

1. Compute the limit

$$\lim_{z \rightarrow \infty} \frac{3iz + 1}{2z - 5i}$$

Solution:

$$\begin{aligned} \lim_{z \rightarrow \infty} \frac{3iz + 1}{2z - 5i} &= \lim_{z \rightarrow 0} \frac{\frac{3i}{z} + \frac{1}{z^2}}{\frac{2}{z} - \frac{5i}{z}} \\ &= \lim_{z \rightarrow 0} \frac{3i + z}{2 - 5iz} \\ &= \frac{3i}{2} \end{aligned}$$

2. Show that $\lim_{z \rightarrow 0} \left(\frac{z}{\bar{z}}\right)^2$ doesn't exist, by first considering z approaching 0 along real-axis, then along the line $y = x$.

Solution: If $z \rightarrow 0$ along x -axis, $z = x$, so

$$\lim_{x \rightarrow 0} \left(\frac{x}{x}\right)^2 = \lim_{x \rightarrow 0} 1^2 = 1$$

If $z \rightarrow 0$ along $y = x$, $z = x + xi$, so

$$\lim_{x \rightarrow 0} \left(\frac{x + xi}{x - xi}\right)^2 = \lim_{\frac{1+i}{1-i}} 1^2 = -1$$

So $\lim_{z \rightarrow 0} \left(\frac{z}{\bar{z}}\right)^2$ doesn't exist.

3. $f(z) = z^2$. Compute $f'(z)$ by definition.

Solution:

$$\begin{aligned} f'(z) &= \lim_{\Delta z \rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} \\ &= \lim_{\Delta z \rightarrow 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} \\ &= \lim_{\Delta z \rightarrow 0} \frac{2z\Delta z + (\Delta z)^2}{\Delta z} \\ &= \lim_{\Delta z \rightarrow 0} 2z + \Delta z \\ &= 2z \end{aligned}$$

4. Show that $f(z) = \operatorname{Re}(z)$, i.e. the function sending each complex number to its real part, is not differentiable at any point $z \in \mathbb{C}$.

Solution: We need to show $f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ doesn't exist.

If $\Delta z \rightarrow 0$ along x -axis, $\Delta z = \Delta x$, so

$$\lim_{\Delta x \rightarrow 0} \frac{\operatorname{Re}(z + \Delta x) - \operatorname{Re}(z)}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x} = 1$$

If $\Delta z \rightarrow 0$ along y -axis, $\Delta z = \Delta yi$, so

$$\lim_{\Delta yi \rightarrow 0} \frac{\operatorname{Re}(z + \Delta yi) - \operatorname{Re}(z)}{\Delta x} = \lim_{\Delta yi \rightarrow 0} \frac{0}{\Delta x} = 0$$

We conclude $f'(z)$ doesn't exist at any point.

5. f is a complex function defined in a neighbourhood of $z \in \mathbb{C}$. If f is differentiable at z , prove it is continuous at z .

Solution: We need to show $\lim_{\Delta z \rightarrow 0} f(z + \Delta z) = f(z)$.

If $f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = 0$: For any $\epsilon > 0$, there exists $\delta' > 0$ such that $0 < |\Delta z| < \delta'$ implies $\left| \frac{f(z + \Delta z) - f(z)}{\Delta z} \right| < \sqrt{\epsilon}$. Take $\delta = \min\{\delta', \sqrt{\epsilon}\}$, we get for any $0 < |\Delta z| < \delta$, $|f(z + \Delta z) - f(z)| < |\Delta z| \sqrt{\epsilon} < \epsilon$.

If $f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} \neq 0$: For any $\epsilon > 0$, there exists $\delta' > 0$ such that $0 < |\Delta z| < \delta'$ implies $\left| \frac{f(z + \Delta z) - f(z)}{\Delta z} - f'(z) \right| < |f'(z)|$. Take $\delta = \frac{\epsilon}{2|f'(z)|}$, we get for any $0 < |\Delta z| < \delta$, $|f(z + \Delta z) - f(z)| < |f'(z)| + |f'(z)| |\Delta z| < 2|f'(z)| |\Delta z| < \epsilon$.