

1. C is the contour $z(t) = e^{it}$, $0 \leq t \leq \frac{\pi}{2}$. $f(z) = z^i$ takes the principal branch $-\pi < \theta < \pi$. Compute

$$\int_C f(z) dz$$

2. Let C be the circle centered at z_0 with radius R , and use the parametrization $z = z_0 + Re^{i\theta}$, $-\pi \leq \theta \leq \pi$ to compute

$$\int_C (z - z_0)^k dz$$

where $k \in \mathbb{Z}$.

3. Show that

$$\left| \int_C \frac{z+4}{z^3-1} dz \right| \leq \frac{6\pi}{7}$$

where C is the arc of the circle $|z| = 2$ from 2 to $2i$.

4. Let C denote the line segment from i to 1 . Show that

$$\left| \int_C \frac{1}{z^4} dz \right| \leq 4\sqrt{2}$$

5. Compute $\int_C z^2 dz$, where C is any contour from i to 3 .

6. Evaluate the integral

$$\int_C e^z dz$$

where C is a closed contour along the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ in counterclockwise direction.