Calculus II HOMEWORK IX Solution

1. Find a power series representation for the function and determine the interval
of convergence:

(). f(2) = 5=
(ii). f(z) =15
(iii). f(z) = 75
(V). f(x) = i
Solution:
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The series converges on |5-| < 1, i.e., =3 < x < 3. The interval of convergence

is (—3,3).
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The interval of convergence is (—1,1).
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The series converges when |§| < 1 and |z| < 1, so the interval of convergence is
(—1,1).
(iv). First observe that

i = ) = G = ey = 3y e
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The series converges when |4z| < 1, so the interval of convergence is (—1, 7).

2. Find the Taylor series of f(z) = Inx at 1, and prove f(x) equals to this Taylor
13

series on (3, 5).

n

f™(1) = (=1)"Y(n — 1), so the Taylor series is
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Solution: f)(z) = EL =Dl for a1l p > 1.

n=1
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for some z between z and 1. If 3 < 2 < 3, then [z — 1| < § and z > 3, so

|21 < 1, nh_}n;o |Ry| =0, we conclude T'(z) equals to f(z) on (3, 2).

|Bn| = | (=¥ =

3. Use binomial series to expand the function f(x) = ﬁ as a power series, and
state the radius of convergence.
Solution:
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4. Use Taylor series to evaluate the limit
) 1 —cosx
lim ——
n—oo | + 1 — e%

Solution:
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5. Evaluate the integral as as infinite series:
/ x cos(2?) dx

Solution:
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6. Find the sum of the series

n=1 nj"

Solution:
We know In(1 — z) =377 | —£" for |z] < 1, so take = = 3:

4 1,4

—In5=1In(-) =1In(1 - 5) — _; ﬁ(g)n
We get
=1 4
Inb = ; E(g)”



