^4 + 1)^2} \\
&= \frac{4x(1 + x^2)(1 - x^2)}{(x^4 + 1)^2} \\
&= \frac{4x(1 + x^2)(1 + x)(1 - x)}{(x^4 + 1)^2}
\end{aligned}$$

Let $f'(x) = 0$, we get $x = -1, 0, 1$.

So the candidates are $x = -2, -1, 0, 1, 2$.

$$f(-2) = \frac{8}{17}, f(-1) = 1, f(0) = 0, f(1) = 1, f(2) = \frac{8}{17}$$

So the maximum value is 1.

5. $f'(x) = 1 - \frac{1}{x^2}$. Let $f'(x) = 0$, we get $x = 1$ or $x = -1$.

$f''(x) = \frac{2}{x^3}$, so $f''(-1) = -2 < 0$, -1 is a local maximum point;
 $f''(1) = 2 > 0$, 1 is a local minimum point.

6. $f'(x) = 2xe^{x^2} - 2xe^{2-x^2}$. Let $f'(x) = 0$, we get

$$2xe^{x^2} - 2xe^{2-x^2} = 2x(e^{x^2} - e^{2-x^2}) = 0$$

So $x = 0$ or $e^{x^2} - e^{2-x^2} = 0$. The latter holds if and only if $x^2 = 2 - x^2$,
i.e. $x^2 = 1$, so $x = \pm 1$.

So the critical points are $x = -1, 0, 1$.

The sign of $f'(x)$ is as follows:

x	$(-\infty, -1)$	$(-1, 0)$	$(0, 1)$	$(1, +\infty)$
$f'(x)$	< 0	> 0	< 0	> 0

So $x = -1$ and $x = 1$ are local minimum points, and $x = 0$ is local maximum point.

7. Suppose one of the edges of the rectangle has length x , then the area of the rectangle is given by $A = A(x) = x(\frac{l}{2} - x) = \frac{lx}{2} - x^2$, with $x \in (0, \frac{l}{2})$.

$A'(x) = \frac{l}{2} - 2x$, let $A'(x) = 0$, we get $x = \frac{l}{4}$.

$A''(x) = -2$, the function is concave, so $x = \frac{l}{4}$ is a maximal point. The largest possible area, i.e. the maximal value is $A = A(\frac{l}{4}) = \frac{l^2}{16}$

8. $\bar{T} = \frac{T}{W} = \frac{a(bW+c)^p}{W} + k$

So

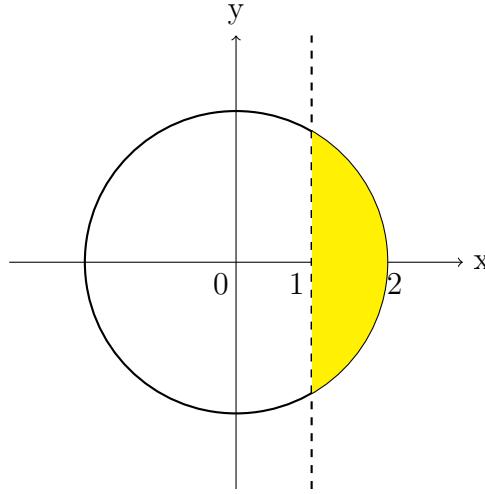
$$\begin{aligned}\bar{T}' &= \frac{abp(bW+c)^{p-1}W - a(bW+c)^p}{W^2} \\ &= \frac{a(bW+c)^{p-1}[bpW - (bW+c)]}{W^2} \\ &= \frac{a(bW+c)^{p-1}[b(p-1)W - c]}{W^2} \\ &= \frac{a(bW+c)^{p-1}b(p-1)(W - \frac{c}{b(p-1)})}{W^2}\end{aligned}$$

Since $W > 0$, the only case when W is a critical point is $W = \frac{c}{b(p-1)}$.

Note that when $W < \frac{c}{b(p-1)}$, $\bar{T}' < 0$, and when $W > \frac{c}{b(p-1)}$, $\bar{T}' > 0$, so $W = \frac{c}{b(p-1)}$ is a minimum point. When $x = \frac{c}{b(p-1)}$, the average tax is minimized.

Second-Half

1. $x - 1 > 0$ and $4 - x^2 - y^2 \geq 0$, so we get $x > 1$ and $x^2 + y^2 \leq 4$. The domain is $\{(x, y) \in \mathbb{R}^2 | x > 1 \text{ and } x^2 + y^2 \leq 4\}$.



2. $e^{x+y} - 1 \neq 0$, so $e^{x+y} \neq 1$, i.e. $x + y \neq 0$.

So the domain is $\{(x, y) \in \mathbb{R}^2 | x + y \neq 0\}$

3. (a). Since this function only depends on x , $\frac{\partial f}{\partial x} = \frac{df}{dx} = 8x^7e^{3x} + x^8(3e^{3x}) = (8x^7 + 3x^8)e^{3x}$, and $\frac{\partial f}{\partial y} = 0$

$$(b). \frac{\partial f}{\partial x} = \frac{1}{\sqrt{y^2+1}} \frac{1}{x} = \frac{1}{x\sqrt{y^2+1}}$$

$$\frac{\partial f}{\partial y} = (\ln x)(-\frac{1}{2}(y^2+1)^{-\frac{3}{2}} \times 2y) = \frac{-y \ln x}{(y^2+1)^{\frac{3}{2}}}$$

$$4. (a). \frac{\partial f}{\partial x} = \frac{(x+y)-(x-y)}{(x+y)^2} = \frac{2y}{(x+y)^2}$$

$$\frac{\partial f}{\partial y} = \frac{-(x+y)-(x-y)}{(x+y)^2} = \frac{-2x}{(x+y)^2}$$

$$\text{So } \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{2y}{(x+y)^2} \right) = (2y)(-2(x+y)^{-3}) = \frac{-4y}{(x+y)^3}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{-2x}{(x+y)^2} \right) = -2 \frac{(x+y)^2 - x(2(x+y))}{(x+y)^4} = \frac{-2(y^2-x^2)}{(x+y)^4} = \frac{2(x-y)}{(x+y)^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left(\frac{2y}{(x+y)^2} \right) = 2 \frac{(x+y)^2 - y(2(x+y))}{(x+y)^4} = \frac{2(x^2-y^2)}{(x+y)^4} = \frac{2(x-y)}{(x+y)^3}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{-2x}{(x+y)^2} \right) = (-2x)(-2(x+y)^{-3}) = \frac{4x}{(x+y)^3}$$

$$\begin{aligned}
(b). \quad & \frac{\partial f}{\partial x} = \frac{1}{2}(x^2 + y^2)^{-\frac{1}{2}}(2x) = \frac{x}{\sqrt{x^2 + y^2}} \\
& \frac{\partial f}{\partial y} = \frac{1}{2}(x^2 + y^2)^{-\frac{1}{2}}(2y) = \frac{y}{\sqrt{x^2 + y^2}} \\
& \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{\sqrt{x^2 + y^2} - x \frac{x}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{\frac{x^2 + y^2 - x^2}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \\
& \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{x^2 + y^2}} \right) = y \left(-\frac{1}{2}(x^2 + y^2)^{-\frac{3}{2}} \right)(2x) = \frac{-xy}{(x^2 + y^2)^{\frac{3}{2}}} \\
& \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = x \left(-\frac{1}{2}(x^2 + y^2)^{-\frac{3}{2}} \right)(2y) = \frac{-xy}{(x^2 + y^2)^{\frac{3}{2}}} \\
& \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{y}{\sqrt{x^2 + y^2}} \right) = \frac{\sqrt{x^2 + y^2} - y \frac{y}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{\frac{x^2 + y^2 - y^2}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{x^2}{(x^2 + y^2)^{\frac{3}{2}}} \\
(c). \quad & \frac{\partial f}{\partial x} = \frac{y}{x}, \quad \frac{\partial f}{\partial y} = \ln x \\
& \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{y}{x} \right) = -\frac{y}{x^2} \\
& \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (\ln x) = \frac{1}{x} \\
& \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left(\frac{y}{x} \right) = \frac{1}{x} \\
& \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (\ln x) = 0
\end{aligned}$$

5.

$$\begin{aligned}
\frac{dz}{dt} &= \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \\
&= (px^{p-1}y^q)(a) + (qx^py^{q-1})(b) \\
&= ap(at)^{p-1}(bt)^q + bq(at)^p(bt)^{q-1} \\
&= pa^pb^qt^{p+q-1} + qa^pb^qt^{p+q-1} \\
&= (p+q)a^pb^qt^{p+q-1}
\end{aligned}$$

6.

$$\begin{aligned}
\frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
&= (4x)(2t) + 6y \\
&= 8(t^2 - s)t + 6(t + 2s^3) \\
&= 8t^3 - 8st + 6t + 12s^3
\end{aligned}$$

$$\begin{aligned}
\frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
&= (4x)(-1) + (6y)(6s^2) \\
&= -4(t^2 - s) + 36(t + 2s^3)s^2 \\
&= -4t^2 + 4s + 36ts^2 + 72s^5
\end{aligned}$$

7.

$$\begin{aligned}
\frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
&= (e^{x-y} + \frac{1}{x+y}) + (-e^{x-y} + \frac{1}{x+y}) \\
&= \frac{2}{x+y} \\
&= \frac{1}{t}
\end{aligned}$$

$$\begin{aligned}
\frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
&= (e^{x-y} + \frac{1}{x+y}) - (-e^{x-y} + \frac{1}{x+y}) \\
&= 2e^{x-y} \\
&= 2e^{2s}
\end{aligned}$$

So $\frac{\partial z}{\partial t}(1, 0) = \frac{1}{1} = 1$, $\frac{\partial z}{\partial s}(1, 0) = 2e^0 = 2$

8. $\frac{dD}{dt} = \frac{\partial D}{\partial x} \frac{dx}{dt} + \frac{\partial D}{\partial y} \frac{dy}{dt} = \frac{x}{\sqrt{x^2+y^2}}(2t) + \frac{y}{\sqrt{x^2+y^2}}(3t^2 + 1)$

When $t = 2$, $x = 2^2 = 4$ and $y = 2^3 + 2 = 10$, so

$$V_r(2) = \frac{dD}{dt}(2) = \frac{4}{\sqrt{4^2+10^2}}(2 \times 2) + \frac{10}{\sqrt{4^2+10^2}}(3 \times 2^2 + 1) = \frac{146}{\sqrt{116}} = \frac{73}{\sqrt{29}} = \frac{73}{29}\sqrt{29}$$