

1. C is the circle $|z| = 2$, positively oriented. Compute

$$\int_C \frac{1}{z^2 + 1} dz$$

Solution: Let C_1 be the circle $|z + i| = \frac{1}{2}$, C_2 be the circle $|z - i| = \frac{1}{2}$, both positively oriented. The function $f(z)$ is analytic on and in between C, C_1, C_2 , so

$$\begin{aligned} & \int_C \frac{1}{z^2 + 1} dz \\ &= \frac{1}{2i} \left(\int_C \frac{1}{z - i} dz - \int_C \frac{1}{z + i} dz \right) \\ &= \frac{1}{2i} \left(\int_{C_1} \frac{1}{z - i} dz + \int_{C_2} \frac{1}{z - i} dz - \int_{C_1} \frac{1}{z + i} dz - \int_{C_2} \frac{1}{z + i} dz \right) \\ &= \frac{1}{2i} (0 + 2\pi i - 2\pi i - 0) \\ &= 0 \end{aligned}$$

2. $f(z) = u(x, y) + iv(x, y)$ is entire. If there exists $u_0 \in \mathbb{R}$ such that $u(x, y) \leq u_0$ for all x, y , prove $u(x, y)$ is a constant function. [Hint: consider $e^{f(z)}$]

Solution: Since $f(z)$ is entire, $e^{f(z)}$ is also entire.

$|e^{f(z)}| = |e^{u(x,y)+iv(x,y)}| = e^{u(x,y)} \leq e^{u_0}$, so $e^{f(z)}$ is bounded, by Liouville's Theorem, we get $e^{f(z)} \equiv C$ for some constant C .

We therefore have $f(z) \in \{LogC + 2\pi ki \in \mathbb{C} | k \in \mathbb{Z}\}$. Note $f(z)$ is continuous function on the connected domain \mathbb{C} , and the set $\{LogC + 2\pi ki \in \mathbb{C} | k \in \mathbb{Z}\}$ is discrete, so $f(z)$ has to be a constant function.

3. $p(z) \in \mathbb{C}[z]$ is a non-constant polynomial. c is a root of $p(z)$. Prove:

(i). $z^k - c^k = (z - c)(z^{k-1} + z^{k-2}c + \dots + zc^{k-2} + c^{k-1})$

Solution:

$$\begin{aligned}
& (z - c)(z^{k-1} + z^{k-2}c + \dots + zc^{k-2} + c^{k-1}) \\
&= (z - c)z^{k-1} + (z - c)z^{k-2}c + \dots + (z - c)c^{k-1} \\
&= z^k - z^{k-1}c + z^{k-1}c - z^{k-2}c^2 + \dots + zc^{k-1} - c^k \\
&= z^k - c^k
\end{aligned}$$

(ii). Making use of (i) to prove there exists a polynomial $q(z)$ such that

$$p(z) = p(z) - p(c) = (z - c)q(z)$$

Solution:

Let $p(z) = a_n z^n + \dots + a_1 z + a_0$. ($n > 0, a_n \neq 0$)

$$\begin{aligned}
p(z) &= p(z) - p(c) \\
&= a_n(z^n - c^n) + \dots + a_1(z - c) \\
&= a_n(z - c) \left(\sum_{i=0}^{n-1} z^{n-1-i} c^i \right) + \dots + a_1(z - c) \\
&= (z - c) \left(\sum_{k=1}^n a_k \sum_{i=0}^{k-1} z^{k-1-i} c^i \right)
\end{aligned}$$

4. (i). C is the circle $|z| = 1$. Prove $g(z) = \frac{z-1}{z+1}$ maps $U = \{x + iy \in \mathbb{C} | x > 0\}$ to the interior of C .

Solution: If $z = x + iy$ with $x > 0$, then

$$|z - i| = |x - 1 + iy| = \sqrt{(x - 1)^2 + y^2} < \sqrt{(x + 1)^2 + y^2} = |x + 1 + iy| = |z + 1|$$

So $|g(z)| = \left| \frac{z-1}{z+1} \right| = \frac{|z-1|}{|z+1|} < 1$, we see $g(z)$ is inside C .

(ii). f is an entire function. L is a straight line on \mathbb{C} . If the image of f all lie on the same side of L , prove f is a constant function.

Solution: We can find a translation T and a rotation R on \mathbb{C} such that $R \circ T$ sends L to the y -axis and the image of $R \circ T \circ f$ is to the right of $y-axis$.

Consider $g \circ R \circ T \circ f$, which is entire and by (i), its image is inside C , so it is bounded. We conclude $g \circ R \circ T \circ f$ is constant, and g, R, T are all injective, we conclude f is constant.

(iii). Prove Question (2) again using Question 4(ii).

Solution: If $u(x, y) \leq u_0$, then the image of f all lies to the left of the straight line $x = u_0$, so by (ii), f is a constant.