- 1. Determine if the following sequences converge or diverge:
 - (i). $\{\tan \frac{3}{n}\}$
 - (ii). $\{\frac{(\ln n)^2}{n}\}$
 - (iii). $\{(1+\frac{2}{n})^n\}$
 - (iv). $\{\frac{\sin 3n}{2^n-1}\}$

Solution:

(i). $\lim_{n \to \infty} \frac{3}{n} = 0$ and $f(x) = \tan x$ is continuous at x = 0, so

$$\lim_{n\to\infty}\tan(\frac{3}{n})=\tan(\lim_{n\to\infty}\frac{3}{n})=\tan 0=0$$

So the sequence converges.

(ii). By the L'Hospital's Rule,

$$\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = \lim_{x \to +\infty} \frac{2\ln x}{x} = \lim_{x \to +\infty} \frac{2}{x} = 0$$

So $\lim_{n \to \infty} \frac{(\ln n)^2}{n} = \lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$, the sequence converges. (iii).

$$\lim_{x \to +\infty} (1 + \frac{2}{x})^x = \lim_{y \to +\infty} (1 + \frac{2}{2y})^{2y} = \lim_{y \to +\infty} ((1 + \frac{1}{y})^y)^2 = (\lim_{y \to +\infty} (1 + \frac{1}{y})^y)^2 = e^2$$

So
$$\lim_{n \to \infty} (1 + \frac{2}{n})^n = \lim_{x \to +\infty} (1 + \frac{2}{x})^x = e^2$$
, the sequence converges.
(iv).
$$-\frac{1}{2^{n-1}} \le \frac{\sin 3n}{2^{n-1}} \le \frac{1}{2^n-1}$$
, and
$$\lim_{n \to \infty} -\frac{1}{2^n-1} = \lim_{n \to \infty} \frac{1}{2^n-1} = 0$$

By Squeeze Theorem, $\lim_{n\to\infty} \frac{\sin 3n}{2^n - 1} = 0$, so the sequence converges.

1

2. A sequence $\{a_n\}$ is given by $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 + a_n}$. Show that the sequence converges.

Solution: We first show $a_n \leq 2$ for all n by induction:

First, $a_1 = \sqrt{2} < 2$.

Next, if $a_n < \sqrt{2}$, then $a_{n+1} = \sqrt{2 + a_n} \le \sqrt{2 + 2} = 2$.

So $\{a_n\}$ is bounded above by 2.

$$\{a_n\}$$
 is increasing since $\frac{a_{n+1}}{a_n} = \frac{\sqrt{2+a_n}}{a_n} = \sqrt{\frac{2}{a_n^2} + \frac{1}{a_n}} > \sqrt{2 \times (\frac{1}{2})^2 + \frac{1}{2}} = 1.$

So by the Monotonic Convergence Theorem, conclude $\{a_n\}$ converges.

3. Show that if $\{a_n\}$ is bounded and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n b_n = 0$.

Solution: If $\{a_n\}$ is bounded, then there exists constant K > 0 such that $|a_n| < K$ for all n. This implies $-K|b_n| \le a_n b_n \le K|b_n|$, and $\lim_{n \to \infty} -K|b_n| = \lim_{n \to \infty} K|b_n| = 0$, so by Squeeze Theorem, $\lim_{n \to \infty} a_n b_n = 0$.

4. Determine if the following series converge or diverge:

(i).
$$\sum (-1)^n n$$

(ii).
$$\sum \ln(1 + \frac{1}{n})$$

(iii).
$$\sum \frac{1}{2n-1}$$

(iv).
$$\sum \frac{2+(-1)^n}{n^2}$$

(v).
$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$

(vi).
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

Solution:

(i). $\lim_{n \to \infty} (-1)^n n \neq 0$, so the series diverges.

(ii).
$$S_N = \sum_{n=1}^N \ln(1+\frac{1}{n}) = \sum_{n=1}^N \ln(\frac{n+1}{n}) = \ln(\frac{2}{1} \times \frac{3}{2} \times \dots \times \frac{N+1}{N}) = \ln(N+1)$$

So $\lim_{N\to\infty} S_N = +\infty$, the series diverges.

(iii). $\lim_{n \to \infty} \frac{\frac{1}{2n-1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2} \neq 0, \text{ and } \sum \frac{1}{n} \text{ diverges, so by Limiting}$ Convergence Test, $\sum \frac{1}{2n-1}$ diverges. (iv). $0 < \frac{2+(-1)^n}{n^2} \leq \frac{3}{n^2}, \text{ and } \sum \frac{3}{n^2}$ converges, so by the Comparison Test, $\sum \frac{2+(-1)^n}{n^2}$ converges. (v). $f(x) = \frac{1}{x \ln x}$ is a positive decreasing function on $[2, +\infty)$. $\int_2^{+\infty} \frac{1}{x \ln x} dx = \lim_{t \to +\infty} \int_2^t \frac{1}{x \ln x} dx = \lim_{t \to +\infty} \int_2^t \frac{1}{\ln x} d\ln x = \lim_{t \to +\infty} \ln \ln x \Big|_2^t = +\infty$

So the series diverges.

(vi). $\frac{1}{\ln n}$ is a positive decreasing sequence for $n \ge 2$, so by the Alternating Convergence Test, $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$ converges.

3