Corollary. If \(f \) is analytic throughout a neighbourhood \(N_0 \) of \(z_0 \), and there is a sequence \(\{z_n\} \) such that \(\lim_{n \to \infty} z_n = z_0 \), \(\forall n \in \mathbb{N}, z_n \neq z \) and \(f(z_n) = 0 \), then \(f(z) = 0 \) on \(N_0 \).

Proof. First, we see there exists a neighbourhood \(N \) of \(z_0 \) such that \(f(z) \equiv f(z_0) = f(\lim_{n \to \infty} z_n) = \lim_{n \to \infty} f(z_n) = 0 \), otherwise \(z_0 \) will be an isolated zero. Contradict to \(\lim_{n \to \infty} z_n = z_0 \) \& \(f(z_n) = 0 \). So the Taylor series expansion of \(f \) at \(z_0 \) is \(f(z) \equiv 0 \). And \(f(z) \) is also analytic on \(N \), the same Taylor series expansion \(f(z) \equiv 0 \) holds on \(N_0 \) as well.

Theorem (Coincidence Principle). A function \(f \) is analytic on a domain \(D \), and \(\{z_n\} \) is a sequence in \(D \) with \(\lim_{n \to \infty} z_n = z_0 \in D \) and \(z_n \neq z \) \(\forall n \in \mathbb{N} \). If \(f(z_n) = 0 \) \(\forall n \in \mathbb{N} \), then \(f(z) = 0 \) on \(D \).

Proof. For any \(z \in D \), connect \(z_0 \) \& \(z \) by a polygonal path \(L \). Let \(d \) be the shortest distance between \(\partial D \) and \(L \). Along \(L \) we pick points \(z_0 = s_0, s_1, s_2, \ldots \) such that \(|s_k - s_{k-1}| < d \), and consider the balls \(B_k = B(s_k, d) \). So each \(s_{k+1} \in B_k \). On \(B_0 \), by the previous corollary, we see \(f \equiv 0 \) on \(B_0 \), so it's zero on \(L \cap B_0 \), which tells us \(z \) is a limit of a sequence of zeros. So by the previous corollary again, we get \(f \equiv 0 \) on \(B_1 \). Continue this argument along \(L \), we can finish the proof.
Corollary. \(f \) and \(g \) are functions analytic on a domain \(D \).
\(\{ z_n \} \) is a sequence in \(D \) such that \(\lim_{n \to \infty} z_n = z_0 \in D \),
\(z_n \neq z_0 \forall n \in \mathbb{N} \). If \(f(z_n) = 0 \forall n \in \mathbb{N} \), then \(f(z) \equiv 0 \) on \(D \).

Proof. Take \(f(z) - g(z) \) as the function in the theorem.

Next we are discussing the relations between zeros & poles.

Theorem. If \(p(z) \) and \(q(z) \) are analytic at \(z_0 \), and \(p(z_0) \neq 0 \), \(q(z) \) has a zero of order \(m \) at \(z_0 \), then:
\[\frac{p(z)}{q(z)} \] has a pole of order \(m \) at \(z_0 \).

Proof. \(q(z) \) has a zero of order \(m \) at \(z_0 \) implies
\[q(z) = (z-z_0)^m g(z) \]
for some \(g(z) \) analytic at \(z_0 \) and \(g(z_0) \neq 0 \).

Then
\[\frac{p(z)}{q(z)} = \frac{p(z)}{(z-z_0)^m g(z)} = \frac{p(z)}{(z-z_0)^m} \]
Note that
\[\frac{p(z)}{q(z)} \] is analytic at \(z_0 \) and \(\frac{p(z)}{q(z)} \neq 0 \) so
\[\frac{p(z)}{q(z)} \] has a pole of order \(m \) at \(z_0 \).

Example. \(\frac{1}{1 - \cos z} \) has a pole of order \(2 \) at \(z_0 = 0 \) since
we can let \(p(z) = 1 \), \(q(z) = 1 - \cos z \) in the above theorem.
\(p(z) = 1 \) is analytic & non-zero at \(z_0 = 0 \).
\(q(z) = 1 - \cos z \) has a zero of order \(2 \) at \(z_0 = 0 \).
Theorem. \(p(z) \) and \(q(z) \) are analytic at \(z_0 \). If \(p(z_0) \neq 0 \), \(q(z_0) = 0 \) and \(q'(z_0) \neq 0 \), then \(z_0 \) is a simple pole of \(\frac{p(z)}{q(z)} \) and

\[
\text{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}
\]

Proof. \(q(z_0) = 0 \), \(q'(z_0) \neq 0 \) \(\Rightarrow \) \(q \) has a zero of order one at \(z_0 \). By the previous theorem, \(\frac{p(z)}{q(z)} \) has a simple pole at \(z_0 \).

Let \(q(z) = (z-z_0) g(z) \), \(g(z) \) is analytic at \(z_0 \), \(g(z_0) \neq 0 \).

Then \(\frac{p(z)}{q(z)} = \frac{p(z)}{(z-z_0) g(z)} = \frac{p(z)}{g(z)} \left(\frac{1}{z-z_0} \right) \)

\[
\text{Res}_{z=z_0} \left(\frac{p(z)}{g(z)} \right) = \frac{p(z_0)}{g(z_0)} = \frac{p(z_0)}{q'(z_0)} \quad \text{(Since \(q'(z) = g(z) + (z-z_0) g'(z) \))}
\]

Example. \(f(z) = \frac{z}{z^4 + 4} \). \(z_0 = \sqrt[4]{2} e^{\frac{\pi}{4} i} \) is a pole of \(f \).

Let \(p(z) = z \), \(q(z) = z^4 + 4 \), we see \(p(z_0) \neq 0 \), \(q(z_0) = 0 \)

but \(q'(z_0) = 4z_0^3 \neq 0 \), so by the theorem we get

\[
\text{Res}_{z=z_0} f(z) = \frac{p(z_0)}{q'(z_0)} = \frac{z_0}{4z_0^3} = \frac{1}{4} \cdot \frac{1}{z_0^2} = \frac{1}{8} \cdot e^{-\frac{\pi}{2} i} = -\frac{i}{8}
\]
Theorem. If \(z_0 \) is a removable singular point of \(f \), then \(f \) is bounded and analytic on some deleted neighbourhood \(0 < |z - z_0| < \epsilon \).

Proof. There exists \(F(z) \) such that
\[F(z) = f(z) \quad \text{for} \quad z \neq z_0 \quad \text{and} \quad F(z) \text{ is analytic at } z_0. \]

Since \(z_0 \) is an isolated singular point, we can find some \(\epsilon > 0 \) such that \(F(z) = f(z) \) is analytic on \(0 < |z - z_0| < \epsilon \), so \(F(z) \) is analytic on \(0 < |z - z_0| < \epsilon \), hence continuous.

\(F(z) \) is therefore bounded on \(1 < |z - z_0| < \frac{\epsilon}{2} \), a closed disk, so also bounded on the subset \(0 < |z - z_0| < \frac{\epsilon}{2} \), which implies \(f(z) \) is also bounded on \(0 < |z - z_0| < \frac{\epsilon}{2} \).

Theorem (Riemann's Theorem).
Suppose \(f \) is bounded and analytic on \(0 < |z - z_0| < \epsilon \). If \(f \) is not analytic at \(z_0 \), then \(z_0 \) is a removable singular point.

Proof. \(f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \quad (0 < |z - z_0| < \epsilon) \)

Let \(0 < r < \epsilon \), and \(C \) be the positively oriented contour \(|z - z_0| = r \).

Assume \(f \) is bounded by \(M \) on \(0 < |z - z_0| < \epsilon \),
We know \(b_n = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z - z_0)^{n+1}} \, dz \)

\[|b_n| \leq \frac{1}{2\pi} \cdot M \cdot \frac{r^{-n+1}}{r^{n+1}} = M \cdot r^n \]

Since the above holds for any \(0 < r < \varepsilon \). Letting \(r \to 0 \), we get \(|b_n| = 0 \Rightarrow b_n = 0 \)

Theorem. (Casorati-Weierstrass Theorem)

\(z_0 \) is an essential singular point of \(f \). For any \(\omega_0 \in \mathbb{C} \), any \(\varepsilon > 0 \) and any \(\delta > 0 \), there exists \(0 < |z - z_0| < \delta \) such that \(|f(z) - \omega_0| < \varepsilon \).

Proof. Suppose we can find \(\omega_0 \in \mathbb{C} \), \(\varepsilon > 0 \) and \(\delta > 0 \) such that \(\forall 0 < |z - z_0| < \delta \), \(|f(z) - \omega_0| \geq \varepsilon \).

By taking even small \(\delta \) if necessary, we can assume \(f \) is analytic on \(0 < |z - z_0| < \delta \).

Define \(G(z) = \frac{1}{f(z) - \omega_0} \) \((0 < |z - z_0| < \delta) \)

\[|G(z)| = \frac{1}{|f(z) - \omega_0|} < \frac{1}{\varepsilon} \text{ on } 0 < |z - z_0| < \delta, \text{ so} \]

\(g(z) \) is bounded and analytic on \(0 < |z - z_0| < \delta \), applying Riemann's Theorem, \(z_0 \) is a removable singular point of \(f \).

So we can extend \(g(z) \) to \(\widehat{G}(z) \), which is analytic on \(|z - z_0| < \delta \).
If \(G(z) \neq 0 \), define \(F(z) = \frac{1}{G(z)} + W_0 \) on \(|z - z_0| < \delta \).

When \(0 < |z - z_0| < \delta \), observe that

\[
F(z) = \frac{1}{g(z)} + W_0 \Rightarrow g(z) = \frac{1}{F(z) - W_0},
\]

so \(F(z) = f(z) \) on \(0 < |z - z_0| < \delta \), and \(F(z) \) is analytic at \(z_0 \).

We see \(z_0 \) is a removable singular point of \(f(z) \), contradiction.

If \(G(z_0) = 0 \), since \(G(z) \) is not constant, \(z_0 \) is a zero of some finite order \(m \) of \(G \).

\[
s(z) = \frac{1}{g(z)} + W_0 = \frac{1 + W_0 G(z)}{G(z)} \]

\(1 + W_0 G(z) = 1 \neq 0 \), and \(G(z) \) has zero of order \(m \) at \(z_0 \).

So \(f(z) \) has a pole of order \(m \) at \(z_0 \), contradiction.

Theorem: If \(z_0 \) is a pole of \(f \), then \(\lim_{z \to z_0} f(z) = \infty \).

Proof: Assume \(z_0 \) is a pole of order \(m \), then

\[
f(z) = \frac{\phi(z)}{(z - z_0)^m}
\]

for some \(\phi(z) \) analytic at \(z_0 \) and \(\phi(z_0) \neq 0 \).

\[
\lim_{z \to z_0} \frac{1}{f(z)} = \lim_{z \to z_0} \frac{(z - z_0)^m}{\phi(z)} = \frac{0}{\phi(z_0)} = 0
\]

Since \(\phi(z) \) is continuous at \(z_0 \).

We get \(\lim_{z \to z_0} f(z) = \infty \).