1. \(f(z) = \frac{1-e^{2z}}{z^2} \). What is the order of the pole \(z = 0 \)?

2. \(f(z) \) is analytic at \(z_0 \). \(g(z) = \frac{f(z)}{z-z_0} \). What type of singularity is \(z_0 \) for the function \(g \)?

3. Compute the residue of \(\frac{1}{z^2(z+1)^2} \) at \(z = 0 \).

4. Prove \(z = 0 \) is a pole for \(f(z) = \frac{1}{z(e^z-1)} \) and compute the residue at \(z = 0 \).

5. Show that \(z = 0 \) is a simple pole for \(f(z) = \frac{1}{\sin z} \), and compute the residue at \(z = 0 \).

6. \(p \) and \(q \) are functions that are analytic at \(z_0 \), and \(p(z_0) \neq 0 \), \(q(z_0) = 0 \). Show that if \(z_0 \) is a pole of order \(m \) for \(f(z) = \frac{p(z)}{q(z)} \), then \(z_0 \) is a zero of order \(m \) for \(q \).

7. \(C \) is the positively oriented circle \(|z| = e \). Evaluate

\[
\int_C \tan z \, dz
\]

8. \(q(z) \) is a function analytic at \(z_0 \), \(q(z_0) = 0 \), \(q'(z_0) \neq 0 \). Show that \(z_0 \) is a pole of order 2 of \(f(z) = \frac{1}{q(z)} \), and prove the residue of \(f \) at \(z_0 \) is \(-\frac{q''(z_0)}{(q'(z_0))^3} \).