Calculus II HOMEWORK VIII Solution

1. Determine whether the following series is convergent or divergent.
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Solution:
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By the L'Hospital’s Rule,
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By the Ratio Test, we conclude the series converges.
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By the Root Test, we conclude the series converges.

2. Determine whether the following series is absolutely convergent, conditionally
convergent, or divergent.
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Solution:
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(i). Note that [tan™' z| < 5, s0 0 < |(_1)n;—3n_1”| < 2. By Comparison Test,
(—=1)"tan"!n

w1
the convergence of Z 572 implies the convergence of Z| 5 |,
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Z H# converges absolutely.
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(ii).
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So by the Ratio Test, the series Z(—) converges absolutely.
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3. {b,} is a sequence and lim b, = 7 Determine whether the given series is
n—oo
absolutely convergent, conditionally convergent or divergent.
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Solution:
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By the Ratio Test, the series converges absolutely.

4. Find all the values for k such that the series
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converges.

Solution:
2
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When k£ = 1: the series becomes Z = n!, and n! # 0, so the series

diverges.
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When k£ > 2:
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By the Ratio Test, it converges.

We conclude the series converges for k£ > 2.

5. Find the radius of convergence and interval of convergence of the power series.
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Solution:
(i). The radius of convergence is

n
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When x = —1 4 4 = 3, the series is Z n, which diverges since lim n # 0

n—00
n=0

When z = —1 — 4 = —5, the series is Z(—l)“n, which is divergent since
n=0

lim (—1)"n # 0.
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So the interval of convergence is (—5, 3).

(ii).
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for any real number x, so the radius of convergence is oo, and the interval of
convergence is (—o0, +00).

6. Let p and g be real numbers with p < ¢. Find a power series whose interval of
convergence is [p, q).

Solution: Consider the power series
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The radius of convergence is
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When z = 222 + ©22 = ¢, the series becomes Z R which is divergent.
=0
When = — 2X4 _ 92 — o the series b (=" hich i b
enz =2 52 = p, the series becomes Z , which is convergent by
~n+ 1

Alternating Convergence Test.

So the interval of convergence is [p, q)



