Complex Analysis HOMEWORK V Solution

1. Prove sin(2z) = 2sin z cos z for any z € C.

Solution:
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2. Show that cosz = cosZ for any z € C.

Solution:
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3. Evaluate the integral fol(l +it)* dt
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Solution:
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4. If k € Z, evaluate fo% et dt

Solution:
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. If f: R — R is a differentiable function and z(t) : R — C is also a differen-

tiable function, prove 4 (zo f) = 2'(f(t))f'(¢)

Solution: Write 2(t) = u(t) +iv(t). Then z o f(t) = u(f(t)) + ww(f(t)).
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6. Prove the arclength of a curve on C is independent of the parametrization, i.e.
If z(t) = x(t) + y(t)i,a < t < bis a differentiable curve, and t = ¢(7) : [¢,d] —
la, ] is a differetiable bijective function, then the arclength of z(t),a <t < b
equals to the arclength of z(¢(7)),c < 7 < d.

Solution:
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