1. \(f(z) = \frac{1 - e^{2z}}{z^4} \). What is the order of the pole \(z = 0 \)?

Solution:

\[
f(z) = \frac{1 - e^{2z}}{z^4} = \frac{1}{z^4} \left(1 - \sum_{n=0}^{+\infty} \frac{1}{n!} (2z)^n \right) = \frac{1}{z^4} \sum_{n=1}^{+\infty} \frac{2^n}{n!} z^{n-4} = \sum_{n=-3}^{+\infty} \frac{2^{n+4}}{(n+4)!} z^n
\]

So the order of the pole is \(-3\).

2. \(f(z) \) is analytic at \(z_0 \). \(g(z) = \frac{f(z)}{z-z_0} \). What type of singularity is \(z_0 \) for the function \(g \)?

Solution:

If \(f(z_0) \neq 0 \), it is a pole.

If \(f(z_0) = 0 \), the Taylor expansion of \(f \) at \(z_0 \) is

\[
f(z) = \sum_{n=1}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n
\]

so the Laurent expansion of \(g(z) \) around \(z_0 \) is

\[
g(z) = \frac{0}{z-z_0} f(z) = \sum_{n=1}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^{n-1} = \sum_{n=0}^{+\infty} \frac{f^{(n+1)}(z_0)}{(n+1)!} (z-z_0)^n
\]

So \(z_0 \) is a removable singular point.

3. Compute the residue of \(\frac{1}{z^2(z+1)^2} \) at \(z = 0 \).

Solution:

Let \(\phi(z) = \frac{1}{(z+1)^2} \), then \(\frac{1}{z^2(z+1)^2} = \frac{\phi(z)}{z^2} \) with \(\phi(z) \) analytic at \(z = 0 \) and \(\phi(0) \neq 0 \), so the residue of \(\frac{1}{z^2(z+1)^2} \) at \(z = 0 \) is

\[
\frac{\phi'(0)}{(2-1)!} = \phi'(0) = -2
\]

4. Prove \(z = 0 \) is a pole for \(f(z) = \frac{1}{z(e^z-1)} \) and compute the residue at \(z = 0 \).

Solution:

\[
\frac{e^{z-1}}{z} = \frac{1}{z} \sum_{n=1}^{+\infty} \frac{1}{n!} z^n = \sum_{n=1}^{+\infty} \frac{1}{n!} z^{n-1} = 1 + \sum_{n=1}^{+\infty} \frac{1}{(n+1)!} z^n
\]

so \(g(z) = \frac{e^{z-1}}{z} \) is analytic at 0 and \(g(0) = 1 \neq 0, g'(0) = \frac{1}{2} \).
\[f(z) = \frac{1}{z^2 g(z)} = \frac{1}{g(z)} \]

where \(\frac{1}{g(z)} \) is analytic at 0 and \(\frac{1}{g(0)} = \frac{1}{1} = 1 \neq 0 \), so 0 is a pole of order 2 for \(f(z) \), and

\[\text{Res}_{z=0} f = \left(\frac{1}{g(z)} \right)'|_{z=0} = -\frac{g'(0)}{g(0)^2} = -\frac{1}{2} \]

5. Show that \(z = 0 \) is a simple pole for \(f(z) = \frac{1}{\sin z} \), and compute the residue at \(z = 0 \).

Solution:

\(\sin 0 = 0 \), but \((\sin)'(0) = \cos 0 = 1 \neq 0 \), so \(z = 0 \) is a zero of order 1 for \(\sin z \). Note the constant function 1 is analytic and nonzero at \(z = 0 \), we conclude \(\frac{1}{\sin z} \) has a simple pole at \(z = 0 \). The residue is

\[\frac{1}{(\sin)'(0)} = \frac{1}{\cos 0} = 1 \]

6. \(p \) and \(q \) are functions that are analytic at \(z_0 \), and \(p(z_0) \neq 0, q(z_0) = 0 \). Show that if \(z_0 \) is a pole of order \(m \) for \(f(z) = \frac{p(z)}{q(z)} \), then \(z_0 \) is a zero of order \(m \) for \(q \).

Solution:

\(z_0 \) is a pole of order \(m \) for \(f(z) = \frac{p(z)}{q(z)} \), there exists \(\phi \) analytic at \(z_0, \phi(z_0) \neq 0 \) such that

\[\frac{p(z)}{q(z)} = \frac{\phi(z)}{(z - z_0)^m} \]

This means

\[q(z) = (z - z_0)^m \frac{p(z)}{\phi(z)} \]

and \(\frac{p(z)}{\phi(z)} \) is analytic at \(z_0 \) and nonzero at \(z_0 \), we conclude \(z_0 \) is a zero of order \(m \) for \(q \)

7. \(C \) is the positively oriented circle \(|z| = e \). Evaluate

\[\int_C \tan z \, dz \]

Solution:
\[
\tan z = \frac{\sin z}{\cos z}, \quad z_0 \text{ is a singular point of } \tan z \text{ if and only if } z_0 \text{ is a zero for } \cos z.
\]
For any \(z_0 \) a zero of order 1 of \(\cos z \), \(\cos z_0 = 0 \), \(\sin^2 z_0 = 1 - \cos^2 z_0 = 1 \), so \(\sin z_0 \neq 0 \). We see \(z_0 \) is a simple pole for \(\tan z \).

\[
\text{Res}_{z=z_0} \tan z = \frac{\sin z_0}{(\cos')'(z_0)} = \frac{\sin z_0}{-\sin z_0} = -1
\]

Inside \(C \), the singular points are \(\pm \frac{\pi}{2} \), so
\[
\int_C \tan z \, dz = 2\pi i (\text{Res}_{z=\frac{\pi}{2}} \tan z + \text{Res}_{z=-\frac{\pi}{2}} \tan z) = 2\pi i (-1 - 1) = -4\pi i
\]

8. \(q(z) \) is a function analytic at \(z_0 \), \(q(z_0) = 0 \), \(q'(z_0) \neq 0 \). Show that \(z_0 \) is a pole of order 2 of \(f(z) = \frac{1}{q(z)^2} \), and prove the residue of \(f \) at \(z_0 \) is \(-\frac{q''(z_0)}{(q'(z_0))^3} \).

\textbf{Solution:}

\(z_0 \) is a zero of order 1 for \(q \), so \(q(z) = (z - z_0)g(z) \) for some \(g(z) \) analytic at \(z_0 \) and \(g(z_0) \neq 0 \).

\[
f(z) = \frac{1}{(q(z))^2} = \frac{1}{g(z)^2 (z - z_0)^2}
\]

and \(\frac{1}{g(z)^2} \) is analytic and nonzero at \(z_0 \), so we see \(z_0 \) is a pole of order 2 for \(f \).

Next we are going to compute \(\text{Res}_{z=z_0} f \)

\(q'(z) = (z - z_0)g'(z) + g(z) \) and \(q''(z) = 2g'(z) + (z - z_0)g''(z) \), so

\[
q'(z_0) = g(z_0), q''(z_0) = 2g'(z_0)
\]

\[
\text{Res}_{z=z_0} f = (\frac{1}{g(z)^2})|_{z=z_0} = \frac{2g'(z_0)}{(g(z_0))^3} = -\frac{q''(z_0)}{(q'(z_0))^3}
\]