1. C is the circle $|z| = 2$, positively oriented. Compute
\[\int_C \frac{1}{z^2 + 1} \, dz \]

2. $f(z) = u(x,y) + iv(x,y)$ is entire. If there exists $u_0 \in \mathbb{R}$ such that $u(x,y) \leq u_0$ for all x,y, prove $u(x,y)$ is a constant function. [Hint: consider $e^{f(z)}$]

3. $p(z) \in \mathbb{C}[z]$ is a non-constant polynomial. c is a root of $p(z)$. Prove:
 (i). $z^k - c^k = (z - c)(z^{k-1} + z^{k-2}c + \ldots + zc^{k-2} + c^{k-1})$
 (ii). Making use of (i) to prove there exists a polynomial $q(z)$ such that
 \[p(z) = p(z) - p(c) = (z - c)q(z) \]

4. (i). C is the circle $|z| = 1$. Prove $g(z) = \frac{z-1}{z+1}$ maps $U = \{x + iy \in \mathbb{C} | x > 0 \}$ to the interior of C.
 (ii). f is an entire function. L is a straight line on \mathbb{C}. If the image of f all lie on the same side of L, prove f is a constant function.
 (iii). Prove Question (2) again using Question 4(ii).