1. Show that \(f'(z) \) doesn’t exist at any point if \(f(z) = z + \bar{z} \).

Solution: \(f(z) = z + \bar{z} = x + yi + x - yi = 2x, \) so \(u(x, y) = 2x, v(x, y) = 0 \). Then \(u_x = 2 \neq 0 = v_y \) at any point, the Cauchy-Riemann Equations are never satisfied, so \(f' \) doesn’t exist anywhere.

2. Determine when \(f'(z) \) exists if \(f(z) = z \text{Re}(z) \), where \(\text{Re}(z) \) denotes the real part of \(z \).

Solution: \(f'(z) = z \text{Re}(z) = (x+yi)x = x^2 + xyi, \) so \(u(x, y) = x^2, v(x, y) = xy \).

\(u_x = 2x, u_y = 0, v_x = y, v_y = x \) exists and are continuous, and the Cauchy-Riemann Equations hold if and only if \((x, y) = (0, 0) \), so \(f' \) exists only at \(z = 0 \).

3. Prove that \(f(z) = (3x + y) + i(3y - x) \) is entire.

Solution: \(u_x = 3 = v_y \) and \(u_y = 1 = -(v_x) \), so the partial derivatives are continuous and satisfy Cauchy-Riemann equations everywhere, we conclude \(f'(z) \) exists everywhere, so \(f \) is entire.

4. (i). \(z = x + yi \in \mathbb{C}, \) prove \(x = \frac{z + \bar{z}}{2} \) and \(y = \frac{z - \bar{z}}{2i} \)

Solution:
\[
\frac{z + \bar{z}}{2} = \frac{x + yi + x - yi}{2} = \frac{2x}{2} = x, \quad \text{and} \quad \frac{z - \bar{z}}{2i} = \frac{x + yi - x - yi}{2i} = \frac{2yi}{2i} = y
\]

(ii). We define \(\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) \). Prove if \(f'(z) \) exists, then \(\frac{\partial f}{\partial z} = 0. \)

Solution: If \(f'(z) \) exists, then \(u_x = v_y \) and \(u_y = -v_x. \)

\[
\frac{\partial f}{\partial z} = \frac{1}{2}\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)f
= \frac{1}{2}\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right)
= \frac{1}{2}\left(u_x + v_xi + i(u_y + v_yi)\right)
= \frac{1}{2}\left(u_x - v_y + i(u_y + v_x)\right)
= 0
\]
5. Derive the polar form of Cauchy-Riemann Equations. (Recall that $x = r \cos \theta$ and $y = r \sin \theta$).

Solution:

By the chain rule, we have

\[
\begin{align*}
 u_r &= u_x \cos \theta + u_y \sin \theta \\
 u_\theta &= -u_x r \sin \theta + u_y r \cos \theta \\
 v_r &= v_x \cos \theta + v_y \sin \theta \\
 v_\theta &= -v_x r \sin \theta + v_y r \cos \theta
\end{align*}
\]

We see $ru_r = rv_x \cos \theta + v_y \sin \theta = v_\theta$ and $rv_r = v_x r \cos \theta + v_y r \sin \theta = -u_\theta$. We conclude

\[
\begin{align*}
 ru_r &= v_\theta \\
 rv_r &= -u_\theta
\end{align*}
\]

6. Derive the polar form of Laplace’s equation $u_{xx} + u_{yy} = 0$.

Solution:

\[
u_r = u_x x_r + u_y y_r = u_x \cos \theta + u_y \sin \theta.
\]

\[
u_{rr} = (u_x)_r \cos \theta + (u_y)_r \sin \theta \\
= (u_{xx} x_r + u_{yx} y_r) \cos \theta + (u_{xy} x_r + u_{yy} y_r) \\
= u_{xx} \cos^2 \theta + 2u_{xy} \cos \theta \sin \theta + u_{yy} \sin^2 \theta
\]

\[
u_\theta = u_x x_\theta + u_y y_\theta = -u_x r \sin \theta + u_y r \cos \theta
\]

\[
u_{\theta\theta} = -u_x r \cos \theta - (u_x)_\theta r \sin \theta - u_y r \sin \theta + (u_y)_\theta r \cos \theta \\
= -u_x r \cos \theta - (u_{xx} x_\theta + u_{yx} y_\theta) r \sin \theta - u_y r \sin \theta + (u_{xy} x_\theta + u_{yy} y_\theta) r \cos \theta \\
= -r(u_x \cos \theta + u_y \sin \theta) + r^2(u_{xx} \sin^2 \theta - 2u_{xy} \cos \theta \sin \theta) + u_{yy} \cos^2 \theta
\]
Note that
\[
 r^2 u_{rr} + ru_r + u_{\theta\theta} = r^2(2u_{xx}\cos^2\theta + 2u_{xy}\cos\theta\sin\theta + u_{yy}\sin^2\theta) + r(u_x \cos\theta + u_y \sin\theta) \\
 - r(u_x \cos\theta + u_y \sin\theta) + r^2(u_{xx}\sin^2\theta - 2u_{xy}\cos\theta\sin\theta) + u_{yy}\cos^2\theta \\
 = u_{xx} + u_{yy}
\]

So the Laplace Equation in polar form is
\[
r^2 u_{rr} + ru_r + u_{\theta\theta} = 0
\]

7. If \(u(x, y) \) is a harmonic function on a domain \(D \), we say \(v(x, y) \) is a harmonic conjugate of \(u(x, y) \) if the complex function \(f(z) = u(x, y) + v(x, y)i \) has derivative. Prove that if \(v(x, y) \) and \(w(x, y) \) are both harmonic conjugates of \(u(x, y) \) on \(D \), then \(v(x, y) \) and \(w(x, y) \) are differed by a constant.

Solution: If \(v(x, y) \) and \(w(x, y) \) are both harmonic conjugates of \(u(x, y) \) on \(D \), then \(f(z) = u(x, y) + v(x, y)i \) and \(g(z) = u(x, y) + w(x, y)i \) are analytic on \(D \), so their difference \(F(z) = f(z) - g(z) = 0 + (v(x, y) - w(x, y))i \) is also analytic on \(D \). So we know the derivative \(F'(z) = 0_x + (v - w)_x i = 0_x - 0_y i = 0 \) on \(D \), which implies \(F \) is constant, so \(v - w \) is a constant.