Complex Analysis HOMEWORK II Solution

1. Compute the limit
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2. Show that lim(i
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real-axis, then along the line y = .

)? doesn’t exist, by first considering z approaching 0 along

Solution: If z — 0 along x-axis, z = x, so
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So lim(=)? doesn’t exist.
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3. f(z) = 2% Compute f’(z) by definition.
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4. Show that f(z) = Re(z), i.e. the function sending each complex number to its
real part, is not differentiable at any point z € C.
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Solution: We need to show f/(z) = hm doesn’t exist.
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If Az — 0 along z-axis, Az = Az, so
lim Re(z + Azx) — Re(z) ~ lim Az .
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If Az — 0 along y-axis, Az = Ayi, so
lim Re(z + Ayi) — Re(z) ~ lim 0 _0
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We conclude f'(z) doesn’t exist at any point.

5. fis a complex function defined in a neighbourhood of z € C. If f is differentiable
at z, prove it is continuous at z.

Solution: We need to show Alimof(z + Az) = f(2).
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that 0 < |Az| < ¢ 1rnphes ]%| < /e. Take 0 = min{d’, /e}, we get
for any 0 < |[Az| <9, |f(z 4+ Az) — f(2)] < |Az|y/e <.

b flz4+ Az) — f(2)
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that 0 < |Az| < ¢ implies [{EEGETE — p(2)] < |f/(2)]. Take § = 57,
we get for any 0 < |Az| < 6, |f(z + Az) — f(2)] < |f'(2) + ['(2)||Az] <
2|1f'(2)]|Az] < e.

= 0: For any € > 0, there exists ¢’ > 0 such

# 0: For any € > 0, there exists ¢’ > 0 such




