1. Compute \(\frac{3i+5}{4-3i} \)

2. \(z \in \mathbb{C} \). Prove that \(z \in \mathbb{R} \) if and only if \(z = \bar{z} \).

3. \(z_1, z_2 \in \mathbb{C} \). Prove that \(z_1z_2 = 0 \) if and only if at least one of \(z_1, z_2 \) is 0.

4. If \(z = x + yi \), where \(x, y \in \mathbb{R} \), prove that \(\sqrt{2}|z| \geq |x| + |y| \)

5. Sketch the region in the complex plane described by \(|z + i| \leq 4 \).

6. Compute \((1 + \sqrt{3}i)^6 \)

7. \(z_1, z_2 \in \mathbb{C} \). Show that if \(Re(z_1) > 0 \) and \(Re(z_2) > 0 \), then

\[
Arg(z_1z_2) = Arg(z_1) + Arg(z_2)
\]

8. Find all the complex solutions of the equation \(z^4 + 4 = 0 \).