

1. Prove $\sum_{n=0}^{\infty} z^n$ does NOT converge uniformly on the domain $0 < |z| < 1$.

2. Show that the function defined by

$$f(z) = \begin{cases} \frac{1-\cos z}{z^2}, & (z \neq 0) \\ \frac{1}{2}, & (z = 0) \end{cases}$$

is entire.

3. Find the Taylor series expansion for $f(x) = \frac{1}{(1-x)^2}$ at $z_0 = 0$ by differentiating the Taylor series expansion $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ ($|z| < 1$)

4. m is a positive integer. Prove that if f is analytic at z_0 and $f(z_0) = f'(z_0) = \dots = f^{(m)}(z_0) = 0$, then the function

$$g(z) = \begin{cases} \frac{f(z)}{(z-z_0)^{m+1}}, & (z \neq z_0) \\ \frac{f^{(m+1)}(z_0)}{(m+1)!}, & (z = z_0) \end{cases}$$

is analytic at z_0 .

5. Find the Laurent series expansion of

$$f(z) = \frac{1}{(z-1)(z-2)}$$

in the domain $1 < |z| < 2$

6. $f(z) = \frac{1}{z-z^2}$.

(i). Find the Laurent series expansion of $f(z)$ in the domain $0 < |z| < 1$

(ii). Find the Laurent series expansion of $f(z)$ in the domain $1 < |z| < \infty$

(iii). Find the Laurent series expansion of $f(z)$ in the domain $0 < |z-1| < 1$

(iv). Find the Laurent series expansion of $f(z)$ in the domain $1 < |z-1| < \infty$